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Abstract

Chronic myelomonocytic leukemia (CMML) includes components of both myelodysplastic 

syndrome and myeloproliferative neoplasms and is associated with a characteristic peripheral 

monocytosis. CMML is caused by the proliferation of an abnormal hematopoietic stem cell clone 

and may be influenced by microenvironmental changes. The disease is rare and has undergone 

revisions in its classification. We review the recent classification strategies as well as diagnostic 

criteria, focusing on CMML’s genetic alterations and unique pathophysiology. We also discuss the 

latest molecular characterization of the disease, including how molecular factors affect current 

prognostic models. Finally, we focus on available treatment strategies, with a special emphasis on 

experimental and forthcoming therapies.
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1. Introduction

Chronic myelomonocytic leukemia (CMML) is generally recognized as a chronic leukemia 

with persistent monocytosis and components of both myeloproliferative neoplasms and 

myelodysplastic syndrome [1]. It has been recognized as a distinct disease for more than 40 

years, although until 2002 it was grouped with myelodysplastic syndrome (MDS). In 1971, 

Saarni and Linman recognized qualitative abnormalities in more than one lineage in patients 

with monocytoid leukemic transformation; 36% of their patient series had peripheral 
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monocytosis, and 31% demonstrated a preleukemic phase, sometimes for as long as 9 years 

[2, 3]. The term myelomonocytic leukemia denotes both the myeloid and the monocytoid 

features of the disease. In 1972, Zittoun et al. described 27 cases of subacute 

myelomonocytic leukemia [4, 5]. The first significant-size cohort of patients to be 

recognized as having CMML was described in 1975 and included 18 elderly patients with 

unexplained monocytosis, cytopenias, and splenomegaly [6, 7]. Five of the patients survived 

longer than 5 years. This finding indicated that intensive chemotherapy may not be needed 

in this patient population and led to recognition of CMML as a distinct entity by the French-

American-British (FAB) Group in 1976 [8]. Since then, several groups have categorized the 

clinical manifestations and outcome of CMML as a subset of MDS. However, some patients 

with CMML may express features of myeloproliferative neoplasms (MPN; also known as 

myeloproliferative disorders or MPD) at the time of diagnosis or at another stage in the 

course of the disease. Consequently, CMML has remained under-researched and is often 

excluded from MDS and MPN clinical trials.

Here we discuss the classification and diagnosis of CMML, the clinical features and 

epidemiology of the disease, and current insights into its pathophysiology. We review 

established treatments for patients with CMML as well as state-of-the-art approaches.

2. Classification and diagnosis

2.1. FAB and WHO classifications

From the time CMML was first identified 50 years ago, debate has continued on its proper 

place in the classification of hematologic malignancies. In 1982, the FAB Group classified 

CMML as part of MDS, given the morphologic evidence of dysplastic hematopoiesis [9], 

but whether CMML should be classified as myeloproliferative or myelodysplastic remained 

unclear. Recognizing the heterogeneity of the clinical features of the disease, the FAB Group 

later proposed a reclassification of patients into two subtypes based on white blood cell 

(WBC) count at diagnosis [10]. The FAB classification is shown in Table 1. Patients with 

WBC counts of ≤13 × 109/L were considered to have myelodysplastic CMML (MD-

CMML), and those with WBC counts of >13 × 109/L were considered to have 

myeloproliferative CMML (MP-CMML). The separation of patients by this classification 

system remains problematic because the two groups have overlapping features. However, 

since many studies have classified CMML according to FAB criteria, the differences 

between MD-CMML and MP-CMML are important to interpreting the studies’ findings.

Nosslinger et al. conducted a retrospective analysis of 91 patients with CMML who had 

been treated primarily with supportive care [11]. At the time of diagnosis, patients with 

MPCMML (n, 31; 34%) had higher lactate dehydrogenase (LDH) levels, absolute neutrophil 

counts, and bone marrow cellularity values than did patients with MD-CMML (n, 60; 66%). 

