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Synopsis
SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins are a highly conserved set
of membrane-associated proteins that mediate intracellular membrane fusion. Cognate SNAREs from two separate
membranes zipper to facilitate membrane apposition and fusion. Though the stable post-fusion conformation of SNARE
complex has been extensively studied with biochemical and biophysical means, the pathway of SNARE zippering has
been elusive. In this review, we describe some recent progress in understanding the pathway of SNARE zippering. We
particularly focus on the half-zippered intermediate, which is most likely to serve as the main point of regulation by
the auxiliary factors.
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INTRODUCTION

Many vital life processes in eukaryotic cells, such as trafficking of
proteins or membranes and secretion of hormones or neurotrans-
mitters, require membrane fusion. Intracellular membrane fusion
must happen in a specific and regulated manner. For this, highly
specialized proteins called ‘fusogens’ mediate the merging of
two otherwise stable membranes to a single bilayer. It is now
established that widely conserved soluble N-ethylmaleimide-
sensitive factor attachment protein receptor (SNARE) proteins
are the primary fusogen, responsible for nearly all intracellular
membrane fusion [1–3].

Since the discovery of SNAREs in late 80s through early
90s significant progress has been made towards understand-
ing the mechanism by which SNAREs drive membrane fusion.
Vesicle-anchored SNARE (v-SNARE) associates with the target
membrane-anchored SNARE (t-SNARE) to form a SNARE com-
plex. More precisely, individual SNAREs contain SNARE motifs
that are essentially coiled coil sequences of 60–70 residues [4,5].
Cognate coiled–coiled interactions between v- and t-SNAREs
are the basis for SNARE complex formation [6,7]. The com-
plex is however believed to assemble in multiple steps, each
of which may be mechanically-coupled to a membrane remod-
elling step [8]. Eventually, the SNARE complex ends up a
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four-stranded coiled coil [9–14]. This post-fusion conformation
has been extensively studied with biochemical and biophysical
means.

In contrast, the pathway of SNARE complex formation has
been elusive. Thus, the mechanistic details of how the SNARE
conformational changes are coupled to membrane remodelling
steps are poorly understood. Furthermore, the regulatory inter-
ventions of auxiliary factors on SNARE complex formation are
not well understood (for reviews see ref. [2,15–18]). However,
it has long been speculated that SNAREs might zipper, from the
membrane distal N-terminal region towards the membrane prox-
imal C-terminal region [19]. Previously, several research groups
have made progress in trapping the partially-zippered intermedi-
ate, independently using the advanced biophysical methods [20–
24]. These discoveries are major because the results shed lights
on to the mechanism of SNARE zippering. The outcomes open
up exciting possibilities of studying the regulation of SNARE
zippering as mechanisms to control intracellular membrane
fusion.

In this review, we describe some recent progress in under-
standing SNARE zippering and the characterization of the half-
zippered intermediate. Additionally, although the data are limited
at this early stage we discuss how the half-zippered intermediate
might interact with the auxiliary factors to regulate vesicle fusion,
particularly for Ca2 + -triggered membrane fusion at the synapse.

c© 2016 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
Licence 4.0 (CC BY).
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Figure 1 Primary structures of all three SNAREs in a bar repres-
entation, showing different domains
SNARE motifs are coloured in red (syntaxin 1A), green (SNAP-25) and
blue (VAMP2). In syntaxin 1A and VAMP2, the TM regions are labelled
‘TM’ and coloured in yellow whereas the linker regions are labelled
‘L’ and coloured in grey. The Habc domain (white) of syntaxin 1A is
depicted to be broken to indicate the longer length than the SNARE
motif (red). The syntaxin 1A N-terminal peptide is labelled ‘N’ (grey). In
SNAP-25, the four palmitoylated cysteines are denoted as wiggly lines.
Numbers on the right above the diagrams indicate the length of the
proteins.

