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The humoral immune system is network of biological mol-
ecules designed to maintain a healthy homeostatic equi-
librium. Because antibodies are an abundant and highly
specific effector of immunological action, they are also an
important reservoir of previous host exposures. Antibod-
ies may play a major role in early detection of host chal-
lenge. Unfortunately, few practical methods exist for
interpreting the information stored in antibody variable
regions. Immunosignatures use a microarray of thou-
sands of random sequence peptides to interrogate anti-
bodies in a broad and unbiased fashion. The pattern of
binding between antibody and peptide is reproducible.
Once the system has been trained on a disease cohort,
blinded samples can be reliably predicted. Although im-
munosignatures of both chronic and infectious disease
have been extensively tested, less has been done to dem-
onstrate how healthy immunosignatures change over
time or between individuals. Here, we report the results of
a study of immunosignatures of healthy persons over brief
(12 h sampled once per hour), intermediate (32 days sam-
pled once per day), and long (5 years sampled once every
year) time spans. Using this information, we were also
able to detect intentional and unintentional immunological
perturbations in the form of a vaccine and an infection,
respectively. Our findings suggest that, even with the
variability inherent in healthy immunosignatures, a sin-
gle person’s immunosignature will remain constant over
time. Over this healthy signature, vaccines and infec-
tions create subsignatures that are common across
multiple people, even subsuming healthy fluctuations.
These findings have implications for disease monitoring
and early diagnosis. Molecular & Cellular Proteomics
15: 10.1074/mcp.M115.054601, 1610–1621, 2016.

The humoral immune system is a highly evolved network of
biomolecules that captures information about environmental
exposure. The goal is continuous testing and optimization of
antibodies to eliminate a biological threat. Sometimes B-cells

generate antihost antibodies, but generally, antibodies are
benign information-containing markers of past exposure. The
fact that the same molecule both captures information and
exerts an effect has consequences on vaccine development
and disease diagnosis (1). Since antibodies contain informa-
tion about their target, we should be able to predict health
status by monitoring for appearance of a new antibody spe-
cies. However, without prior knowledge of which antibodies
are important for a given disease, it becomes difficult to
analyze the �1012 different antibody molecules en masse. An
immunosignature provides a snapshot of many antibodies
simultaneously. If immunosignature data are queried using
statistical and machine learning methods, these seemingly
random patterns of antibody–peptide interactions can diag-
nose disease, even many diseases simultaneously (2, 3).
However, it has become clear that healthy controls play an
important role in the ability to detect disease patterns. Is there
a typical “healthy” immunosignature? Is a healthy immunosig-
nature stable over time? How much variance exists between
healthy individuals? How do infection and vaccine signatures
differ? We created a number of experiments using human
volunteers to address these questions.

How Do Immunosignatures Work?—An immunosignature is
a pattern of binding between serum antibodies and a microar-
ray of random-sequence peptides. Antibodies will bind to
random peptides under permissive binding conditions (4). The
binding is detected by a fluorescent antispecies secondary
antibody. A high-resolution laser scanner provides an inten-
sity value for each peptide. Currently, the immunosignature
platform is either 10,420 unique random-sequence 20-mer
peptides with an N-terminal Cys-Ser-Gly (CSG) linker (Gene
Expression Omnibus or GEO accession# Gly-Ser-Gly (GSG)
17600, aka CIM 10K) or 328,794 unique random-sequence
peptides that average �14 amino acids in length with a C-
terminal GSG linker (GEO accession# GPL17679, aka CIM
330K). Feature selection methods enable informative peptides
to be selected, cross-validated, and then tested for diagnostic
performance. Upon training with well-defined disease co-
hort(s) and relevant controls, prediction of blinded samples is
often �90% accurate (5). Rather than measuring a single
biomarker, immunosignatures measure hundreds of informa-
tive markers, yielding a reproducible and predictable disease-
specific pattern with sufficient capacity to encompass varia-
tions in the normal population.
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Disease Monitoring—One of the major impediments to any
new diagnostic is the ability to cope with variations in large
cohorts of nondisease patients (6). Generally, the trend for
developing biomarkers is to reduce many promising candi-
dates to a few or one biomolecule with the greatest promise
(7, 8). In order to meet specificity requirements, a single
biomarker must exhibit near-identical behavior for most pa-
tients, a prohibitive demand for rare or highly dilute molecules
(9). In order to avoid dilution effects, one needs either an
abundant biomolecule or a process of amplification. DNA and
RNA can be very effective in this regard but suffer to some
extent from degradation (10), dilution (9), environmental (11),
racial (12), and personal variation (13). Antibodies may solve
many of these issues. They are amplified during affinity mat-
uration; they are stable, abundant, and can be detected using
anticlass and antispecies antibodies. Immunosignatures
measure many antibodies simultaneously, which enhances
specificity. Sensitivity is enhanced due to the permissive bind-
ing conditions. By using data from many features, immunosig-
natures can accommodate variations in the nondisease pop-
ulation, which may include an endemic population having
substantial subclinical pathogen exposures. Analysis can be
very basic, with statistical methods used to select features
and probabilistic classifiers for class prediction (14).

