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ABSTRACT The distribution of mutational effects on fitness is central to evolutionary genetics. Typical univariate distributions, however, cannot
model the effects of multiple mutations at the same site, so we introduce a model in which mutations at the same site have correlated fitness
effects. To infer the strength of that correlation, we developed a diffusion approximation to the triallelic frequency spectrum, which we applied to
data fromDrosophilamelanogaster. We found amoderate positive correlation between the fitness effects of nonsynonymousmutations at the same
codon, suggesting that both mutation identity and location are important for determining fitness effects in proteins. We validated our approach by
comparing it to biochemical mutational scanning experiments, finding strong quantitative agreement, even between different organisms. We also
found that the correlation of mutational fitness effects was not affected by protein solvent exposure or structural disorder. Together, our results
suggest that the correlation of fitness effects at the same site is a previously overlooked yet fundamental property of protein evolution.
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MUTATIONScreate genetic variationwithin populations,
some of which causes differential fitness among indi-

viduals upon which natural selection operates. The effects of
mutations on fitness range from strongly deleterious to
strongly beneficial, and the distribution of fitness effects
(DFE) is key formanyproblems ingenetics, from theevolution
of sex (Barton and Charlesworth 1998) to the architecture of
human disease (Di Rienzo 2006). For protein-coding regions,
there are generallymany strongly deleterious or lethal mutations,
a similar number of moderately deleterious or nearly neutral mu-
tations, and a small number of beneficial mutations (Eyre-Walker
andKeightley 2007). TheDFEmaybedetermined experimentally
through direct measurements of mutation fitness effects in clonal
populations of viruses, bacteria, or yeast (Wloch et al. 2001; San-
juán et al.2004), and recent studieshaveprovidedhigh-resolution
DFEs for single genes (Bank et al. 2014; Firnberg et al.
2014) and for beneficial mutations (Levy et al. 2015). The

DFEmay also be inferred from comparative (Nielsen and Yang
2003; Tamuri et al. 2012) or population genetic (Williamson
et al. 2005; Eyre-Walker et al. 2006; Keightley and Eyre-
Walker 2007; Boyko et al. 2008) data, although these ap-
proaches have little power for strongly deleterious mutations.

In the typical population genetic approach for estimating
the DFE, the population demography is first inferred using
a putatively neutral class of mutations, and the DFE for
another class of mutations is inferred by modeling the distri-
bution of allele frequencies expected under a model of de-
mography plus selection. Most population genetic inference
has focused on biallelic loci, for which the ancestral allele and
a single mutant (derived) allele are segregating in the pop-
ulation. When many individuals are sequenced, however,
even single-nucleotide loci are often found to be multiallelic,
with three or more segregating alleles. Multiallelic loci pose
a challenge formodeling selection. To use a typical univariate
DFE, onemust assume thatmutations at the same site all have
either equal fitness effects (so that mutation location com-
pletely determines fitness) or independent fitness effects (so
that mutation identity completely determines fitness). Nei-
ther of these assumptions is biologically well founded, sug-
gesting the need for more sophisticated models of fitness
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effects. Herewe introduce amodel of correlatedfitness effects
for mutations at the same site, and we analyze sequence data
to infer the strength of that correlation.

Our inference is based on triallelic codons, loci where three
mutually nonsynonymous amino acid alleles are segregating in
the population (Figure 1A). Interest in triallelic loci has grown
recently, because such loci, while typically much less numerous
than biallelic loci, are often observed in sequencing studies that
sample tens or hundreds of individuals within single popula-
tions. For example, Hodgkinson and Eyre-Walker (2010) found
in humans a roughly twofold excess of triallelic sites over the
expectation under neutral conditions and random distribution
of mutations. This led them to suggest an alternate mutational
mechanism that could simultaneously generate two unique
mutations, although recent population growth and substructure
can account for the distribution of observed triallelic variation
(Jenkins et al. 2014). Recently, Jenkins, Mueller, and Song
(Jenkins and Song 2011; Jenkins et al. 2014) developed a co-
alescent method to calculate the expected triallelic frequency
spectrum under arbitrary single-population demography. They
showed that triallelic frequencies are sensitive to demographic
history (Jenkins and Song 2011; Jenkins et al. 2014), but their
method cannot model selection.

In this study, we developed a numerical diffusion simula-
tion of expected triallelic allele frequencies for single popu-
lationswitharbitrarydemographyandselectionatoneorboth
derived alleles. We coupled this simulation to a DFE that
models the correlation between fitness effects of the two
derived alleles. We applied this approach to infer the corre-
lation coefficient of fitness effects from whole-genome
Drosophila melanogaster data, inferring a moderate positive
correlation between fitness effects of mutually nonsynony-
mousmutations in the same codon. To validate our inference,
we compared this approach with direct biochemical experi-
ments, finding strong agreement. Finally, we applied our ap-
proach to biologically relevant subsets of nonsynonymous
mutations to assess how the fitness effects correlation varies
among classes of mutations.

Theory and Methods

Herewe describe themodel for triallelic loci and howwe solve
the triallelic diffusion equation to obtain the expected sample
triallelic frequency spectrum under arbitrary demography and
selection.Wealso describe how to obtain the sample frequency
spectrumunder an arbitrary univariate or bivariate DFE,which
we used in our inference of the correlation coefficient for
selection strength at triallelic loci. Finally, we compared our
results to correlation coefficients estimated from mutational
scanning experiment data, discussed here as well.

Model for triallelic loci

The diffusion approximation we used is based on a triallelic
extension to the standard Wright–Fisher (WF) model for al-
lele frequency dynamics, which assumes nonoverlapping
generations and random mating. The two derived alleles

have selection coefficients, sx and sy; so their fitnesses relative
to the ancestral allele are 1þ sx and 1þ sy: If the two derived
alleles have frequencies ðit; jtÞ in generation t in a diploid
population of size N, then their frequencies in generation
t þ 1 are sampled from a trinomial distribution, such that
the probability of sampling ði; jÞ is

Pði; jjit; jtÞ ¼
�
2N
i; j

�
pii   p

j
j   ð12pi2pjÞ2N2i2j; (1)

where

pi ¼ itð1þ sxÞ
itð1þ sxÞ þ jtð1þ syÞ þ ð2N2 it 2 jtÞ;

pj ¼
jtð1þ syÞ
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and
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is the trinomial coefficient ð2NÞ!=�i! j!ð2N2 i2 jÞ!�:

From here on, we focus on relative allele frequencies x ¼ i=2N
and y ¼ j=2N:

Most applications of the biallelic WFmodel assume infinite
sites, so eachnewmutation is unique, andnewmutations enter
the population at a rate proportional to ubi ¼ 4Nam:Here ubi is
the population-scaled mutation rate, Na is the ancestral effec-
tive population size, andm is the per-generationmutation rate.
Mutations begin at frequency 1=2N and are assumed to evolve
independently. Given these assumptions, the density function
f ðxÞ for derived allele frequencies in a population can be ap-
proximated by diffusion theory (Kimura 1964), such that the
expected total number of alleles with frequency between x0
and x1 is

R x1
x0
ðubi=2Þf ðxÞ  dx; a key result from Poisson random

field theory (Sawyer and Hartl 1992). The expected sample
allele frequency spectrum F with n samples is then

FðiÞ ¼
Z 1

0

ubi
2

fðxÞ
�
n
i

�
xið12xÞn2i   dx; (2)

where
�
n
i

�
is the binomial coefficient. The likelihood of an

observed allele frequency spectrum under this model is then
a product of Poisson likelihoods for each entry in the spec-
trum (Sawyer and Hartl 1992).