PRELUDE TO SNARE ZIPPERING

One of the best characterized SNARE families is the neuronal
one involved in synaptic vesicle fusion, which is required for
neurotransmitter release into the synapse cleft. We will focus on
the structure and the function of neuronal SNAREs throughout
the review unless otherwise noted. In the present study, vesicle-
associates membrane protein 2 or synaptobrevin 2 (VAMP2) is
v-SNARE whereas syntaxin 1A and synaptosomal-associated
protein of 25 kDa (SNAP-25) are two t-SNARE entities
(Figure 1). These neuronal SNAREs were first individually iden-
tified in the nervous system [25–29] and later identified together
as a complex, the soluble NSF-attachment protein (SNAP) re-
ceptor [30]. VAMP2 and syntaxin 1A both contain one SNARE
motif each connected to the C-terminal single transmembrane
(TM) helix by a short linker regions whereas SNAP-25 contains
two SNARE motifs and is attached to plasma membrane by lipid
anchors [31,32]. The individual SNARE proteins are partially or
fully unstructured as monomers [24,33,34] although there have
been some debates if the SNARE motif of VAMP2 interacts with
the vesicle membrane [35,36].

Prior to the interaction with VAMP2, t-SNAREs, syntaxin 1A
and SNAP-25 are believed to form a 1:1 binary complex which
serves as the receptor for v-SNARE for vesicle docking and
fusion [37]. The structure of the 1:1 binary complex of yeast
SNAREs was characterized by NMR and it was found that the N-
terminal region is well-structured whereas the C-terminal region
is frayed [19]. For neuronal SNAREs, syntaxin 1A and SNAP-25
prefer a non-functional 2:1 complex [38,39] in vitro instead of
the functional 1:1 complex, making it difficult for the structural
characterization. However, based on the structure of the 2:1 com-
plex and others [38,39], one might speculate that the 1:1 complex
could form an extended three-stranded coiled coil [40] although
it remains to be verified experimentally.

EPILOGUE TO SNARE ZIPPERING:
THE ALL PARALLEL FOUR-STRANDED
COILED COIL

Ideally, it would be best if one could follow the process of SNARE
zippering in the chasm of two membranes whereas v- and t-
SNAREs are anchored to apposing membranes. However, this
is a tall order and alternatively, one could study the interaction
between soluble recombinant SNARE motifs out of context with
membranes although there is a serious caveat with this approach
that we will discuss later.

The early EM and the FRET works suggested that syntaxin
1A and VAMP2 align parallel in the SNARE complex, consist-
ent with the general idea that SNARE complex formation would
bring about the close apposition of two membranes [41,42]. Later,
EPR and X-ray crystallography showed that SNARE motifs as-
semble as an all parallel four-stranded coiled coil [9,10] (Fig-
ure 2). The SNARE core contains 15 layers of interacting hy-
drophobic side chains, and right at the centre there is a central
ionic layer consisting of one arginine (R) residue from VAMP2
and three glutamine (Q) residues from syntaxin 1A and SNAP-
25. Accordingly, SNARE motifs are often classified into R, Qa,
Qb and Qc types [43,44]. This highly conserved feature appears
to play an important role in SNARE zippering (see below). Re-
cently, the X-ray structure of the neuronal SNARE complex that
includes the TM regions of both syntaxin 1A and VAMP2 has
been determined [11]. The structure showed that both syntaxin
1A and VAMP2 extend their helical structures of SNARE mo-
tifs through the TM helices [11] (Figure 2C). Apparently, these
structures are most likely to represent the post-fusion SNARE
conformation.

SNARE ZIPPERING AND THE
DISCOVERY OF THE HALF-ZIPPERED
SNARE INTERMEDIATE

It has long been speculated that the SNARE complex assembles
in a zipper-like fashion, proceeding from the N-terminal region
towards the C-terminal region, which would progressively nar-
row the gap between two membranes. Consistently, there is
evidence that SNARE complex formation takes place in mul-
tiple steps. Firstly, because the SNARE core is stabilized by the
hydrophobic layers, the disrupting mutations at the C-terminal
hydrophobic layers affect the fast phase of exocytosis in vivo.
These mutations result in two-step thermal unfolding in vitro [45].
Secondly, the force compared with distance measurement using
a surface force apparatus (SFA) reveals that the SNARE com-
plex assembles through a series of intermediates [46]. Thirdly, a
partially-zippered SNARE complex with a frayed C-terminal re-
gion was trapped by intercalating a small hydrophobic molecule
myricetin into the SNARE core [20].
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Figure 2 Structures of four-helix bundles
(A) A structural model of the SNARE core (blue, VAMP2; red, syntaxin 1A; green, SNAP-25) generated from the distance
information obtained by EPR. (B) A backbone cartoon drawing of the SNARE core determined by X-ray. (C) A model of the
cis-SNARE complex inserted into the POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) membrane. The letters N and
C in square brackets indicate the N- and C-terminus of the protein respectively. The figures are prepared with PyMOL [65]
using the PDB files 2UB0 (A), 1SFC (B) and 3HD7 (C) [9–11].