We examined several aspects of immunosignatures in this
report. We designed the experiments to proceed from short to
long term. First, a volunteer donated samples every hour for
12 h. We then collected blood from three healthy persons over
30 days with samples taken weekly then two different healthy
persons over 32 days with samples taken daily. We switched
to a higher-density immunosignature array to examine 73
different healthy donors. This provides sufficient numbers of
unique signatures to detect any chance overlap. After estab-
lishing a baseline for variation in healthy controls, we next
asked whether an immunosignature of a vaccine could be
discerned from a population of healthy persons and whether
a vaccine could be detected using time points from the same
person. These investigations provided sensitivity measures.
We deemed the sensitivity was sufficiently high to observe
perturbations from unknown disease. Serendipitously, we ob-
tained blood from a volunteer who was supplying samples
over time. During the donation period, the volunteer self-
reported symptoms of an upper respiratory disease midway
through the collection. We attempted to triangulate on a sig-
nal that might correlate to the unknown disease.

EXPERIMENTAL PROCEDURES

Assay Conditions—We have published the general assay condi-
tions and analytical methods for the immunosignature microarrays (4,
14–19) using serum. For the 10,000 arrays, we used Applied Microar-
rays (Tempe, AZ) to print 10,420 peptides onto aminosilane-coated
glass slides in duplicate, creating a two-up single-use peptide mi-
croarray (4). A higher-density 330,000 array is made using lithography
techniques, creating a 24-up single-use peptide microarray of
330,000 peptides per array (2). Secondary detection antibodies were

purchased from Thermo-Fisher (Waltham, MA) who supplied the goat
anti-human IgG (H�L) Alexa-Fluor 555 conjugate for IgG detection,
and from Jackson ImmunoResearch (West Grove, PA) who supplied
the rabbit anti-human IgM Fc5� Alexa-Fluor 647 conjugate for IgM
detection. Secondary antibodies were used at 5 nM final concentra-
tion for both the 10,000 and 330,000 arrays. Primary concentration of
serum was 1:500 for the 10,000 arrays, 1:1500 for the 330,000 arrays
and 1:50 for saliva for the 10,000 arrays.

Analytical Methods—Data from the 10,000 and 330,000 arrays
were obtained by first acquiring 16-bit TIFF images from an Agilent
two-color 10 �m “C” scanner or an Innopsys two-color 0.5 �m 910
scanner, respectively. Raw data are extracted from the scanned
images using GenePix Pro 6.0 (Molecular Devices, Santa Clara, CA),
median-normalized to the 50th percentile of the foreground median
signal, then log10 transformed. Linear models, statistical methods,
and other calculations were performed in GeneSpring 7.3.1 (Agilent,
Santa Clara, CA) or R (CRAN repository).

Samples—For saliva collection, we used the methods published in
(20). All volunteers donated blood and saliva under IRB#0912004625
“Profiling Serum for Unique Antibody Signatures” by informed con-
sent. IRB was renewed in 2015 by the Western Institutional Review
Board, Olympia, WA. For Fig. 1, Volunteer #1 is a healthy male age
20–29 who provided both blood and serum. For Fig. 2, three different
healthy volunteers donated blood over a 21-day time span. Volunteer
#1 was used again, Volunteer #2 was a healthy female age 40–49,
and Volunteer #3 was a healthy male age 40–49. For Fig. 3, Volunteer
#2 and #3 were used again. Figure 4 used 73 different healthy donors,
18–41 years of age, male and female. Figure 5 used 49 healthy
donors, 18–41 years of age, male and female, and Volunteer #5, a
female age 30–39 who received the Vaccinia vaccine. Volunteer #6
received the hepatitis B vaccine and is a male age 50–59. Figure 6
used Volunteer #3 again. Figure 7 used Volunteer #2 and #3 again and
added Volunteer #7, a female age 30–39; Volunteer #8, a male age
30–39; Volunteer #9, a female age 20–29; and Volunteer #10, a male
age 50–59. For Fig. 8, Volunteer #11 is a female, age 40–49. All other
volunteer information is protected by their right to privacy guaranteed
by the collection protocol.