The median overall survival (OS) duration for the MP-CMML group (16 months) was 

significantly shorter than that for the MD-CMML group (31 months) (p-value, 0.03), with a 

higher risk of leukemia transformation in the MP-CMML group, indicating differences in 

outcomes between the two groups. Onida et al. retrospectively analyzed 213 patients with 

CMML treated with various approaches, including chemotherapy, and classified each 

patient’s CMML as MD-CMML (n, 74; 35%) or MP-CMML (n, 139; 65%) on the basis of 
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the patients’ WBC counts [12]. Although the OS rates were similar in the first few months 

of treatment, a significant difference appeared after 16 months, with a higher OS rate for 

MD-CMML patients. The difference in rate of leukemic transformation, however, was not 

statistically significant [12]. Voglova et al. analyzed 69 patients with CMML, 31 (45%) 

classified as MD-CMML and 38 (55%) as MP-CMML [13]. Cytogenetic abnormalities were 

more frequent among patients with MP-CMML. The median OS was significantly longer in 

the MD-CMML group than in the MP-CMML group (30 vs. 16 months, respectively; p-

value < 0.01), and there was no significant difference in leukemic transformation. However, 

in 24 patients with MD-CMML, the WBC count increased to more than 13 × 109/L over the 

course of the disease. The authors concluded that using the WBC count obtained at 

diagnosis as the single criterion for subclassification of CMML did not seem fully justified 

and that MD-CMML and MP-CMML should be considered different stages of the same 

disease, rather than two different diseases [13].

In an effort to resolve this discrepancy, and to eliminate the arbitrary use of WBC counts to 

classify patients with CMML, the World Health Organization (WHO) in 2002 recognized 

CMML as a distinct entity for the first time and moved it to a new category called 

MDS/MPD [3]. This category also included atypical chronic myeloid leukemia and juvenile 

myelomonocytic leukemia. The FAB and WHO diagnostic criteria for CMML are compared 

in Table 1. The FAB system includes both MD-CMML and MP-CMML and is based on the 

WBC count, while the WHO classification differentiates CMML-1 and CMML-2 and is 

based on blast percentages. The quantification of blast percentages for peripheral blood and 

bone marrow include myeloblasts, monoblasts, and promonocytes [3]. Most recently, 

Schuler et al. proposed classifying patients with less than 5% medullary blasts as CMML-0, 

and sub-classifying each group of patients based on dysplasia vs. proliferation, as these 

groups have distinct clinical outcomes [14].

2.2. Diagnostic considerations

2.2.1. Peripheral blood counts—Monocytosis in the bone marrow or peripheral blood 

represents a major diagnostic criterion for CMML. However, in some cases, eosinophilia 

may present as a part of the CMML disease process. Because monocytosis and/or 

eosinophilia are cardinal features of several other diseases, a thorough search for other 

monocytic diseases must be conducted and those diseases must be systematically ruled out 

when a new patient is evaluated for possible CMML. In addition, a proper evaluation for 

infections and chronic inflammatory states as well as other malignancies known to cause 

monocytosis or eosinophilia should be conducted before CMML is diagnosed [15].

2.2.2. Cytogenetic analysis—There is no pathognomonic cytogenetic abnormality in 

CMML [15, 16]. Previously, some cases of CMML were associated with translocation of 

chromosomes 5 and 12 [t(5;12)(q33;p13)] [17-20], which is associated with expression of a 

fusion transcript that links the ETS-variant gene TEL with PDGFRB [21]. These patients are 

best classified as “myeloid neoplasia with PDGFRB rearrangements” even if they have 

features of CMML.
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Other chromosomal abnormalities have been described in patients with CMML, including 

t(3;6)(q12;24), t(5;7)(q33;q11.2), der(9)t(1;9)(q11;q34), der(14)t(1;14)(q12;p11), and 

t(11;19)(q23;p13.1) [22-27]. One study also identified translocations involving the RET 

oncogene, specifically t(10;22)(q11;q11) and t(6;10)(q27;q11), as responsible for two 

separate cases of CMML [28]. First, a large study using data from the Spanish Registry of 

Myelodysplastic Syndromes found abnormal cytogenetic profiles in 110 (27%) of 414 

CMML patients [29]. Two subsequent and recent studies found abnormal karyotype in 30% 

and 28% of 417 and 409 CMML patients respectively, confirming that overall ~30% of 

CMML patients have an abnormal karyotype, while ~70% have normal karyotype [30, 31].

Single nucleotide polymorphism arrays (SNP-A) have been employed to study chromosomal 

lesions in patients with CMML [32, 33]. Uniparental disomy (UPD), which results from 

segmental DNA recombination during mitosis, was a common event in MDS/MPN (35%), 

especially in CMML patients tested (n = 24) [32]. In a comprehensive follow up study that 

included 54 CMML patients (36 CMML-1 and 18 CMML-2 patients), SNP-A again 

detected widespread acquired copy-neutral loss of heterozygosity (a result of UPD) [33]. 