More direct characterization of the partially-zippered inter-
mediate in a single molecule level was achieved using high-
resolution optical tweezers and also, independently, using mag-
netic tweezers [21,22]. These experiments were made possible
by attaching one handle at the C-terminal end of v-SNARE and
the other handle at that of t-SNARE respectively. Optical tweez-
ers reveals that SNARE unzipping proceeds through three dis-
tinct stages with two transitions, the first occurring near the jux-
tamembrane region and the second at the C-terminal half. The
half-zippered intermediate could be stabilized by external force
and can release ∼36 kBT by transitioning to the fully zippered
state [21]. On the other hand, the magnetic tweezers reveals that
single SNARE complex can be unzipped with 34 pN force and
rezipping is achieved by lowering the force below 11 pN. Here, a
half-zippered state could be stably held under the constant force
of 11 pN. Thus, the results detail the energy landscape of SNARE
zippering [22]. The valuable information from these studies
would eventually help correlating the mechanics of SNARE zip-
pering and the energetics of membrane fusion.

Furthermore, some structural details of the partially-zippered
SNARE intermediate have been obtained with EPR using a ‘nan-
odisc sandwich’ [23]. Experimentally, two nanodiscs which bear
single VAMP2 and single t-SNARE respectively are prepared and
SNARE complex formation is allowed between two nanodiscs,

creating a nanodisc sandwich that harbours a single trans-SNARE
complex in the middle (Figure 3A). Due to the rigid structure of
nanodiscs membrane fusion does not occur, and the transient
SNARE intermediate is captured and studied with SDSL (site-
directed spin labelling) EPR as well as single molecule FRET
(smFRET) [23]. The nitroxide-scanning EPR study shows that
an apparent structural hinge for SNARE zippering is located ex-
actly at the 1RQ3 ionic layer, potentially revealing the structural
role of this highly conserved feature. Furthermore, smFRET with
the acceptor and donor pairs near the C-terminal ends of v- and
t-SNAREs respectively show that the half-zippered intermediate
is energetically balanced with the fully zippered state, exhib-
iting two well-defined low FRET and high FRET populations
(Figure 3B).

BLESSINGS AND CURSES OF THE
FOUR-STRANDED COILED COIL

The determination of the four-stranded coiled coil structure has
been clearly one of the most important blessings towards under-
standing the mechanism of intracellular membrane fusion. Very
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Figure 3 A structural model of the half-zippered intermediate
(A) Trans-SNAREpin representing the fusogenic pre-fusion intermediate trapped between two nanodisc membrane patches.
smFRET between the donor and the acceptor dyes attached to v- and t-SNAREs respectively reports SNARE zippering.
(B) Distribution of the FRET efficiency between fluorescent dye-labelled C-terminal positions on VAMP-2 and syntaxin 1A
respectively. The low FRET population represents the half-zippered species whereas the high FRET population reflects the
fully zippered species [23].

interestingly, the SNARE core shares many important structural
features with viral fusogens [47], strongly arguing for the pos-
sibility that common biophysical and biochemical principles do
exist and are shared by many biological membrane fusion sys-
tems, if not all. However, what distinguishes SNARE-dependent
membrane fusion from other membrane fusion systems is the
sophistication in its regulation.

One of the remarkable features of synaptic membrane fusion
is its capacity to synchronize fusion of nearly all vesicles in the
readily releasable pool (RRP) to the presynaptic membrane in less
than 1 ms upon Ca2 + influx [48]. It is believed that such tight
regulation is orchestrated by a series of exquisitely coordinated
interactions of auxiliary factors with SNAREs. A major Ca2 + -
sensor synaptotagmin 1 (syt1), a clamping factor complexin (cpx)
and a chaperon Munc18-1 are considered as the major regulat-
ory components for the synchronization. According to a current
mechanistic model [49–51], membrane fusion is clamped by cpx
prior to the Ca2 + influx. But upon Ca2 + influx, the Ca2 + -bound
syt1 knocks off the cpx clamp from the SNARE complex, which
frees the SNARE complex to be able to drive membrane fusion.
Now, the important question is whether we could test and verify
this mechanistic model structurally.