RESULTS

Short-Term Analysis of Serum and Saliva—1 Day—In the
interest of thoroughness, we tested the possibility that
changes in antibody profiles could occur during the course of
a single day. We did not assume a priori that antibody abun-
dance would change hour to hour. In order to maximize
sensitivity, we assayed each sample in duplicate and aver-
aged the two technical replicates. We had not thoroughly
tested whether saliva contained the same antibody profile as
serum in previous experiments, so we combined these ques-
tions into a single time-course experiment. We asked Volun-
teer #1 to draw venous blood (ser) and saliva from both the
parotid (par) and submandibular (subM) glands every hour for
12 h. We processed the samples on the 10,000 immunosig-
nature peptide microarrays using two technical replicates for
each of the samples tested. Figure 1 displays the average of
the replicates. If the Pearson’s correlation coefficient across
technical replicates was �0.90, the sample was rerun on a
new microarray. Technical replicate correlations for the 12
serum samples averaged 0.942, the subM samples averaged
0.904, and the par samples averaged 0.911. The average R
across all replicates was 0.917. Figure 1 is a heatmap for the
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top 3000 most significant peptides for each of the three
sample types based on a two-way ANOVA with p � 1.07 �

10�17 across the three sample types (Bonferonni cutoff is
4.76 � 10�6). According to these results, there are specific
antibody populations missing from saliva that are present in
serum, as well as antibodies in saliva that are missing from
serum. In some cases, there are antibodies that appeared
only in samples from the submandibular gland and not the
parotid. Results suggest that saliva can be source of IgG for
disease detection in order to avoid finger sticks or venous
blood draws. However, without altering assay conditions, the
precision of replicates when using saliva is significantly lower
(at p � 0.05) than the precision across replicates of serum.

Short-Term Analysis of Serum—21 Days—We collected
blood from three healthy volunteers (Volunteers #2, #3, #5)
who donated 5 ml of blood on days 0, 1, 2, 5, 7, and 21 in
August and September of 2013. We tested both IgG and IgM
using the appropriate �hu-IgG or �hu-IgM secondary anti-
body (see Methods). Figure 2, left shows heatmaps for all
10,000 peptides for IgM (top) and IgG (bottom). On the right,
we show heatmaps for 50 peptides that were selected by a
one-way ANOVA (p � 5.02 � 10�18 for IgM and p � 9.01 �

10�36 for IgG) using the three volunteers as the groups. These
peptides differ most across the three volunteers and are listed

in Supplemental Table S1. In the absence of disease, anti-
bodies that appear in healthy individuals but are constant
across time may reflect natural or autoantibodies (21) or a
long-lasting vaccine or pathogen exposure.

Short-Term Analysis of Serum—30 Days—Figure 3 illus-
trates how unsupervised analysis of all array peptides ap-
pears. Two people donated blood over 32 days. Volunteer #2
(red bar, shown on the left) and Volunteer #3 (blue bar, shown
on the right) provided sequential daily blood samples. The
peptides are grouped using Euclidean distance hierarchical
clustering on the peptides (Y-axis). The X-axis is ordered by
each person’s signature Nov. 9, 2013 to Dec. 10, 2013. The
orange bar (left) and cyan bar (right) represent a single time
point from 2008, 2009, 2010, 2011, and 2012 for the corre-
sponding volunteers. Volunteer #3 (blue) received the yearly
influenza vaccine on day 17, although this is not obvious in the
unsupervised analysis (see detail in Fig. 6). The small heatmap
to the right is each of 10 peptides that differ between Volun-
teer 2 and Volunteer 3 by t test at p � 5.18 � 10�47. Together,
these data represent a more granular time division than Fig. 2
but confirm that there are a number of antibodies highly
unique to these two individuals in the midst of a large number
of similar reactivities.

Single Time-Point Analysis of Multiple Healthy Donors—
Figure 4 is a heatmap of samples taken from 73 different
healthy donors at a single time point from both males and
females of mixed ages. In this experiment, the 330,000 pep-

1 The abbreviations used are: ANOVA, Analysis of Variance; CRAN,
Comprehensive R Archive Network; IRB, Institution Review Board;
SVM, support vector machines; TIFF, tagged image file format.