Given the predominance of UPD in CMML, detection of these chromosomal abnormalities 

has been critical in identifying genes such as CBL and TET2 that are important in CMML 

pathogenesis [33-36].

2.2.3. Molecular phenotyping—More recently, key molecular tests have been identified 

that aid in the workup of patients with suspected CMML. Importantly, PDGFRB 
rearrangement at chromosome band 5q33 is present in some CMML patients and is 

associated with eosinophilia [16]. These patients may respond to tyrosine kinase inhibition 

(with imatinib mesylate therapy); therefore, knowledge about this genetic aberration can be 

critical to treatment (see section 5 below) [37, 38]. Though JAK2 V617F mutations are less 

frequent in CMML than in polycythemia vera, essential thrombocytosis, or primary 

myelofibrosis [39-42], in one series, Pich et al. found that 8 (10.2%) of 78 patients with 

CMML were positive for the JAK2 V617 mutation at diagnosis [43]. JAK2 inhibitors have 

been characterized as potentially useful for treatment of CMML, and limited numbers of 

patients have been treated with them (see section 5 below) [44, 45].

Both KRAS and NRAS mutations, important in multiple hematologic malignancies, have 

been implicated in approximately 30%-40% of patients with CMML [46-48]. Other 

common molecular abnormalities (with percentages of CMML patients in parentheses) 

include mutated TET2 (~30-60%), ASXL1 (~40%), SRSF2 (~45%), RUNX1 (~15%), CBL 
(~10%), IDH1/2 (~5-10%), U2AF35 (9%), ZRSF2 (8%), UTX (8%), DNMT3A (~2-10%), 

SF3B1 (6%), U2AF1 (5%), FLT3 (~3-4%), EZH2 (~5%), and SETBP1 (~4-5%) [49-58]. 

These genes are associated with epigenetic regulation, mRNA splicing, embryonic 

development, protein ubiquitination, and cellular proliferation. Several of these genes 

identified are involved in spliceosome function, and may be mutually exclusive [56]. The 

biological significance of these mutations is related to the clonal architecture of the disease 

(see subsection 3.2 below), and some of the mutations may be used as prognostic indicators 

(see subsection 4.1 below). Interestingly, ASXL1 and SF3B1 mutations tended to occur with 

an abnormal karyotype (p-values 0.04 and 0.03 respectively), while SRSF2 mutations more 

frequently occurred with a normal karyotype (p-value = 0.02) [31].
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2.3. Epidemiology and presentation

CMML is rarely diagnosed in younger adults, with the median age at diagnosis being about 

70 years, similar to the median age of patients at diagnosis for MDS [5, 59]. The clinical 

presentations are protean and can represent the full spectrum of both MDS and MPN [60]. 

Common presentations include signs and symptoms of bone marrow suppression (anemia, 

thrombocytopenia, neutropenia), leukocytosis, lymphadenopathy, and hepatosplenomegaly 

[15, 60]. Furthermore, some reports have described leukemia cutis as the initial 

manifestation of CMML or heralding transformation to acute myeloid leukemia (AML) 

[61]. In most reports, patients with MP-CMML were older than patients with MD-CMML, 

but the differences were not statistically significant [7, 11]. Furthermore, male predominance 

was observed more frequently in patients with MD-CMML than in those with MP-CMML, 

but again the differences were not significant [7, 11].

3. Biology and pathophysiology

The pathophysiology of CMML is still not fully understood, in large part because CMML 

has been frequently studied as a subtype of MDS rather than as a separate entity. The high 

variability of the clinical presentation and the course of the disease reflect the heterogeneity 

of CMML’s pathogenetic features. Multiple theories about the biology of CMML, based on 

cellular, cytogenetic, and molecular abnormalities and supported by animal models, were 

developed over the past two decades, and recently a number of models to investigate the 

pathogenesis of CMML have emerged.