An easy access to the coiled coil structure of the SNARE core
let us attempt to address this question by examining the impact
of auxiliary factors to the SNARE core. But the outcomes of this
approach have been confusing at best. For example, the structure
of the SNARE core bound to cpx reveals that cpx binds to the sur-
face groove on the coiled coil without the anticipated disruption
of the SNARE core structure [52]. Furthermore, when VAMP2
SNARE motif is shortened at the C-terminal region, cpx cross-
links neighbouring SNARE cores in a zigzag fashion [53], which
initiated contested debates in the fields for the biological valid-
ity of the structure [54,55]. Likewise, two structural models for
the syt1–SNARE core interactions paint very different pictures

from each other [56,57]. Thus, it still remains to be seen if these
structures truly represent the action of syt1 in triggering vesicle
fusion.

HALF-ZIPPERED SNARE
INTERMEDIATE AS A POTENTIAL
TARGET OF REGULATION

A caveat of studying the interaction between the SNARE core
and the auxiliary factors is that the four-helix bundle may well be
the post-fusion conformation. It is more than likely that auxiliary
factors interfere with SNARE zippering at early stages to clamp,
decelerate or accelerate zippering [17]. Since the half-zippered
SNARE intermediate is now accessible [21–23,58], one could
explore the possibility that it is indeed the point of the regulation.

This hypothesis could be tested experimentally. For example,
with optical or magnetic tweezers one could ask if auxiliary
factors affect the distance compared with force relationship for
the SNARE core [59]. Although the experiments appear to be
straightforward one intrinsic difficulty with these approaches is
the absence of membranes, particularly because it is known that
syt1 and cpx both interact with the membrane [60,61].

An alternative but promising approach is to use the nan-
odisc sandwich that harbours the half-zippered intermediate in
the middle [23]. There the half-zippered intermediate is ener-
getically balanced and thus, is in equilibrium with the fully
zippered SNARE complex [23,62] (Figure 4A). The conform-
ational changes or the shift of equilibrium induced by the aux-
iliary proteins may be detected by placing nitroxide probes or
fluorescence labels at strategic positions in the SNARE complex.
Such efforts are already underway and start to produce some
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Figure 4 Munc18-1 stimulates SNARE zippering
Histograms of the smFRET distribution for the FRET pair attached at the C-terminal region of the trans-SNAREpin (CC)
trapped inside the nanodisc sandwich [23,62] (see Figure 3). For the SNAREpin low and high FRET peaks are nearly
equally populated (A). Mun18-1 shifts the equilibrium towards high FRET (B).

interesting results. For example, Munc18 is shown to stimulate
SNARE-dependent membrane fusion [63]. However, the propos-
ition was relied heavily on a simplified in vitro proteoliposome
fusion assay [64]. Consistent with this notion, smFRET with
the FRET dye pair placed at the C-terminal ends of v- and t-
SNARE respectively shows the shift of the equilibrium towards
fully zippered complex in expense of the half-zippered interme-
diate [62] (Figure 4B).

For cpx, however, to be consistent with its fusion clamping
role we expect that cpx either shifts the equilibrium towards the
half-zippered intermediate from the fully zippered complex or it
might lock the SNARE intermediate at a yet unknown state that
can prevent it from progressing towards the fully zippered state.

Ultimately, structures of the trans-SNAREs complexed with
individual auxiliary proteins in the nanodisc sandwich must be
determined to fully comprehend the mechanisms. EPR or cryo
EM may be useful for these challenging tasks.

SUMMARY

SNARE proteins, which are widely conserved from yeast to hu-
man, are the core machinery for intracellular membrane fusion.
Vesicle-associated v-SNARE associate with target membrane t-
SNARE to drive the fusion of two membranes. There is now suf-
ficient evidence that the SNARE complex assembles in a zipper-
like fashion, initially at the membrane distal N-terminal region
and subsequently at the membrane proximal C-terminal region.
Using single molecule manipulation techniques such as optical
and magnetic tweezers, the energy landscape of the multistep
folding/unfolding transitions of the SNARE complex have been
determined in an unprecedented accuracy. Furthermore, it was

found, with EPR that SNARE zippering hinges precisely at the
conserved ‘zero’ layer. The half-zippered SNARE intermediate
can be trapped in trans between two nanodiscs, where the half-
zippered state is in equilibrium with the fully zipped state. This
conformational trap inside the nanodisc sandwich provides ex-
citing opportunities to investigate the intervention of auxiliary
proteins on to SNARE zippering as means of regulating intracel-
lular membrane fusion such as Ca2 + -triggered synaptic vesicle
fusion.
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