FIG. 1. Analysis of serum and saliva taken from parotid and submandibular glands. This heatmap shows 3000 peptides out of 10,000
on the microarray that survived an ANOVA1 testing for differences between samples taken from Volunteer #1: saliva/submandibular,
saliva/parotid, and serum, with p < 1.07 � 10�17. The Y-axis shows each of the 3000 peptides ordered by Euclidean distance. The X-axis
shows each 1-h time point taken over 12 consecutive hours, ordered left to right. These 3000 peptides differentiate blood and saliva by the
reactivity of antibodies that appear in blood versus those that appear in saliva. The average precision across technical replicates is r � 0.917
Pearson’s correlation coefficient. Data shown are the average of two replicates.
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tide microarray was used. This microarray provides 33 times
more peptides than the 10,000 array and more coverage of
random sequence space. The array contains 328,794 ran-
dom-sequence peptides in a smaller form-factor than the
10,000 arrays [1]. After processing the 73 330,000 arrays, we
randomly selected 100,000 out of the 330,000 peptides to
cluster. As there are no diseases being tested, one would
expect little to no similarities across individuals. k-means
clustering with k � 5 was used to identify clusters of peptides
that behave similarly. The results of the k-means clustering
overlapped to some degree with the results from the vertical
hierarchy of volunteers. The five clusters were assigned five
colors and were used to color the dendrogram bars. In this list

of 100,000 peptides, some individuals share common reac-
tivity to an unknown epitope. We chose two clusters, blue and
magenta, that had obvious similarity across multiple people.
The blue and magenta clusters are shown to the right of the
heatmap. Peptides from the blue and magenta clusters are
listed in Supplemental Table S2. A simple alignment in
CLUSTALW of the blue peptides shows a dominant but not
complex N-term biased 3-mer motif of PAD/PLD/PAE in
nearly all of the peptides. The magenta peptides have a more
cryptic and complex relationship to each other. A simple
CLUSTALW alignment shows at least seven different complex
motifs that can be found throughout the peptide, rather than
near the C-term or N-term. Motifs include WNQ, HRVK/YRVN/

FIG. 2. Heatmaps depicting IgG or IgM response in three different healthy persons (Volunteer #2, Volunteer #3, Volunteer #5) over
the course of 21 days. IgM was detected with affinity-purified anti-human IgM antibody conjugated to red (647 nm) dye, IgG was detected
with affinity-purified anti-human IgG antibody conjugated to green (555 nm) dye. X-axis is the day of donation of serum. Person 1 is labeled
with red text, person 2 is labeled with black text, person 3 is labeled with cyan text. Clustering of the X-axis and Y-axis were done using
Euclidean distance. The left heatmaps show all 10,000 peptides. Clustering of IgM signals shows little distinction per person or per day.
Clustering of IgG signals shows more specificity across persons, and within each person signals order themselves by day of donation. Right
heatmaps: 50 peptides were selected by ANOVA, p � 5.02 � 10�18 for IgM and p � 9.01 � 10�36 for IgG. At this cutoff, exactly 50 peptides
pass the cutoff. Sequences are listed in Supplemental Table S1.
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YRVK, VNRH, HSL/HGL/HSG, RVG/RVH, and others with
varying sized gaps. This suggests that the blue peptides may
represent a simple linear antigen, common to many people (or
perhaps to residents of Arizona), and the magenta peptides
may represent a mimotope or mimotopes to a nonlinear or
nonprotein antigen.

Detecting Vaccine Immunosignatures—Training—Figure 5
represents two immunosignature sensitivity tests. The first
test asked whether the variance in multiple different healthy
people exceeds the detection of a single person’s vaccine.
We obtained blood from ND183 (aka Volunteer #5) several
months prior to the Vaccinia immunization on Mar. 23, 2013.
After immunization, seven different time points were col-
lected. We compared these time points to 49 other healthy
individuals and ND183 prior to vaccination. There were 50
peptides that survived a t test between these groups, with p �

3.03 � 10�38. These peptides were plotted in a heatmap
format and are listed in Supplemental Table S3. The vaccina-
tion samples appear on the same dendrogram when using
hierarchical clustering with Euclidean distance as the separa-

tion metric, and are perfectly classified using SVM with leave-
one-out cross-validation.

The second test asked whether the variance in a single
person over time exceeds the detection of a vaccine event.
Volunteer#6 received a commercial hepatitis B vaccine and
subsequent boosts in 2013. Blood draw dates are shown in
Fig. 5. In the years prior to receiving the vaccine, Volunteer#6
had donated blood from 2006 to 2012. A t test was used to
identify 50 peptides that differed between prevaccine sam-
ples and postvaccine samples, with p � 9.41 � 10�28. These
50 peptides are plotted in a heatmap format with time on the
X-axis and peptides on the Y-axis. Colors indicate the relative
fluorescence intensity after normalization; the key is drawn to
the right of each heatmap.

Results suggest that vaccines disturb the immune profiles
of recipients, such that a vaccine signature can be distin-
guished from immunosignatures of many different healthy
people, even with the variation seen in Fig. 4. Results also
suggest that immunosignatures from the same person, even
with the variation seen in Fig. 3, can detect a vaccine signa-

FIG. 3. Heatmaps showing immunosignatures for volunteers who donated blood every day for 32 days. Left: heatmap of all 10,000
peptides for Volunteer #2 (red bar) and Volunteer #3 (blue bar). Daily immunosignatures are shown in order from left to right, from Nov. 9, 2013
to Dec. 10, 2013. Orange and cyan bars correspond to blood donated on 1 day in 2008, 2009, 2010, 2011, and 2012 for Volunteers #2 and
#3, respectively. Volunteer #3 received the seasonal influenza vaccine on Nov. 17, 2013.
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ture. We then asked whether a combination of time and
person could overwhelm the ability to detect and distinguish
a vaccine signature.