3.1 Cellular biology

Decreased apoptosis as an alternative pathway to tumorigenesis has been proposed in the 

pathogenesis of MDS as well as CMML. A competitive reconstitution assay demonstrated 

that long-term repopulating cells deficient in Bid, a BH3-only proapoptotic protein, gave rise 

to expanded myelomonocytic cells in vivo [62]. A mouse model recapitulating this 

phenomenon is discussed below in subsection 3.2. In support of the idea that decreased 

cellular apoptosis is a manifest contributor to CMML, Boudad et al. reported increased 

expression of antiapoptotic proteins Bcl-2 and Bcl-xL in patients with CMML [63]. In 

another study, increased expression of the cell cycle gene CCND1 (encoding cyclin D1) was 

also demonstrated in CMML patients compared with other FAB subgroups of MDS [64]. 

These findings suggest that the combination of specific decreased-apoptosis pathways and 

critical cell cycle pathway dysregulation directly contributes to the pathogenesis of CMML.

Recent investigation into immune checkpoint tolerance genes in myeloid malignancies 

revealed that CMML has increased expression of PD-L1 compared to AML [65]. Treatment 

with hypomethylating agents increased expression of PD-L1 and other related immune 

checkpoint genes in patients [65]. The work suggests that therapies blocking immune 

checkpoints, especially in conjunction with hypomethylating agents, may be an option for 

patients with CMML.

Angiogenesis has been shown to play a pivotal role in human leukemia. Pruneri et al. 

reported significant increases in microvascular density (MVD) in patients with CMML and 
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MDS [66]. Aguayo et al. demonstrated that plasma levels of vascular endothelial growth 

factor (VEGF) and hepatocyte growth factor (HGF) were elevated in patients with CMML 

compared with the levels in non-leukemic control patients and patients with other leukemias 

including MDS [67]. Likewise, Wimazal, et al. found increased MVD and elevated levels of 

VEGF in the bone marrows of patients with CMML; immature myeloid cells were the 

source of VEGF [68]. Alexandrakis et al. further confirmed the importance of angiogenesis 

in CMML by demonstrating increased MVD and increased levels of angiogenin and 

interleukin 6 in patients with CMML [69, 70]. Finally, Bellamy, et al. proposed an autocrine 

function of VEGF, demonstrating that some patients’ CMML cells expressed cytoplasmic 

VEGF as well as the membranous VEGF receptors Flt-1 and KDR. Inhibiting VEGF 

prevented CMML colony growth in vitro [71]. In total, these studies strongly suggest that 

microenvironmental influences, particularly angiogenesis, play a special role in the 

development and maintenance of CMML.

3.2 Molecular underpinnings

At the molecular level, CMML shares some characteristics with other myeloproliferative 

neoplasms. Activation of the JAK/STAT pathway has been the prominent molecular feature 

of polycythemia vera and is also a feature of primary myelofibrosis and essential 

thrombocythemia [72, 73]. Mutations in the JAK2 gene are less common in CMML [39, 74, 

75], however GM-CSF dependent STAT5 hypersensitivity has been noted in some CMML 

patients [76]. These studies suggest reliance on GM-CSF and the JAK/STAT pathway, and 

the potential for therapeutic intervention with anti-GM-CSF or JAK2 inhibition, even in the 

absence of mutated JAK2 [76].

Other molecular and genetic markers have been sought in CMML. Among hematologic 

malignancies, CMML is associated with the highest incidence of RAS pathway mutations 

[74]. MacKenzie et al. have shown that irradiated mice that undergo transplantation with 

Nras-mutated bone marrow cells develop myeloproliferative-like disease. Along with RAS 

pathway mutated mouse models described below in section 3.3, this work supports the 

theory that the RAS activation is a significant contributor to myeloproliferation in CMML 

[77].

Driver mutations responsible for the development of CMML have been studied by analyzing 

mutational data generated to date. Using single-cell-derived colonies from 28 patients with 

CMML, Itzykson et al. were able to determine that early mutations in TET2 were likely 

responsible for development of a dominant granulomonocytic clone [78]. After the 

acquisition of additional mutations, in spliceosome and epigenetic factors, for instance, the 

proliferative advantage and abnormal differentiation of a hematopoietic stem/progenitor cell 

emerges, as does the clinical entity CMML [79]. The findings suggest that a clonal hierarchy 

might be identified so that treatments would specifically target abnormal stem cell clones, to 

allow normal stem cells to proliferate and differentiate appropriately [79]. TET2 is 

recognized as an especially important player in the development of CMML [80]. Disruption 

of TET2 was demonstrated to act on the hematopoietic system at the level of the stem cell, 

promoting self-renewal, increasing 5-hydroxymethylcytosine, preventing normal 

differentiation, and resulting in skewing towards myeloid/monocyte development [81-84].
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Other genes found mutated in CMML have also been shown to promote myeloid 

differentiation through methylation effects on the hematopoietic stem cell. ASXL1 was 

determined to act through the loss of H3K27 methylation by polycomb repressive complex 