Whereas new biallelic mutations begin at frequency 1=2N;
triallelic loci are created when a novel mutation occurs at
a locus that is already biallelic. The new derived allele ini-
tially has frequency 1=2N; and the existing derived allele has
a frequency x 2 ð0; 1Þ drawn from the population distribution
of biallelic frequencies fðxÞ in that generation. The net rate at
which triallelic loci arise is thus

2Nmtri
ubi
2

f ðxÞ ¼ utri
2

ubi
2

f ðxÞ; (3)

where mtri is the rate for mutations that hit existing biallelic
sites and produce a third allele. Triallelic sites then evolve
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under the three-locus WF model, and we denote the density
function for frequencies of triallelic loci asfðx; yÞ: The triallelic
frequency spectrum summarizes sequence data from a sam-
ple of individuals by storing the counts of triallelic loci with
each set of observed derived allele frequencies (Jenkins
et al. 2014) (Figure 1, E and F). The expected triallelic fre-
quency spectrum T with n samples is proportional to the
integral of the density function f against the trinomial
sampling distribution:

Tði; jÞ}
Z 1

0

Z 12y

0
fðx; yÞ 

�
n
i; j

�
x iy jð12x2yÞn2i2j   dx   dy:

(4)

Because the net triallelic mutation rate mtri is sensitive to
mutation rate heterogeneity, in our triallelic analyses we fo-
cused on the normalized triallelic frequency spectrum, which
does not depend on the overall rate of creation. Similarly,
because the order in which the two derived alleles arose
is often unknown, we considered only counts of major
and minor derived alleles, which have respectively higher
or lower sample frequencies (Figure 1). That is, for given
major and minor derived allele frequencies i and j, with
j, i; we collapsed the Tði; jÞ and Tð j; iÞ counts together into
the Tði; jÞ bin. If in a sample we observe counts of indepen-
dent triallelic frequencies D ¼ Dði; jÞ; Poisson Random Field
theory shows that the data Dði; jÞ are Poisson distributed with
mean Tði; jÞ; enabling likelihood calculations.

Diffusion approximation to the triallelic frequency
spectrum with selection

To obtain the expected sample frequency spectrum for a given
model of selection and demography, we numerically solved

the corresponding diffusion equation. First described by
Kimura (1955, 1956), the triallelic diffusion equation models
the evolution of the density function fðx; yÞ for the expected
number of loci in the population with derived allele frequen-
cies ðx; yÞ; such that x; y 2 ð0; 1Þ and x þ y, 1 (Figure 1B):

@f

@t
¼ 1
2

@ 2

@x 2

�
xð12 xÞ

n
f

�
þ 1
2

@ 2

@y2

�
yð12 yÞ

n
f

�

2
@ 2

@x@y

�
xy
n
f

�
2 ~gx

@

@x
�
xð12 xÞf�2 ~gy

@

@y
�
yð12 yÞf�:

(5)

Time t is measured is units of 2Na generations, where Na is
the ancestral effective population size. The spatial second-
derivative terms account for genetic drift, which is scaled
by the relative population size nðtÞ ¼ NðtÞ=Na; and the
mixed derivative term accounts for the covariance in allele
frequency changes. The population-scaled selection coeffi-
cient is g ¼ 2Nas;where s is the relative fitness of the derived
vs. ancestral allele. Here that selection coefficient must be
adjusted to ~g to account for competition between the two
segregating derived alleles, dependent on their allele fre-
quencies. For example, if their selection coefficients are
roughly equal, they will be effectively neutral when at high
frequency. In general,

~gx ¼ gx
12 x2 y
12 x

þ ðgx 2gyÞ
y

12 x
; (6)

with a similar expression for ~gy:

Like the biallelic diffusion method @a@i; Equation 5 does
not account for recurrent mutation, which would tend to in-
crease derived allele frequencies. Recurrent mutation could
be accounted for in the first-derivative terms, but at the cost

Figure 1 The triallelic frequency
spectrum (TFS). (A) Mutually non-
synonymous triallelic loci in pro-
tein-coding regions have three
observed segregating amino acid
alleles. Here, with 10 sampled
chromosomes, at position 9 the
major and minor derived alleles,
serine (S) and leucine (L), have fre-
quencies 4 and 1, so this site con-
tributes to the (4, 1) bin of the TFS.
Similarly, position 14 contributes
to the (2, 2) bin. (B) The domain
of the triallelic diffusion equation,
u, from Equation 5. The corners
correspond to fixation of one of
the three alleles, and the edges
correspond to loss of one of the
three alleles. New mutations enter
the population along the horizon-

tal and vertical axes, with density dependent on the background biallelic frequency spectrum. Pairs of selection coefficients for the two derived non-
synonymous mutations are sampled from a bivariate DFE, which includes a parameter for correlation between selection coefficients r. (C) For an
uncorrelated DFE, with r ¼ 0; the selection coefficients are independent and often dissimilar. (D) For strong correlation, here r ¼ 0:9; selection coefficients
are typically very similar. (E and F) The correlation coefficient affects the expected frequency spectrum, with stronger correlation (F: r ¼ 0:9), resulting in
a higher proportion of intermediate- to high-frequency derived alleles and more triallelic sites overall relative to weak correlation (E: r ¼ 0).
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of additional model complexity. If it is common, neglecting
recurrent mutation can bias inferences of mutation rate, pop-
ulation size, and selection (Desai and Plotkin 2008; Mathew
et al. 2013). Applying our present theory thus requires that
the mutation rate be high enough to create a substantial
number of triallelic sites for inference, but not so high that
a large fraction of biallelic or triallelic sites are affected by
recurrent mutation. For most eukaryotes, including humans
andDrosophila, mutation rates are low enough that recurrent
mutation is negligible in most applications (Desai and Plotkin
2008).

Someanalytic results areknownfor triallelicdiffusion(Tier
and Keller 1978; Tier 1979; Spencer and Barakat 1992), but
we solved Equation 5 numerically.We used a finite-difference
method similar to that in @a@i (Gutenkunst et al. 2009). To
integrate the diffusion equation forward in time, we used
operator splitting to separately apply the nonmixed and
mixed derivative terms each time step (Supplemental Mate-
rial, File S1). We integrated the nonmixed terms, using a con-
servative alternating direction implicit (ADI) finite difference
scheme (Chang and Cooper 1970). We integrated the mixed
term, using a standard explicit scheme for mixed derivatives.
We used uniform grids in x and ywith equal grid spacingD; so
that grid points lie directly on the diagonal x þ y ¼ 1 bound-
ary of the domain, which readily allowed the diagonal
boundary to be absorbing. Although these integration
schemes worked well in the interior of the domain, applica-
tion at the diagonal boundary led to an excess of density
being lost (File S1 and Figure S1). To avoid this excess loss,
we did not apply the ADI andmixed derivative schemes at the
closest grid points to the diagonal boundary. Instead, at each
time step we calculated the amount of density at each grid
point that would fix along the diagonal boundary, and we
directly removed that amount from the numerical density
function and added it to the boundary.

To inject density into f for new triallelic loci, at each time
step we added density to the first interior rows of grid points
based on the expected background biallelic frequency
f ðxÞ: For example, we added to the row of grid points
x ¼ D; 2D; . . . 12D; y ¼ D with weight for point ðx;DÞ pro-
portional to the biallelic population allele density fðxÞ at fre-
quency x. We directly coupled with @a@i to track f ðxÞ: To
obtain the expected sample frequency spectrum T from the
population frequency spectrum f, we numerically integrated
against the trinomial distribution with sample size n, using
Equation 4. Our code implementing these methods is
integrated into @a@i; available at https://bitbucket.org/
gutenkunstlab/dadi.

Calculating frequency spectra under a DFE

Given a DFE, the expected sample frequency spectrum can be
obtainedby integrating over the expected frequency spectrum
for each selection coefficient, weighted by the DFE. For
biallelic sites, theDFE is a univariate distribution. For triallelic
sites, the DFE is a two-dimensional joint distribution, because
there are two derived alleles. Moreover, the two marginal

distributions are identical, because we assume no knowledge
of which allele arose first.