We collect time-course samples of volunteers who receive
the seasonal influenza vaccine every year and have since
2006. In 2009, the influenza vaccine was composed of A/Bris-
bane/59/2007, A/Brisbane/10/2007, and B/Brisbane/60/2008.
Six different people donated blood in 2009 before and after

immunization. We asked for a difference between pre- and
postvaccine signatures as in Fig. 5 but with the restriction that
the signature is common to every person. We performed a
paired t test between prevaccine and postvaccine day 21.
There were 28 peptides with p � 4.60 � 10�15. 21 peptides
were higher postvaccine than prevaccine and are listed in
Supplemental Table S4 and shown as a heatmap in Fig. 6. The
peptides that increased between pre- and postvaccine dif-

FIG. 4. Heatmap of 73 healthy donors. 73 serum samples from healthy donors were processed on the 330,000 immunosignature
array. No statistical tests were performed. Rather, a random sample of 100,000 peptides were hierarchically clustered using Euclidean distance
as the separation metric on both the Y-axis (peptides) and X-axis (human donors). A five-group k-means clustering was also performed on
the peptides. Results of the k-means cluster were used to color the dendrogram arms. Two k-means groups of peptides are highlighted. The
blue group shown immediately left of the heatmap represents a group of peptides common across at least 26 healthy volunteers. The three
amino acid sequence PAD/PLD/PDN appears commonly in the blue group. At least 10 donors shared peptides from the magenta group, but
motifs in these peptides are more cryptic than the blue group. In the absence of disease-specific peptides, healthy donors can group by
common antibody reactivity.
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FIG. 5. Immunosignature of vaccines. Two different comparisons are shown. Top heatmap depicts 50 different healthy volunteers who
donated blood once are compared with a single laboratory worker, Volunteer #5, who received the Vaccinia vaccine on Mar. 23, 2013 as part
of his or her research program, and 50 peptides selected by comparing postvaccine samples to healthy donors using a t test (p � 3.03 �
10�38). Seven postvaccine time points were taken, with dates shown on the X-axis. Bottom heatmap represents Volunteer #6 who received
a three-dose hepatitis B vaccine on Jan. 25, 2013 with a boost on Apr. 23, 2013 and July 15, 2013. Prevaccine time points were collected from
previous years and listed to the right of the heatmap. A t test between pre- and postvaccine samples yielded 50 peptides with p � 9.41 � 10�28

that define the hepatitis B vaccine signature. No samples drawn after the third boost.

FIG. 6. Heatmap from vaccine trial. In 2009, six volunteers received the seasonal trivalent influenza vaccine (A/Brisbane/59/2007,
A/Brisbane/10/2007, B/Brisbane/60/2008) donated blood before and 21 days following receipt of the vaccine. 28 peptides were
selected using a paired t test to find peptides different on day 21 versus prevaccine (p � 4.60 � 10�16). These 28 peptides were filtered
to find 21 that were higher on day 21 for every volunteer (see Supplemental Table S5). For patient 73, we collected only two time points,
and for patients 112 and 113, we were unable to draw blood on day 2. Each patient has slightly different peptides that were most reactive
against the influenza vaccine components. Graph to the right is the sum of all fluorescence intensity. Error bars represent the upper and
lower 95% CI.
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fered somewhat from person to person, but the vaccine sig-
nature was identified even given the personal variance over
time and the variance across people. Figure 6 right panel
shows that the cumulative signal for each person has a linear
increasing trend by 5 days postvaccination, even with the
variation in peptide specificity.

Detecting Vaccine Immunosignatures—Test/Validation—
Given the vaccine signals seen in Figs. 5 and 6, we asked
whether a vaccine could be detected if the analysis team was
blinded to the date of vaccination. A t test can identify pep-
tides that react to a vaccination if the date of vaccination is
known, but we wished to test whether an immune disturbance
could be identified without knowledge of the vaccination date.
To do this, we used data from Fig. 3. Volunteer #3 received
the 2013 seasonal trivalent influenza vaccine on Nov. 17,
2013. We queried each of the 10,000 peptides across 30 days
of signatures, asking for signals that changed more than 10%
over the previous signal but only changed 0–10% up or 0–5%
down from the subsequent day. Any signal that changed up or
down more than these values was considered spurious. By
restricting signals using this rule, the filtered peptides tended
to follow a smoothed trend. This rule left 22 peptides that rose
postvaccine (see Fig. 7, left). The intensity of the median-
normalized values for each of these 22 peptides was summed
and plotted in a line graph (see Fig. 7, right panel). There was
an obvious peak in total signal 3 days postvaccine then a
gradual drop in the weeks following immunization. The vol-
unteer had received prior influenza vaccines, possibly lead-
ing to a memory response or pre-existing signal from the
2013 reactive peptides, but even so, there was a biologically
relevant trend in the 22 peptides shown (see Supplemental
Table S5).