2, and loss of ASXL1 promoted myeloid differentiation in a proliferative setting [85]. In 

support of the idea of driver mutations in the stem cell compartment, Cilloni et al. also 

reported abnormal activation of the tyrosine kinase ROS1 in the stem-like cell population of 

70% of CMML patients, and this abnormal activation may drive oncogenicity [86].

3.3 Mouse models

Several mouse models have capitalized on findings from cellular and molecular studies, and 

recapitulated elements of CMML. A number of mouse models that overexpress Nras or Kras 

in the hematopoietic compartment have been shown to develop CMML-like disease [87-89]. 

One model has recently been used to show effectiveness of combined ERK/MEK inhibition 

in for treatment of the Nras-driven murine CMML mimic [90].

Mice that were deficient in Bid proapoptotic protein developed a myeloid leukemia that 

clinically and morphologically resembled adult CMML [62]. Additionally, enforcing 

production of Bcl-2 protein under the control of the human myeloid related protein 8 

(hMRP8) promoter, induces proliferation of myelomonocytic cells, and has been proposed 

as a leukemic stem cell model for CMML [91, 92]. These model supports the idea that 

decreased apoptosis is a fundamental mechanism in the development of CMML.

Tet2 deficient mice were predisposed to develop a myeloproliferation and a CMML-like 

malignancy, and mice transplanted with Tet2 deleted hematopoietic cells developed 

monocytosis and splenomegaly [82, 84]. Asxl1 deficient mice have also recently been shown 

to develop myelodysplasia/CMML [93, 94]. In these models, Asxl1 haploinsufficiency led to 

a milder myeloproliferation, and combined Asxl1/Tet2 knockout led to a more aggressive 

MDS [93, 94]. Interestingly, methylation effects of Asxl1 knockout altered expression of 

apoptosis related genes such as Bcl2, suggesting this as a mechanism acting on 

hematopoietic stem cells leading to the observed phenotype [93]. Finally, hematopoietic-

restricted deletion of the tumor suppressor Bap1, whose protein product is believed to 

cooperate with ASXL1 in epigenetic regulation, led to MDS and splenomegaly in mice [95].

Another model where mice developed CMML-like features was created with conditionally 

deleted TGF-β activated kinase 1 (Tak1) in the myeloid compartment [96]. Mice with 

myeloid-deficient Tak1 developed a myelomonocytic expansion, splenomegaly, and murine 

AML as they aged [96]. The deletion appeared to affect cytokine mediated signaling, and 

was associated with genomic instability [96]. In another recently developed mouse model, 

deletion of transcription intermediary factor 1γ (Tif1g) initiated age-dependent development 

of myeloproliferation reminiscent of CMML [97]. The gene was demonstrated to be an 

epigenetically regulated tumor suppressor gene [97].

Additional mouse models of MDS and MPN are especially promising in recapitulating 

clinical manifestations of CMML that are seen in patients, and may be helpful in elucidating 

the pathogenesis of CMML. PDGFRB mutant mice develop a disorder that is not unlike 

myeloproliferative CMML [38, 98, 99]. The over-production of the oncogenic portion of the 
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Hmga2 gene induces hematopoiesis in stem cell progenitors and produces a mouse model 

that mimics MPN [100]. Similarly, the deletion of the Dido1 gene, when knocked out in a 

mouse model, produces a human-like MPN/MPD disease [101]. These mouse models may 

lead to additional understanding of myelomonocytosis at the level of cellular and molecular 

biology.

4. Prognosis

4.1. Prognostic scoring systems

One of the most important prognostic indicators in CMML is the blast count, which is the 

basis for differentiating CMML-1 and CMML-2 in the WHO classification. CMML-1 

presents with <5% blasts in the blood and <10% blasts in the bone marrow and has an 18% 

chance of transformation to AML within 5 years. CMML-2 has 5-19% peripheral blood 

blasts and/or 10-19% bone marrow blasts and is associated with a 63% 5-year risk of 

progression to AML [102].