For our primary analysis, we used a lognormal model for
the deleterious triallelic DFE (Figure 1, C and D), plus a point
mass of positive selection. The lognormal distribution readily
generalizes to an arbitrary number of dimensions, and the
bivariate lognormal distribution includes a correlation coef-
ficient r that characterizes the correlation between selection
coefficients. If r ¼ 0; the selection coefficients of the two de-
rived alleles at a single triallelic locus are independent,
whereas if r ¼ 1; they are equal. For a fixed marginal DFE,
as the correlation coefficient r increases, more segregating
triallelic loci are expected, particularly at moderate and high
derived allele frequencies (Figure 1, C–F). We quantified the
relative importance of identity and location for protein mu-
tation fitness effects through r; low correlation suggests that
identity is more important, whereas high correlation suggests
that location within the protein is more important.

To numerically integrate over the univariate DFE, we used
a logarithmically spaced grid with 2000 grid points ranging
from g ¼ 2 2000 to 21024; along with g ¼ 0 and a point
mass of positive selection gþ . 0: Biallelic spectra were
cached for each g# 0; resulting in 2001 cached spectra. We
assumed that alleles with g, 2 2000 were effectively lethal
and did not contribute to the sample frequency spectrum. We
also assumed that alleles with2104 ,g, 0 were effectively
neutral, and we used the cached spectrum for g ¼ 0 for con-
tributions from this range of the DFE (Figure S2A).

To integrate over the bivariate DFE we used a logarith-
mically spaced grid with 50 grid points ranging from
g ¼ 2 2000 to 21024; along with g ¼ 0 and gþ . 0; deter-
mined by the univariate DFE fit. We cached spectra for each
possible pair ðgx; gyÞ; yielding 522 cached spectra. A pair of
selection coefficients ðgx; gyÞ could fall into four quadrants,
depending on the sign of gx and gy: The overall frequency
spectrum was calculated by summing over the weighted fre-
quency spectra for each quadrant based on the DFE parame-
ters pþ and r. The weights were p2þ þ r  pþð12 pþÞ for
both gx; gy . 0; ð12 rÞpþð12 pþÞ for one selection
coefficient positive and the other negative, and
ð12pþÞ2 þ rð12 pþÞpþ for both gx; gy , 0: These weights
were found by taking the distribution of two point masses
(one for positive selection, pþ; and one for negative selection,
12 pþ) and extending it to a bivariate distribution of point
masses with correlation coefficient r (File S1). To integrate
over the continuous distributions with one or both of the
selection coefficients negative, we used the trapezoid rule.
We approximated g 2 ð21024; 0Þ as effectively neutral and
g, 22000 as effectively lethal (Figure S2B).

Genomic data

We extracted SNPs from phase 3 of theDrosophila Population
Genomics Project (DPGP3) population of fruit flies from the
Drosophila Genome Nexus Data (Lack et al. 2015). The data
we used consist of 197 sequenced genomes from a Zambian
population obtained through high-coverage haploid embryo

516 A. P. Ragsdale et al.

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.184812/-/DC1/FileS1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.184812/-/DC1/FileS1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.184812/-/DC1/FigureS1.pdf
https://bitbucket.org/gutenkunstlab/dadi
https://bitbucket.org/gutenkunstlab/dadi
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.184812/-/DC1/FigureS2.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.184812/-/DC1/FileS1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.184812/-/DC1/FigureS2.pdf


sequencing. This population has high genetic diversity, and it
did not experience the out-of-Africa bottleneck or NewWorld
admixture that other D. melanogaster populations have expe-
rienced (Lack et al. 2015). We used Annovar (Wang et al.
2010) to determine the transcript and codon position of each
coding SNP. The ancestral state of each codon was deter-
mined using the aligned sequences of D. melanogaster (April
2006, dm3) andD. simulans (droSim1) downloaded from the
University of California, Santa Cruz genome database, by
assuming that the D. simulans allele was ancestral. We ex-
cluded loci with no aligned D. simulans sequence. We down-
loaded the reference transcript sequences from Ensembl
Biomart (Flicek et al. 2014) and used the ancestral states
determined by the droSim1 alignment to determine the an-
cestral codon state.

Inferring the selection correlation coefficient

In our application to D. melanogaster, we used biallelic syn-
onymous data to infer the single-population demographic
history and then used nonsynonymous data to infer the
parameters of the DFE. Using the unfolded synonymous
allele frequency spectrum, we fitted a neutral three-epoch
demographic model. This model has two instantaneous
size changes, at times t1 and t2 in the past, with constant pop-
ulation sizes, n1 and n2; relative to the ancestral population size.
Wealso included a parameterpmisid to account for ancestral state
misidentification, which creates an excess of high-frequency
derived alleles (Baudry and Depaulis 2003). Specifically,
we compared the data not with the expected true unfolded
frequency spectrum Ftrue under the demographic model, but
rather with the expected observed unfolded frequency Fobs;
such that FobsðiÞ ¼ ð12 pmisidÞFtrueðiÞ þ pmisidFtrueðn2 iÞ;
where n is the sample size. We chose to include misidentifi-
cation in our model rather than adjusting the data spectra
(Hernandez et al. 2007), because adjusting the data leads to
violations of the Poisson random field assumption, most obvi-
ously when the adjustment leads to negative entries in the data
spectrum. The population-scaled mutation rate usyn was an im-
plicit free parameter. We used the built-in optimization routines
in @a@i (Gutenkunst et al. 2009) to fit themodel to the data.We
fixed this demographic model for all future inferences.

The unfolded biallelic nonsynonymous allele frequency
spectrum was used to infer the marginal DFE. As described
above,weused a lognormal distribution for negative selection
combinedwith a point mass of positive selection. This yielded
a total of four parameters, m and s for the lognormal portion
and gþ and proportion pþ for the point mass. As in the fits for
demography using synonymous data, we also included
a parameter to model ancestral state misidentification. In
this fit, the population-scaled mutation rate was fixed to
unon ¼ 2:53 usyn; and we again used @a@i’s optimization
routines to fit the DFE to the data.

Finally, we used triallelic data with two mutually non-
synonymous derived codons to infer the correlation coeffi-
cient r. We fixed the demography to that inferred from the
biallelic synonymous data, and we fixed the DFE parameters

m, s, pþ; and gþ to the values inferred from the biallelic
nonsynonymous data. This left the correlation coefficient
r as the only free parameter of the bivariate DFE, and
we also included a free parameter to account for ancestral
misidentification. Assuming that the two observed
derived alleles were equally likely to be the true ancestral
allele, we calculated the expected observed triallelic
spectrum Tobs from the expected true spectrum Ttrue

by Tobsði; jÞ ¼ ð12 pmisidÞTtrueði; jÞ þ 1
2
pmisidTtrueðn2 i2 j; jÞþ

1
2
pmisidTtrueði; n2 i2 jÞ: We also left the overall population-

scaled mutation rate for triallelic loci as an implicit free pa-
rameter, so our fit considered only the distribution of triallelic
codons among frequency classes, not the overall number
of such codons. We did this because the overall number of
triallelic codons can be strongly affected by mutation rate
heterogeneity, and imperfect modeling of that heterogeneity
could bias our results.

We estimated model parameters by maximum composite
likelihood. Following the Poisson random field framework,
likelihoods LðDjQÞ of the data D given the model parameters
Q were calculated by assuming that each entry in the ob-
served triallelic frequency spectrum Di;j was an independent
Poisson random variable with mean Ti;j (Sawyer and Hartl
1992), where T is the expected triallelic frequency spectrum
generated under Q :

LðQjDÞ ¼
Y
i; j

e2Ti; jT Di; j

i; j

Di; j!
: (7)

Because our SNP data are not actually independent, L is not
the true likelihood, but rather a composite likelihood. To ac-
count for this, we calculated parameter uncertainties for each
model fit, using the Godambe information matrix (Coffman
et al. 2016), which adjusts the composite-likelihood statistic
to account for the effects of linkage. To do so, we generated
1000 bootstrap data sets by dividing the D. melanogaster
autosomal genome into 1000 regions of equal length and
resampling among these regions.