Detecting an Unknown Disease—A volunteer in California
who was collecting sequential blood samples over a period of
3 months using Whatman ProteinSaver® 903 cards (20) self-
reported flu-like symptoms on or about Nov. 25, 2010 and
lasting 3–4 days. 39 peptides were selected using the algo-
rithm from Fig. 7. 31 peptides were kept that possessed a
trend that increased over time. The heatmap in Fig. 8 shows
the full 10,000 peptides (left) and 31 peptides that changed in
intensity over two or more consecutive time points (see Sup-
plemental Table S6). These 31 peptides spike upward after
Nov. 7, 2010 in a consistent fashion. The patient reported
being ill “just before the Thanksgiving weekend”; detected
signature waned just prior to symptoms. No other peptide list
was found using these criteria. No significance test was done
with these samples.

DISCUSSION

Immunosignaturing is well-suited for detection and classi-
fication of diseases and vaccines (4, 5, 22–26). In each of
these demonstrations, there were controls representing an
“unaffected” state, but the clinical definition of unaffected
varied by researcher. Unaffected may mean healthy from a
nonendemic region, healthy from an endemic region, or sim-
ply “unaffected by disease X,” which has other health impli-
cations. Immunosignatures work best when most of the ex-
pected variance in the projected test population is measured
during training. Poorly selected controls used to train the
system can diminish the test performance substantially. Se-
quential samples taken over time from one person may in-
crease the ability to detect disease in that person since only
one baseline is used, but this limits retrospective studies. We
designed a set of experiments that tested whether variance

FIG. 7. Heatmap of a time course for Volunteer #3 across 32 days in 2013 (Nov. 9, 2013 to Dec. 10, 2013) and across the years 2008
to 2012 (the last 2 days were excluded). Left: Volunteer #3 received the 2013 seasonal influenza vaccine (A/California/7/2009, A/Victoria/
361/2011, and B/Massachusetts/2/2012) on Nov. 17, 2013. Without using information about the date of immunization, 22 peptides were
selected that changed intensity for at least 2 days consecutively, either up or down (Y-axis). The X-axis is an ordered list of immunosignatures
from Volunteer #3 for 30 consecutive days (left part of heatmap) and also once per year for 5 years (right part of heatmap). Right: sum of the
intensities for all 22 peptides displayed in a line graph. Error bars represent the upper and lower 95% CI.
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across time and variance across people affected the ability to
detect an immune perturbation.

We first asked whether variation in immunosignatures oc-
curs over brief periods of time. We asked a volunteer to
donate blood and saliva every hour for 12 h to see whether
variation in short-term immunosignatures exceeded the tech-
nical variability of the platform (Fig. 1). If saliva could replace
serum for short time-series collections, less pain would be
involved and might yield greater volunteer rates. The variation
in serum immunosignatures from hour to hour averaged �8%
coefficient of variation for serum and �15% for saliva from
both parotid and submandibular glands. The technical varia-
tion across technical replicates averaged �10%. The high
variation in saliva immunosignatures suggests that our assay
conditions were not optimized for saliva or the collection
method introduced random noise. These conditions may be
improved for future studies.

We next examined IgG and IgM in healthy individuals. IgM
is widely considered a “first responder” antibody. It is quickly
up-regulated following infection by a pathogen. However, it is
not widely known how circulating IgM behaves before an
infection or after convalescence. We first showed that the
peptides that make up the signature from patient for IgG and
IgM are quite different (Fig. 2). This is supported by immunol-
ogy, as IgG and IgM are often raised against nonidentical
epitopes from the same pathogen (27). We then demonstrated

that there are patterns in IgG from healthy volunteers that are
highly specific to that individual. Although IgM shows per-
sonal differences as well, it is known that IgG circulates in the
blood longer than IgM and may exist years or decades after
infection or vaccination.