Several prognostic scoring systems used for patients with MDS have been employed for 

patients with CMML [12, 103-112]. All of those systems score patients on the basis of 

various critical hematologic, clinical, or biochemical indices such as complete blood counts, 

bone marrow biopsy characteristics, age, sex, splenomegaly, prior malignancies, antecedent 

hematologic disease, presence of RAS mutations, and levels of lactate dehydrogenase and 

β2-microglobulin. Some prognostic systems have specifically been proposed for patients 

with CMML [12, 51, 104, 110, 113, 114]. Most recently, Such et al. described the CMML-

specific prognostic scoring system (CPSS), which relies on the WHO subclassification, the 

FAB subclassification, CMML-specific cytogenetic classification (low risk = normal and 

isolated −Y; intermediate risk = all other abnormalities not included in low or high risk; and 

high risk = trisomy 8, complex, and chromosome 7 abnormalities), and erythrocyte 

transfusion dependency [110]. Another recent and useful risk model, the Global MD 

Anderson Prognostic Scoring System (GMDAPS), was proposed for all MDS and CMML 

patients, regardless of specific disease type, prior therapy, or duration of disease. G-MDAPS 

is based on performance status, age, platelet count, hemoglobin value, percentage bone 

marrow blasts, white blood cell count, karyotype, and prior transfusion [111]. CPSS and G-

MDAPS are summarized in Table 2. A refined MDAPS score, more specific for patients 

with CMML, was recently proposed [114]. It is also reported that therapy-related CMML 

carries a worse prognosis than de novo CMML [115].

4.2. Impact of cytogenetic and molecular studies on prognosis

4.2.1. Cytogenetics and prognosis—In a study using data from the Spanish Registry 

of Myelodysplastic Syndromes, CMML patients with an abnormal karyotype (27%) had a 

higher leukemia transformation rate (26% vs. 12% at 2 years and 36% vs. 27% at 5 years; p-

value, 0.01) and shorter OS (median 16 vs. 36 months, p-value < 0.01) [29]. Three 

independent risk groups were created on the basis of cytogenetic abnormalities: low risk (-Y, 

diploid/normal), high risk (trisomy 8, chromosome 7 abnormalities, complex cytogenetic 

abnormalities), and intermediate risk (all other abnormalities). In a multivariate analysis 

based on these risk groups, cytogenetic stratification was identified as an independent 
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prognostic factor for OS in patients with CMML [29]. This finding confirmed those of other 

studies showing the usefulness of cytogenetic risk stratification for prognosticating CMML 

outcomes [12, 109]. A subsequent confirmatory study determined that CMML patients who 

had abnormal karyotype (30%) had a higher rate of 2-year transformation to AML (29% vs. 

14%, p <0.001), and shorter OS (median 19 vs. 33 months, p-value < 0.0001) [30]. 

Monosomal karyotype has been independently shown to confer worse prognosis in patients 

with CMML [116].

4.2.2. Molecular characterization and prognosis—Future prognostic scoring 

systems for CMML will likely use molecular analysis in combination with clinical and 

cytogenetic data. Mutational analysis is especially important considering that approximately 

70% of CMML patients have normal diploid cytogenetics [29-31]. For example, TET2 
mutations may not offer prognostic information except for certain patients with CMML-1, 

and SETBP1 mutations are associated with poor prognosis [53, 54, 117, 118]. CBL 
mutations in both CMML-1 and CMML-2 are associated with poorer outcomes, and CBL 
mutant patients tended to have splenomegaly [52]. Although FLT3 mutations occur in 

approximately one-third of AML patients, they are far less common in CMML (~4%) and 

do not predict outcomes [57]. Among the spliceosome mutations in SRSF2, SF3B1, and 

U2AF35 that have been identified in CMML (most commonly in SRSF2), none are 

prognostic for outcome [56, 58]. RUNX1 mutations, on the other hand, are thought to 

predict transformation to AML [119]. Some recent prognostic models have begun to take 

into account mutational information, such as the mutational status of ASXL1, which may 

confer an adverse prognosis when mutated [51, 113, 120]. These models are promising and 

will need continued streamlining and validation. A challenge to creating a uniform model is 

the bias created by inclusion or exclusion of patients in studies at different institutions since 

CMML shares features with both MDS and MPN [113].