Tests on simulated data

To generate simulated data for tests of statistical power, we
first calculated the expected frequency spectrum under each
model considered, usingourdiffusionmethod. Togenerate an
observed frequency spectrum with exactly n entries, we gen-
erated nmultinomial samples of frequencies, weighted by the
expected frequency spectrum. To generate an observed fre-
quency spectrum with a given mutation rate u, we scaled the
expected frequency spectrum by u, treated the bin weights as
Poisson random variables, and sampled independently for
each bin.

Mutational scanning data

For comparison with our population genetic inference, we
considered data from three mutational scanning studies
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(Roscoe et al. 2013; Firnberg et al. 2014; Starita et al. 2015).
Each study assayed a different protein from a different organ-
ism, using a different proxy for fitness. In all three experi-
ments, the distribution of fitnesses was bimodal, with peaks
of moderately and strongly deleterious mutations, although
the relative sizes of these peaks differed markedly between
experiments (Figure S3, A–C). To calculate the fitness corre-
lation coefficient, we sampled a pair of mutually nonsynon-
ymous mutations from each site in the protein (excluding
mutations without reported fitness) and calculated the Pear-
son correlation of those fitnesses. The confidence intervals in
Table 1 are 2.5% and 97.5% quantiles from 10,000 repeti-
tions of this sampling. To visualize the correlations, we cal-
culated the proportion of mutually nonsynonymousmutation
pairs within each possible bin of joint fitness effects (Figure
4B and Figure S3, D–I). Because our population-genetic anal-
ysis is not sensitive to strongly deleterious mutations, we
focused our analysis on moderately deleterious mutations
(shaded regions in Figure S3, A–C, joint distributions in Fig-
ure S3, D–F). For details on each data set, see File S1.

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article.

Results and Discussion

We first validated our diffusion approach to calculating the
expected triallelic frequency spectrum through comparisons
with coalescent simulations including demography (Figure
S4) and Wright–Fisher simulations including selection (Fig-
ure S5). We then applied our method to genomic data from
D. melanogaster to infer the strength of correlation of selec-
tion coefficients for nonsynonymous mutations that occur at
the same codon in protein-coding regions. We then used sim-
ulations to characterize the performance of our approach
with varying amounts of data and possible model misspecifi-
cation. Finally, we compared our results to inferences made
from deep mutation scanning experiments and refined our
inferences to consider biologically relevant subsets of the
data.

Correlation of selection strengths for nonsynonymous
mutations at the same site

To estimate the correlation between fitness effects of amino
acid-alteringmutations,we used197ZambianD.melanogaster
whole-genome sequences from the DPGP3 (Lack et al.
2015). We chose this population because it has high ge-
netic diversity (and thus many triallelic sites) and a demo-
graphic history without admixture from non-sub-Saharan
populations (Lack et al. 2015), which allowed us to model the
population’s demographic history using a single-population
model. Recurrent mutation is expected to be rare in this pop-
ulation, because only �   5% of sites are polymorphic, and
of the nonsynonymous sites, only �   4% are triallelic. As

detailed in Theory and Methods, we first inferred demographic
history using biallelic synonymous sites. We then inferred the
marginal DFE for newly arising nonsynonymous mutations,
using that demographic model and the biallelic nonsynony-
mous data. Finally, we inferred the fitness effects correlation
coefficient, using our inferred demography and marginal DFE
and the mutually nonsynonymous triallelic loci in the data.
For all model fits, we included a parameter to account for an-
cestral state misidentification, which creates an excess of high-
frequency derived alleles (Baudry and Depaulis 2003).

We used @a@i (Gutenkunst et al. 2009) to fit a three-epoch
population size model to the unfolded biallelic synonymous
frequency spectrum (Figure 2, A and B, and Table S1). We
fixed this demographic model for all future inferences, and
we fitted a univariate DFE to the biallelic nonsynonymous
data. For negatively selected sites (g, 0), we assumed a log-
normal distribution of selection coefficients with mean and
variance parameters m and s, which has been previously
shown to be a good approximation for the biallelic DFE for
D. melanogaster (Kousathanas and Keightley 2013). Our DFE
also included a point mass modeling a proportion pþ of pos-
itively selected sites with scaled selection coefficient gþ: Our
inferred biallelic DFE (Figure 2C and Table S1) fits the data
well (Figure 2A), with just under 1% of new mutations
inferred to be beneficial (inferred gþ ¼ 39:9). When fitting
the DFE to the nonsynonymous data, the parameters for the
lognormal portion (negatively selected sites) were tightly con-
strained, but pþ and gþ were confounded and inversely cor-
related, as found in other studies (Sella et al. 2009; Schneider
et al. 2011). Our inferred proportions of mutations in various
selective regimes agreed well with prior work (Table S2).

We worked at the codon level to assess the correlation in
selection coefficients for nonsynonymous mutations, so a tri-
allelic locus could arise from two mutations at the same
nucleotide or at different nucleotides in the same codon.
Weextendedour inferredone-dimensionalDFE to twodimen-
sions, fixing the parameters m;s; gþ; and pþ; so that the cor-
relation coefficient r was the only free parameter of the
bivariate lognormal distribution, along with a single param-
eter for ancestral misidentification. Fitting to 10,471 mutu-
ally nonsynonymous triallelic loci (Figure 3A), we inferred
r ¼ 0:51 (Figure 3B, Table 1, and Table S1). Selection coef-
ficients for nonsynonymous mutations at the same codon are
thus somewhat but not completely correlated, so location
and identity play roughly equal roles in determining muta-
tion fitness effects.

Effects of data quality and model misspecification

Statistical power to infer the selection correlation coefficient
varies with the number of observed triallelic loci and the
number of sampled individuals. Inference may also be biased
by distortions in the observed frequency spectrum due to
sequencing error or by misspecification of the demographic
or selection model. To assess the sensitivity of our analysis to
such effects, we considered both fits to simulated data and
alternative fits to the Drosophila data.
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There were 10,471 mutually nonsynonymous triallelic
codon polymorphisms in the 197 sampled genomes of the
Zambian fruit fly data, which yielded a tight confidence in-
terval for the selection correlation coefficient (Table 1). To
test the power of our inference for different true values of the
underlying correlation coefficient and smaller numbers of
sampled individuals or triallelic loci, we fitted simulated data
sets, assuming the exact demography andmarginal DFEwere
known. As expected, inferences of the correlation coefficient
were unbiased, and power increased with increasing number
of observed triallelic loci (Figure S6, A–E). For a constant
number of observed triallelic loci, the precision of the infer-
ence was insensitive to the number of sampled individuals
(Figure S6F), suggesting that capturing rare triallelic variants
is not crucial. To infer the correlation coefficient to a similar
precision to that in the mutational-scanning studies, .2000
triallelic sites were needed, suggesting that our inference can
be carried out only for populations with high genetic diver-
sity. For example, in the 1000 Genomes Project Phase 3 hu-
man data (1000 Genomes Project Consortium 2015), among
the 216 genomes from the Yoruba population, there were
only 658 mutually nonsynonymous triallelic codons for
which we were able to determine the ancestral state. Based
on our fits to simulated data, we would not have power to
accurately infer the correlation coefficient from these data.

Errors in sequencing may distort the observed site fre-
quency spectrum, particularly at low frequencies. To test
the sensitivity of our approach to sequencing error, we sim-
ulated data under our three-epoch demographic model and
DFE, plusanadditionalmodel for sequencingerror. Themodel
assumed that each sequenced base had probability e � 1 to
be incorrectly identified; that is, with probability e, for each
polymorphic site, an individual’s true derived base was called
as ancestral, or an individual’s true ancestral base was called
as derived (Johnson and Slatkin 2008). We then refitted
parameters for all of our models to both the biallelic and
triallelic data simulated under this model. We found that
high error rates (e$ 1024) biased our inference of the selec-
tion correlation coefficient upward (Figure S7). This is likely
because, under this model, sequencing error reduces the pro-
portion of alleles observed at low vs. moderate and high fre-
quencies, and higher values of r similarly reduce the

proportion of alleles expected at low frequency vs. high and
moderate frequencies (Figure 1, C–F).