We then tested a longer, more granular time course. We
looked at two individuals over 32 days plus a comparison of
serum taken from these volunteers 1, 2, 3, 4, and 5 years prior
(Fig. 3 large heatmap). We showed many similarities in signa-
tures when examined at a gross level, both day to day and
person to person, but there were also peptides that are highly
unique (Fig. 3 small heatmap). The implications are that some
exposures might be unique to one person, but it is also
possible that two people exposed to the same antigen might
produce dissimilar immunosignature profiles. Different people
can raise antibodies to different parts of a pathogen, which
typically will not affect diagnostics like whole-pathogen
ELISAs but would affect a partitioned diagnostic like immu-
nosignatures. This may not be an insurmountable problem.
Many diseases have been tested using immunosignatures.
There are numerous instances where antibody reactivity to a
pathogen is highly conserved person to person (25) but other
examples where even published disease epitopes are not
wholly conserved. In (28), a known epitope for dengue could
be detected in less than 6% of the cases. However, there
were some epitopes present in almost every dengue patient

FIG. 8. Time course of volunteer-submitted blood-samples over 3 months. Left: Heatmap represents Volunteer #11 who collected blood
spots over a 3-month period between Oct. 2, 2010 and Jan. 17, 2011 (X-axis, time points are in order left to right, see Date Key) and
self-reported health status. Y-axis shows all 10,000 peptides on the microarray, ordered by Euclidean distance. Right: Heatmap shows 31
peptides (Y-axis) selected by filtering for a consecutive change in signal existed across at least two subsequent time points. Peptides
sequences are listed in Supplemental Information Table S6. Volunteer reported symptoms on or about Nov. 24, 2010.
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tested, suggesting that some antigens produce antibodies
useful for ELISA-like assays, while others may work best for
immunosignatures.

These time-course experiments prompted a test comparing
multiple healthy normals. Would many randomly selected
people possess a similar background of vaccines and patho-
gen exposures, or would each person have a unique immu-
nosignature? Figure 4 shows 73 different donors, mostly col-
lege-age students split nearly evenly between male and
female. We tested these samples on a higher-density array,
the CIM 330,000 array, which has shorter peptides (median
length of 14.1 amino acids including the three amino acid
GSG linker) than the 20-mers found on the CIM 10,000 arrays
(all peptides are 20-mers, including the three amino acid CSG
linker). In Fig. 4, we sampled 100,000 of the 330,000 peptides
to see whether any common signatures appeared in the
healthy population. By clustering the samples using both dis-
tance (hierarchical cluster) and k-means (k � 5 clusters), we
can observe relationships that suggest some groups of indi-
viduals possess similar reactivity to certain peptides. The
k-means cluster was used to color the dendrogram bars
(X-axis), and two obvious clusters were picked out by eye.
The first group that was selected (blue bar, Fig. 4 and Sup-
plemental Table S2) appeared to have common peptide in-
tensities across at least 26 different healthy persons. None of
the clinical information provided by the volunteers (race, gen-
der, age) correlated to this block. Using CLUSTALW align-
ment of the peptides in the blue group, we see that much of
the N terminus of each peptide had similar motifs, suggesting
that an antibody or antibodies in these 26 people had some
shared reactivity to a PAD/PLD/PDN motif. Conversely, the
magenta group that was shared by at least 10 different vol-
unteers had almost no common linear motifs as measured by
CLUSTALW. These peptides may correspond to mimotopes
that react with structural or nonprotein epitope(s), or perhaps
this cluster results from a pool of antibodies that are binding
nonspecifically. This simple demonstration suggests that one
can test immunological effects from geography, prior vaccine
history, or perhaps for something as esoteric as predicting
vaccine efficacy, pathogen resistance, or autoantibody prev-
alence. Mining the random-peptide sequences is arduous but
can lead to unique insight. Figure 3 suggests that much of our
immunosignature remains constant for years. If so, this would
enhance efforts to diagnose disease using time-course data
and routine monitoring.

Strong patterns of reactivity appeared in a random sam-
pling of only 73 people. This might damp out an immune
perturbation if it appeared in a population. Figure 5 top shows
a heatmap with 50 different healthy volunteers (a subset of
those from Fig. 4) versus a single volunteer, ND183, who
donated blood prior to receiving a Vaccinia immunization on
Mar. 12, 2013. A t test between postvaccine samples and all
of the healthy controls yielded 50 peptides with p � 3.03 �

10�38 (see Supplemental Table S3). This suggests that the

normal variation seen in healthy people might still allow a
vaccine to be detectable over the biological noise from differ-
ent people.