Sequencing errors may bias inference, but the DPGP3 D.
melanogaster data we used are high-coverage (30–503 ) hap-
loid sequences (Lack et al. 2015), so we expect sequencing
error was negligible in our inference. In particular, Lack et al.
(2015) report error rates on the order 1025 per site, below the
1024 error rate that caused bias in our simulation study.

To assess the sensitivity of our inferences to the demo-
graphic model, we fitted two additional models to the
Drosophila data, both simpler than the three-epoch model we
focused on. For both models, we fitted the demographic
parameters to the synonymous biallelic data, fitted the mar-
ginal DFE to the nonsynonymous biallelic data, and finally
inferred r from the mutually nonsynonymous triallelic data,
all as described previously. We first considered a two-epoch
demographic model, consisting of a single instantaneous
population size change at some time in the past. Using this
model resulted in a noticeably poorer fit to the biallelic and
triallelic data (Figure S8A and Table S3). The inferred log-
normal portion of the marginal DFE was similar to that from
the three-epoch model. Under the two-epoch model, how-
ever, we inferred more and stronger positive selection, likely
because this compensates for the underestimation of high-
frequency alleles in the two-epoch model (Figure S8B). This
in turn caused the inferred correlation coefficient to be sub-
stantially lower (Table S3), likely because a lower correlation
coefficient reduces the number of moderate- and high-
frequency triallelic loci (Figure 1, C–F), partially compensat-
ing for the effect of increased positive selection. We then
considered an equilibrium demography, assuming no popu-
lation size changes. This model fitted the data very poorly
(Figure S8A and Table S3), and the marginal DFE and the
correlation coefficient we inferred were skewed toward neu-
trality and a lower r (Table S3), because these skews gener-
ate more rare variants to account for the deficit produced by
this poor demographic model. Together, these analyses sug-
gest that inference of the triallelic DFE is sensitive to misspe-
cification of the demographic model.

In our primary Drosophila analysis, we assumed that the
DFE followed a lognormal distribution, because such a distri-
bution fits the biallelic data well and easily generalizes to two

Table 1 Fitness effect correlation coefficients for nonsynonymous mutations at the same codon, inferred from population genomic data
and biochemical experiments

Approach Data set r 95% C.I.

Population genomic data D. melanogaster all 0.51 0.45–0.57
Biochemical experiments E. coli TEM-1 b-lactamase (Firnberg et al. 2014) 0.41 0.34–0.50

Yeast ubiquitin (Roscoe et al. 2013) 0.34 0.20–0.56
Human BRCA1 (Starita et al. 2015) 0.32 0.16–0.48

Population genomic data 20% most similar amino acids 0.72 0.58–0.85
20% most dissimilar amino acids 0.24 0.15–0.32
20% highest solvent accessibility 0.54 0.43–0.65
20% lowest solvent accessibility 0.50 0.37–0.63
Disordered residues 0.54 0.45–0.62
Ordered residues 0.45 0.35–0.55
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or more dimensions. Other analyses of the univariate DFE
have, however, used other parametric distributions (Eyre-Walker
et al. 2006; Keightley and Eyre-Walker 2007; Boyko et al.
2008; Kousathanas and Keightley 2013), particularly the
gamma distribution (Eyre-Walker et al. 2006; Keightley and
Eyre-Walker 2007). When we fitted a DFE with a gamma dis-
tribution for negatively selected sites and a point mass of pos-
itive selection to the bivariate data, we found a poorer fit than
that of the lognormal distribution (Table S4).We nevertheless
fitted a bivariate extension of the gamma distribution to the
triallelic data. A number of bivariate gamma distributions have
been defined (reviewed by Yue et al. 2001). We chose one that
maintains the univariate gamma distribution when marginal-
ized (Kibble 1941; File S1).Whenfitted to theDrosophiladata,
the bivariate gamma distribution yielded r ¼ 0:975; with
a moderately worse likelihood than that of the bivariate log-
normal (Table S4). Note, however, that the bivariate gamma
DFE is in terms of the selection coefficient g, and the lognormal
distribution is in terms of logg; so the correlation coefficients
are not directly comparable. Given that the lognormal distri-
bution better fits our data and has been previously found to be
a good approximation for the D. melanogaster univariate DFE
(Kousathanas and Keightley 2013), we prefer the lognormal
estimate. This analysis shows, however, that the inferred cor-
relation coefficient is sensitive to the parametric form of the
bivariate distribution. Future applications may thus consider
other possible forms for the bivariate DFE.

Comparison to experimental mutational
scanning studies

Our population genetic approach allowed us to simulta-
neously study the whole genome, but it is an indirect

approach to measuring the selection coefficient correla-
tion. Complementary experimental data come from muta-
tional scanning experiments, which use deep sequencing
to simultaneously assay the function of thousands of mu-
tant forms of a protein (Araya and Fowler 2011; Figure
4A). To measure selection coefficient correlations from
such data, we sampled pairs of mutually nonsynonymous
mutations for each site assayed in the protein and calcu-
lated the resulting correlations (Figure 4B and File S1).
Because our population genetic inference is insensitive to
strongly deleterious mutations, we restricted our analysis
to the moderately deleterious mutations found in each
experiment (Figure S3). We analyzed proteins from
Escherichia coli (Firnberg et al. 2014), Saccharomyces
cerevisiae (Roscoe et al. 2013), and humans (Starita et al.
2015) (Table 1). In all three cases these direct biochem-
ical assays yielded a fitness effects correlation in agree-
ment with our population genetic estimate, although the
limited number of sites within each experiment yielded
large confidence intervals, and experimental noise
would tend to systematically bias the experimental cor-
relations downward. These results suggest that the
moderate correlation of mutational fitness effects we
found in D. melanogaster also holds true for other organisms
and proteins.

Figure 3 Inference of selection correlation coefficient from triallelic data.
(A) The observed triallelic frequency spectrum for mutually nonsynony-
mous triallelic sites, which contained 10,471 triallelic sites. (B) The best-fit
model, optimizing the correlation coefficient r and the ancestral misiden-
tification parameters. (C) Joint distribution of selection coefficients from
the maximum-likelihood inferred correlation coefficient of r ¼ 0:51: Se-
lection coefficients for nonsynonymous mutations at the same site are
moderately correlated.

Figure 2 Inferences of demographic history and marginal distribution of
fitness effects from biallelic data. (A) Biallelic synonymous and nonsynon-
ymous data (thin black lines) and corresponding maximum-likelihood model
fits (thick colored lines). Ancestral state misidentification is likely responsible
for most of the excess of high-frequency derived alleles, and a parameter to
model such misidentification was included in both the synonymous and
nonsynonymous models. (B) Inferred demographic model, with two instan-
taneous population size changes. Time is in units of 2Na generations, where
Na is the ancestral effective population size. (C) Inferred distribution of
fitness effects, lognormally distributed for negatively selected mutations
with a proportion of positively selected mutations.
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Selection coefficient correlation for subsets of data

Sites within proteins vary in their evolutionary properties
(Halpern and Bruno 1998; Holder et al. 2008), so we asked
how the fitness effect correlation coefficient differs among
subsets of the D. melanogaster population genomic data.
We first tested our expectation that biochemically similar de-
rived amino acids would have more tightly correlated se-
lection coefficients than dissimilar derived amino acids
(Yampolsky et al. 2005; Blanquart and Lartillot 2008). We
assessed similarity, using the Grantham matrix (Grantham
1974), which scores pairs of amino acids based on similarity
of biochemical properties. We then refitted the correlation
coefficient and misidentification parameter to the subsets of
loci with the top and bottom 20% of similarity scores. We
indeed found that highly similar derived amino acids
exhibited stronger correlation than dissimilar amino acids
(Table 1), validating our approach.

We also assessed the correlation of fitness effects for sub-
sets of amino acids that are buried or exposed, based on
solvent accessibility, as well as subsets that are ordered or
disordered, because protein structural properties are known
to affect the amino acid substitution process (Dimmic et al.
2000). We used SPINE-D (Zhang et al. 2012) to separate sites
into the top and bottom 20% of solvent accessibility scores
and into disordered and ordered classes. For each subset, we
refitted the underlying marginal DFE and then fitted the bi-
variate DFE to measure the correlation coefficient. As
expected (Goldman et al. 1998; Bustamante et al. 2000;
Tseng and Liang 2006; Lin et al. 2007), for buried residues
with low solvent accessibility and for ordered residues, we
inferred DFEs that were more negatively skewed than for
residues with high solvent accessibility or that were structur-
ally disordered (Table S5). We found, however, that these
structural features did not affect the inferred fitness effects
correlation coefficient (Table 1). Together, these results sug-
gest that models of protein evolution that incorporate struc-
tural features (Wilke 2012; Arenas et al. 2013) do need to
account for differences in the marginal DFE, but not for dif-
ferences in correlation.

Conclusions

Based on the three-allele Wright–Fisher model with an influx
of new mutations, we developed a novel numerical solution
to the triallelic diffusion equation that simultaneouslymodels
the effects of demography and selection on pairs of derived
alleles (Figure 1). Using our method, we inferred, for the first
time, the correlation of mutation fitness effects at the same
site within proteins from triallelic nonsynonymous SNP data
(Figure 3). We found that the correlation coefficient is in-
termediate between completely uncorrelated and completely
correlated. Early mutation–selection models of protein evo-
lutionmade the unrealistic assumption that the fitness effects
of multiplemutations occurring at the same site were identical
(Nielsen and Yang 2003). More recent methods estimate se-
lection coefficients for every possible amino acid at every site
(Tamuri et al. 2012), but these complexmodels require a great
deal of data (Tamuri et al. 2014). Our model of correlated
fitness effects is a useful intermediate-complexity model.

We found strong quantitative agreement between the
fitness effects correlation coefficient inferred from our pop-
ulation genomic inference and those from direct biochemical
experiments (Figure 4).Moreover, this agreement held across
a wide range of model organisms, for genes that vary dra-
matically in function, and using several measures of fitness,
suggesting that this correlation of mutational fitness effects is
a fundamental property of protein biology, not species or pro-
tein specific. We also refined our analysis to biologically
relevant subsets of the data (Table 1). As expected, non-
synonymous pairs of similar derived amino acids show signif-
icantly higher correlation of fitness effects than dissimilar
pairs. Although solvent accessibility and structural disorder
did affect the marginal DFE (Table S5), we did not find a dif-
ference in fitness effects correlation among these classes of
sites (Table 1). Together, our results suggest that the fitness
effects correlation we inferred is a nearly universal property
of protein evolution, with important implications for model-
ing protein evolution.
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Figure S1: Numerical challenges along diagonal boundary. A: In the interior of the domain, we
integrated forward with Eq. S1 and Eq. S2. B: Near the boundary of the domain, density spreads primarily
diagonally (blue ellipse). In our scheme, the ADI step (Eq. S1, solid arrows) pushes density horizontally
and vertically, and the explicit step (Eq. S2, dashed arrows) accounts for diagonal flow. C: Immediately
adjacent to the boundary, the ADI step pushes excess density onto the boundary, which cannot return (red
Xs), because the boundary is absorbing. We thus applied the ADI step to all points except those adjacent
to the boundary. At the adjacent points we calculated the density that should be lost to the boundary each
timestep and explicitly moved that much density to the boundary.
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Figure S2: Integration over DFEs. A: Best-fit lognormal DFE for bivariate nonsynonymous data, with
regimes assumed to be effectively neutral and lethal highlighted. B: Best-fit bivariate lognormal DFE (not
showing positive selection portion) for all triallelic nonsynonymous data. In the crosshatched area, we
considered one or both alleles to be effectively lethal, such that they did not contribute to observed segregating
variation. In regions for which γx or γy were assumed effectively neutral, we used γ = 0 for calculation. For
example, if γx = −10−6 and γy = −1, we used the frequency spectrum calculated for (γx, γy) = (0,−1).
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Figure S3: Mutational scanning experiments. A-C: Fitness proxy distributions for all three data
sets. Shaded region indicates mutations considered in our primary analysis that focused on mutations with
moderate effect (Table 1). D-F: Binned probability distribution of joint fitnesses for pairs of nonsynonymous
mutations at the same site, restricted to fitnesses considered in our primary analysis. G-I: As in D-F, but
including all mutations.
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Figure S4: Validation of numerics for neutral demography. For a two-epoch demography in which
the population doubles in size at a time 0.1 × 2Na generations before present, we compared our diffusion
results with the coalescent method of Jenkins, Mueller, and Song (Jenkins et al., 2014). A: Numerical
diffusion solution with grid points [60, 80, and 100] and time steps [0.01, 0.001, and 0.0001]. B: Coalescent
solution from 10,000 simulated trees (from Hudson’s ms (Hudson, 2002)) used to calculate the moments
of intercoalescent times. C. The residuals show good agreement between our numerical diffusion approach
and the coalescent approach from Jenkins et al. (2014), with Poisson residuals calculated as (Coalescent −
Diffusion)/

√
Coalescent, with the exception that our diffusion method slightly underestimates low-frequency

alleles when compared with the coalescent approach.
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Figure S5: Validation of numerics including selection. Residuals between diffusion and dis-
crete simulations at equilibrium for varying selection strengths. The diffusion-based spectra were scaled
to match the magnitude of the simulation spectra. Poisson residuals were calculated as (Diffusion −
Simulation)/

√
Diffusion. The number of SNPs in each comparison is labeled in each panel.
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Figure S6: Statistical power of selection correlation coefficient inference. Plotted are the distri-
butions of selection correlation coefficients inferred from simulated data. Red lines denote medians, boxes
denote first and third quartiles. Data were simulated using our best-fit demography and marginal DFE from
the Drosophila data, but with varying correlation coefficient ρ. For each configuration of ρ and data size,
we simulated and fit 200 data sets. A-D: For a given ρ, we varied the number of observed triallelic loci
among 197 sampled chromosomes. As the number of observed loci increases, the power to accurately infer ρ
increases smoothly. E: For ρ = 0.5, we varied the number of sampled individuals, while holding θ constant
so that 10,000 triallelic loci would be observed with 197 samples, and fewer would be observed with smaller
samples. F: For ρ = 0.5, we varied the number of sampled individuals, while holding the number of observed
triallelic loci constant at 10,000. In this case, power depends very little on sample size.
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Figure S8: Biallelic data fits for simpler demographic models. Top panels show the data (thin black
lines) and maximum-likelihood models (thick colored lines), and bottom panels show the Anscombe residuals
between model and data. A&B: The two-epoch model fits the data more poorly than the three-epoch model.
Our resulting inferences of the marginal DFE under this model are similar to under the three-epoch model,
but the inferred value of ρ is notably lower. C&D: The equilibrium demographic model does not fit the
biallelic data well, and both the marginal and bivariate DFE inferences differ substantially from the three-
epoch model.



Table S1: Maximum-likelihood estimates from Drosophila data. Point estimates and confidence
intervals for our three epoch demographic model (Fig. 2B), the univariate distribution of fitness effects for
nonsynonymous mutations (Fig. 2C), and the bivariate DFE from triallelic data (Fig. 3).