We then examined time points from one person using sam-
ples collected in previous years versus an immunization with
the commercial hepatitis B vaccine. Figure 5 bottom is a
heatmap displaying the pre- and postvaccine time points. 50
peptides with p � 9.41 � 10�28 are displayed (see Supple-
mental Table S3). The results suggest that the normal varia-
tion seen in one healthy person across time does not obscure
a vaccine response. For 12 of these 50 peptides (lower part of
heatmap), there is a continuing increase in fluorescence over
time, suggesting that some antibodies to the hepatitis B vac-
cine were still increasing their affinity, their abundance, or
both. Even the peptides that do not show an increase over
time still have a large ratio between prevaccine and postvac-
cine. We created another test that combined these two fac-
tors—variance over time and variance across people. Figure 6
displays the results when we asked for a common signature
across time and across people for the same vaccine, the
three-part seasonal influenza vaccine. This test combines the
requirements for consistency over time and adds a require-
ment for a common signature across different people. The
results show that different people respond slightly differently
to the influenza vaccine rather than expressing common re-
activity. This may create a problem if one was monitoring a
population for a common signature, when in fact a group of
people may show different patterns of reactivity.

We tested the system in two ways: First, we asked if we
could find a vaccine signature using an unsupervised method
of feature selection with a single person (Volunteer#3) who
received an influenza vaccine in 2013. Using a simple moving
window, we identified 22 peptides that correlated with the
immunization schedule. Even summing the peptides to pro-
vide a single value, like an ELISA, still provided some resolu-
tion in identifying the vaccine date. Figure 7 is a heatmap and
line graph illustrating these statements, and Supplemental
Table S4 lists the peptides that were identified. We attempted
to identify the influenza sequences from the random peptide
sequences, but as we reported in (16), the 10,000 microarray
may not provide enough sequences to accurately map a linear
epitope.

With all of the information gathered about variation of
healthy normal controls and detection of immune perturba-
tions over time, we were fortuitously presented with a real-world
challenge. We examined samples from a volunteer who do-
nated blood over a period of several months. This person self-
reported an illness in November 2010. Using the same simple
moving window strategy used in Fig. 6, we looked for peptides
that moved in concert over a window of at least three time
points rather than two. We identified the 31 peptides shown in
Fig. 8 and listed in Supplemental Table S5 that showed an
increase in signal prior to the reported symptoms then dimin-
ished during and slightly after symptoms waned. Unsupervised
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clustering of all peptides on the 10,000 array revealed no signal
that corresponded to the symptoms (Fig. 8, left), but the moving
window averaging revealed peptides that seemed to correlate
slightly ahead of reported symptoms. It may be possible that
production of IgG preceded symptoms, or we were detecting
immature IgG that matured and no longer bound to the same
peptides. Had we measured IgM at the same time, we may have
had a traditional IgM/IgG onset of antibodies, even though the
peptides for each isotype would be different.

A general hypothesis created by the preceding work is that
early detection of disease may be possible by monitoring
persons over time. It is also possible that a large pool of
healthy controls can be used for training disease diagnostics
since there is a great deal of personal variation in the immu-
nosignature. It is uncertain whether a time-course study using
many different people would yield the same sensitivity in
detecting a disease as using a single person, but this may
vary by disease, and the influenza vaccine study presented
here used too few people to make a general statement. Re-
gardless, the emphasis of this study suggests that immu-
nosignatures can be sensitive and well-powered using se-
quential samples. Routine monitoring may be a way to detect
disease before it becomes difficult to treat.

Another important issue is correct selection of controls. The
strong overlapping signatures we see in Fig. 4 shows how
easily a group of controls can form a common pattern. These
patterns can cause statistical issues if the control arm is
underpowered, especially when examining diseases where an
endemic healthy population expresses a signature to local
pathogens. We have previously shown that the Valley Fever
immunosignature exists to a greater or lesser extent in most
healthy controls who have lived in the Phoenix area for more
than 6 y (25). Over time, exposure to local pathogens, even in
the absence of infection, can create a disease-like immunosig-
nature that could lead to false positives if not properly trained.

We propose a number of applications for immunosigna-
tures that hinge on the ability to correctly identify an infection
using either time-series data or large control populations.
Healthcare workers entering a region of infection might wish
to provide samples prior to travel. During deployment, saliva
or blood could be taken routinely and checked against previ-
ous samples to monitor for any sign of change in the signa-
ture, even using the simple moving-window measurement. No
training need be done for a disease; the peptides that change
after exposure have the potential to point to possible
epitopes, eliminating the need for a specific diagnostic.

If enough individuals in a large population center were
monitoring their own immunosignatures, it may be possible to
detect an emerging pathogen or a biothreat, using normal
controls from other regions for comparison. Since immu-
nosignatures can reveal common reactivity, this method
might be sensitive enough to detect a new infectious agent
before it becomes an epidemic or pandemic. These opportu-
nities are available to us because of the behavior of immu-

nosignatures of healthy people and the signal to noise capa-
bility of the immunosignature system.

□S This article contains supplemental material Supplemental Ta-
bles S1-S6.
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