Estimates
Model Parameter Max Likelihood 95% CI Log-likelihood

3-epoch

ν1 1.63 1.47−1.79

-1334
ν2 3.15 3.02−3.28
τ1 0.12 0.10−0.14
τ2 0.044 0.035−0.054

misid 0.052 0.051−0.053

DFE

µ 5.42

-853.3
σ 3.36
γ+ 39.9
p+ 0.0079

misid 0.014

5.23−5.62
3.25−3.47
35.7−44.1

0.0069−0.0088
0.013−0.015

Correlation
ρ 0.51 0.44− 0.59

-4433
misid 0.029 0.023− 0.34



Table S2: Estimated proportion of mutations in Nes ranges. Eyre-Walker and Keightley (2009) used
a gamma distribution for the DFE, and Kousathanas and Keightley (2013) used a lognormal DFE, both only
for negative selection. The two analyses in Schneider et al. (2011) considered the strength and proportion
of positively selected mutations.

proportion in Nes range
≤ −100 (−100,−10] (−10,−1] (−1, 0] > 0 Nes+

0.51 0.25 0.15 0.079 0.0079 20
0.70 0.17 0.07 0.06 – –
0.78 0.11 0.064 0.044 – –

– – – – 0.0096 4.5

This study (lognormal, with positive selection)

Eyre-Walker and Keightley (2009)

Kousathanas and Keightley (2013)

Schneider et al. (2011) (Shapiro et al. (2007) dataset)

Schneider et al. (2011) (Callahan et al. (2011) dataset) – – – – 0.018 5.7



Table S3: Maximum-likelihood parameters from simpler demographic models. The two-epoch de-
mographic model fit the synonymous data somewhat worse than the three-epoch model, and the equilibrium
demography fit the data very poorly (Fig. S8). The fits to the nonsynonymous biallelic and triallelic data
were also worse for the two simpler demographic models (compare log-likelihoods with Table S1). The two
epoch demography fits the data more poorly for low and high frequency alleles than the three epoch demog-
raphy (Fig. S8, and the DFE is skewed toward neutrality for negatively selected sites and the strength of
positive selection is higher than the three epoch DFE. This causes more high frequency alleles to be present
in the triallelic frequency spectrum, which tends to push the inferred ρ to lower values (Fig. 1).

Estimates
Model Parameter Max Likelihood 95% CI Log-likelihood

2-epoch, demography
ν 2.73 2.70− 2.75

-1499τ 0.091 0.089− 0.093
misid 0.051 0.050− 0.052

2-epoch, DFE

µ 5.28

-979.3
σ 3.03
γ+ 72.2
p+ 0.0091

misid 0.011

5.25− 5.30
2.98− 3.07
69.0− 75.4

0.0084− 0.0097
0.010− 0.012

2-epoch, correlation
ρ 0.31 0.27− 0.35

-4451
misid 0.025 0.023− 0.027

Equilibrium, DFE

µ 4.40 4.39− 4.42

-1619
σ 1.19 1.17− 1.21
γ+ 0.0
p+ 0.062 0.061− 0.063

misid 0.024 0.023− 0.024

Equilibrium, correlation
ρ 0.20 0.17− 0.22

-4480
misid 0.056 0.050− 0.062



Table S4: Maximum likelihood estimates for a gamma-distributed DFE. The univariate and bi-
variate gamma distributions fit the biallelic nonsynonymous Drosophila data worse than the lognormal
distribution (Table S1). The correlation coefficient in the gamma distribution is in terms of the selection
coefficient, but in the lognormal distribution it is in terms of the logarithm of the selection coefficient, so it
is difficult to directly compare the inferred coefficients.

Estimates
Model Parameter Max Likelihood 95% CI Log-likelihood

Univariate gamma

α 0.384

-871
β 1401
γ+ 97.0
p+ 0.00426

misid 0.0133

0.379− 0.389
1339− 1463
82.3− 111.7

0.00396− 0.00456
0.0122− 0.0144

Gamma correlation
ρ 0.975

-4464
misid 0.0197

0.966− 0.983
0.0146− 0.0248



Table S5: Maximum likelihood estimates for the refit DFEs for subsets of the data based on
solvent accessibility and structural disorder. We refit the correlation coefficient ρ to subsets of the
triallelic fruit fly data. We first refit the univariate DFE to the biallelic nonsynonymous data, and we fixed
γ+ = 39.9 for all fits. In the biallelic fits, we inferred stronger negative selection for buried and ordered
amino acids, as expected and described in the main text.

Estimates
Subset Parameter Max Likelihood 95% CI range

Exposed
µ 4.26 4.22−4.31
σ 2.93 2.85−3.01
p+ 0.0132 0.0118−0.0146

Buried
µ 7.06 6.98−7.14
σ 3.53 3.45−3.60
p+ 0.00352 0.00308−0.00396

Disordered
µ 4.14 4.11−4.17
σ 3.00 2.95−3.05
p+ 0.0111 0.0102−0.0120

Ordered
µ 6.42 6.37−6.47
σ 3.43 3.37−3.48
p+ 0.00589 0.00547−0.00631



Triallelic solution numerics

Our numerical solution to Eq. 5 used finite differences, sequentially applying an alternating direction implicit
(ADI) method for the non-mixed derivative terms and an explicit method for the mixed term. We used a
uniform grid in x and y with grid spacing ∆ = 1/(N − 1), where N is the number of grid points in each
direction. For the non-mixed terms, we discretized Eq. 5 as

φn+1
i,j − φni,j

∆τ
=

1

2ν

1

∆

(
Vi+1φ

n+1
i+1,j − Viφ

n+1
i,j

∆
−
Viφ

n+1
i,j − Vi−1φ

n+1
i−1,j

∆

)
(S1)

− 1

2

1

∆

(
Mi+1/2,j

φn+1
i,j + φn+1

i+1,j

2
−Mi−1/2,j

φn+1
i−1,j + φn+1

i,j

2

)

where Vi = xi(1 − xi) and Mi,j = γ̃i,jxi(1 − xi). The scheme for the y direction was equivalent. For the
mixed term, we used the explicit discretization

φn+1
i,j − φni,j

∆τ
= − (Cφn)i+1,j+1 − (Cφn)i+1,j−1 − (Cφn)i−1,j+1 + (Cφn)i−1,j−1

4∆2
(S2)

where Ci,j = xiyj . The implicit (Eq. S1) and explicit (Eq. S2) schemes were sequentially applied each time
step, along with the injection of density to account for new triallelic loci arising in the population due to
mutation.

Because it does not capture the x, y covariation, the ADI method pushes excess density to the absorbing
diagonal boundary (Fig. S1). To avoid this excess loss of density, we integrated φ using the ADI (Eq. S1) and
explicit mixed derivative (Eq. S2) methods only for those grid points up to those immediately adjacent to the
diagonal boundary but not including the grid points lying on the boundary. For points near the boundary,
we calculated the amount of density that should be lost to the diagonal boundary from each grid point
and explicitly removed that density each time step. The amount of density to be removed was numerically
calculated by integrating the one dimensional diffusion equation forward in time by ∆τ with initial point
mass at frequency x+ y, and then checking the relative amount of density that fixed with frequency one.

Simulations were initialized from the equilibrium neutral solution

φ(x, y) =
θ

x y
. (S3)

For γ 6= 0, the system was integrated for τ = 20 time units to reach equilibrium before applying demographic
events.

To model the influx of density due to mutation, we coupled our numerical triallelic solution to models for
the biallelic population frequency spectrum φbx and φby. We calculated these φb using ∂a∂i (Gutenkunst
et al., 2009). Each timestep we then added density to the first row of grid points on the interior of the
domain near the horizontal or vertical axes. For example, along the y axis we added to φ1,j the amount

1

∆2
∆τ

θ

2
φbyj . (S4)

The diffusion equation applies for Ne →∞, so we extrapolate on the grid size to approximate the solution
for ∆→ 0. For numerical accuracy, we required more grid points than the number of samples in our study.
There were 197 sequenced Drosophila individuals, so for our application we used N = 250, 270, and 290 grid
points and quadratic extrapolation. We also found an increase in accuracy by extrapolating on the timestep
∆τ , and we used quadratic extrapolation on ∆τ = 0.005, 0.001, and 0.0002.

These methods were implemented in Python, using the NumPy (Oliphant, 2006), Scipy (Jones et al.,
2001–), and Matplotlib (Hunter, 2007) libraries, and we used Cython (Behnel et al., 2011) to write some
routines as a C-extension to Python for speed. The simulation code is packaged with ∂a∂i and available at
http://bitbucket.org/RyanGutenkunst/dadi.

1

File S1.

http://bitbucket.org/RyanGutenkunst/dadi


Validation of triallelic simulations

To validate our triallelic diffusion simulations, we first compared to the neutral coalescent results of Jenkins,
Mueller, and Song (Jenkins et al., 2014) for a number of simple two- and three-epoch demographies at
neutrality, i.e. γx = γy = 0. We calculated the entries for the coalescent-based spectrum using Eq. 8 in
Jenkins et al. (2014). Our diffusion simulations agreed well with these coalescent results (Fig. S4). Both
the diffusion calculation and coalescent calculations took less than 30 seconds, although generating the trees
needed for the coalescent calculation took tens of minutes.

To validate our triallelic diffusion simulations with selection, we compared to custom Wright-Fisher
simulations implemented in Python (Figure S5). Each generation, new triallelic loci entered the population
at constant rate, with frequency (1/2N, y) or (x, 1/2N), where frequencies x or y were sampled from the
background equilibrium biallelic frequency spectrum corresponding to the selection coefficients of the two
alleles. The expected number of new triallelic loci per generation depended on the selection coefficient of the
background allele, as the magnitude of the biallelic density function varies with γ. We approximated these
population-level density functions using 2N grid points. Each generation, the allele frequencies of each locus
were updated using multinomial sampling, with the expected frequencies xnext = x(1 + sx)/(1 + xsx + ysy)
and ynext = y(1+sy)/(1+xsx+ysy). After each generation, we dropped loci for which one of the alleles was
lost, rendering the site no longer triallelic. We used population sizes of N = 1000 and ran each simulation for
20N generations to reach equilibrium. We then populated the frequency spectrum by sampling 20 copies of
each locus every 100 generations, for 20N generations. We ran 200 independent instances of the simulation
for each set of selection coefficients and combined the frequency spectra in order to increase the number of
independently sampled triallelic loci. Our diffusion simulations agreed well with these discrete simulations
(Fig. S5).

Bivariate lognormal distribution

For biallelic data, we used the univariate lognormal distribution to model the negatively selected portion of
the nonsynonymous DFE, along with a point mass for some proportion of positive selection. The lognormal
distribution takes the form

f(x) =
1

xσ
√

2π
e−

(ln x−µ)2

2σ2 (S5)

and we assume that with probability p+, a novel nonsynonymous mutation will have selection coefficient
γ+ > 0, and with probability 1− p+, it will have selection coefficient pulled from the density function f(x).
The bivariate extension of the lognormal distribution has density function

g(x, y) =
1

2πxyσxσy
√

1− ρ
e−Q/2 (S6)

with

Q =
1

1− ρ2

[(
lnx− µx

σx

)2

− 2ρ

(
lnx− µx

σx

)(
ln y − µy

σy

)
+

(
ln y − µy

σy

)2
]

(S7)

where µx, µy are the marginal means, and σx, σy are the marginal standard deviations, and ρ is the correlation
coefficient. In our application µx = µy = µ, and σx = σy = σ.

We now describe how the DFE with a point mass of positive selection extends to the bivariate DFE.
For a triallelic locus, assume that the first derived allele to arise has selection coefficient γx. This selection
coefficient is γ+ with probability p+, or has γx < 0 sampled from the univariate lognormal distribution given
by f(x) with probability 1 − p+. The selection coefficient γy of the second derived allele at this locus is
conditional on γx. The relative weights for the regimes of the signs of the two selection coefficients (with
γx, γy < 0; γx, γy > 0; or one selection coefficient positive and the other negative) depends on both p+ and
ρ. If γx = γ+, then γy = γ+ with probability ρ(1− p+) + p+, or γy is pulled from the univariate lognormal
distribution with mean µ and standard deviation σ with probability (1 − p+)(1 − ρ). If ρ is larger, the
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probability that γy = γ+ as well increases, as expected. On the other hand, if γx < 0, having been pulled
from the lognormal distribution with parameters µ and σ, then γy = γ+ with probability p+(1 − ρ), and
γy < 0 with probability (1 − p+) + p+ρ, pulled from the univariate lognormal distribution with µ̃ and σ̃.
The new parameters µ̃ and σ̃ are found by holding γx constant in the bivariate lognormal distribution and
rearranging to find the univariate distribution for γy:

σ̃ = σ
√

1− ρ,
µ̃ = µ+ ρσ̃B,

B =
ln (−γx)− µ
σ
√

1− ρ2
.

Bivariate gamma distribution

We also performed our analysis using a gamma distributed DFE instead of a lognormal DFE. The bivariate
gamma distribution we used was introduced by Kibble (1941). The gamma distribution takes the form

f(x) =
βα

Γ(α)
xα−1e−βx, (S8)

where α and β are the shape and scale parameters, respectively. Consider two marginal gamma distributions
f1 with shape and scale parameters α1 and β1, and f2 with α2, β2, and let α =

√
α1α2. For correlation

coefficient ρ, the bivariate gamma distribution that we used then takes the form

g(x, y) =
(β1β2)α

(1− ρ)Γ(α)

(
xy

ρβ1β2

)α−1
2

exp

(
−β1x+ β2y

1− ρ

)
Iα−1

(
2
√
ρβ1β2xy

1− ρ

)
(S9)

where Iα is the modified Bessel function of the first kind of order α, given by

Iα(z) =

∞∑
k=0

(z/2)2k+α

Γ(k + α+ 1)k!
. (S10)

Subsets of trialleic variation

When considering similar or dissimilar derived amino acids, we refit the correlation coefficient using the same
univariate DFE as the full data. For the solvent accessibility and disorder analysis, we refit the univariate
DFE, although for consistency with the whole-genome analysis we fixed γ+ = 39.9.

To predict residue solvent accessibility and structural disorder using SPINE-D (Zhang et al., 2012), we
first matched RefSeq IDs from Annovar (Wang et al., 2010) to Ensembl release 81 (Cunningham et al., 2014)
gene and transcript IDs. For the 95% of proteins for which the Ensembl CDS sequence perfectly matched
the SNP states reported by Annovar, we then ran SPINE-D (Zhang et al., 2012) on the longest Ensembl
transcript.

Mutational scanning data

Firnberg et al. (2014) studied 286 positions in E. coli TEM-1 β-Lacatamase. Their proxy for fitness was
resistance to ampicillin, relative to the ancestral sequence. They reported fitnesses at the codon level, so we
restricted our analysis to mutations that were a single nucleotide change from the ancestral sequence. The
distribution of measured fitnesses was strongly skewed toward zero (Fig. S3A). To exclude severely deleterious
mutations, in our primary analysis (Table 1) we considered only mutations with fitness > 0.1 (Fig. S3A,D).
If we included all mutations (Fig. S3G), we inferred a fitness correlation coefficient of 0.42−0.58.
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Roscoe et al. (2013) studied 75 positions in S. cerevisiae ubiquitin, assaying fitness as growth rate relative
to the ancestral sequence. They reported data at the amino acid level, so we considered mutations to all
possible amino acids. To focus on the bulk of the fitness distribution, we restricted our primary analysis
to only mutations with fitness > 0.72 (Fig. S3B,E). If we included all mutations (Fig. S3H), we inferred a
fitness correlation coefficient of 0.34−0.68.

Starita et al. (2015) studied 303 positions in the RING domain of human BRCA1 protein. Their proxy for
fitness was a homology-directed DNA repair (HDR) score, based on combined measurements of ubiquitination
activity assayed by phage display and binding to the RING domain of BARD1 assayed by yeast two-hybrid.
To focus on the bulk of the fitness distribution, we restricted our primary analysis to consider only mutations
with fitness > 0.35 (Fig. S3C,F). If we included all mutations (Fig. S3I), we inferred a fitness correlation
coefficient of 0.29−0.59.
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