5. Treatment

Treatment for CMML has been investigated mainly as part of MDS clinical trials that 

included patients with the CMML subtype. In the past several years, interest into the use of 

newer agents for CMML has been growing. Traditionally, patients are started on treatment 

when they begin to experience disease-related complications such as cytopenias or 

immunosuppression leading to fever or infection, or significant hematologic abnormalities 

including worsening transfusion dependence and increasing blast percentage. There are no 

currently accepted standards for determining the optimal time to initiate therapy for a 

particular patient. Even as new therapies emerge, supportive care remains integral to the 

management of patients with CMML. Primary measures include symptom management such 

as blood product transfusions for anemia. Growth factor support with erythropoietin may be 

also used, since there is anecdotal evidence that it may be of benefit [121].

5.1. Stem cell transplantation

Currently, the only known curative treatment for CMML is allogeneic hematopoietic stem 

cell transplantation (HSCT) [122]. For younger patients with good performance status, 

HSCT may be preferred. However, because most patients with CMML are older than 70 
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years and are thus poor candidates for stem cell transplantation, alternative treatments have 

been sought. Recent evidence suggests that the number of additional comorbidities may 

relate directly to the success or failure of transplantation in CMML [123].

All studies investigating HSCT in CMML have been retrospective. The largest study of its 

kind used the European Blood and Bone Marrow Transplant (EBMT) database and included 

283 patients. At the time of analysis, 38% of the patients were alive and free of disease. In 

total, 25% of patients experienced a relapse; however, the risk of relapse was lower in 

patients who experienced grade II-IV acute graft-versus-host disease (GVHD). Of interest, 

several factors were ruled out as prognostic indicators for relapse-free survival or OS in 

transplant patients, including CMML subtype, cytogenetic abnormalities, conditioning 

regimen, use of total body irradiation, stem cell source, T-cell depletion, type or grade of 

GVHD, age or disease status at transplantation, and HLA (human leukocyte antigen) type or 

sex of donor. The non-relapse mortality rate was 37% and was found to be lower in patients 

who had received peripheral blood stem cells or who had undergone transplantation after 

2002 [124]. Relapse rates were comparable to those in other studies [123, 125-132]. One 

earlier study with 21 CMML patients found a disease-free survival rate of 43% with a 

median follow-up of 6-9 years [132]. In total, those studies showed high treatment-related 

mortality but suggested the strong possibility of long-term disease-free survival.

Several studies included patients with CMML who received reduced-intensity conditioning 

with a transplant [124-126, 129, 131]. It has been suggested that this approach is appropriate 

for patients with CMML who are advanced in age and/or have other significant 

comorbidities. Relapse-free survival rates for CMML patients receiving HSCT have 

improved in recent years [15, 122]. This is hypothesized to be the result of advancements in 

supportive care, reduced-intensity conditioning, and better HLA matching protocols [122]. 

The utility of treating CMML patients undergoing transplantation in the same manner as 

MDS transplant patients has yet to be prospectively studied [15].

Some patients received donor lymphocyte infusions (DLI) after transplantation. Of six 

patients with CMML who received DLI in two studies, two benefited from DLI, achieving 

long-term complete remission (CR). However, there is no consensus about which CMML 

patients might benefit from DLI, and the patients who did benefit also had significant 

chronic GVHD [127, 133].

5.2. Cytotoxic chemotherapy

Cytoreductive therapy has traditionally been used to control early-stage disease. Early 

attempts to control disease with hydroxyurea were more successful than etoposide, and 

consequently hydroxyurea is still commonly used [134]. For progressive disease, low-dose 

cytarabine, a nucleoside analog, has also been used. However, very few studies have looked 

at cytarabine specifically in CMML, and most included other types of MDS. In cases of 

transformation into AML, traditional high-dose cytarabine-based regimens that are used for 

de novo AML are utilized. Other investigational cytotoxic chemotherapies are discussed 

below.
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5.3. Hypomethylating agents

Some recent studies focused on hypomethylating agents for CMML, and several of the 

studies investigated 5-azacytidine or decitabine [135-141]. Both compounds were approved 

for CMML by the U.S. Food and Drug Administration. In the European Union, 

subcutaneous 5-azacytidine was approved for CMML patients not eligible for 

transplantation who have 10%-29% bone marrow blasts and do not have an MPD. The use 

of hypomethylating agents is further supported by a recent mutational analysis of 52 patients 

with CMML demonstrating mutations in genes known to regulate methylation, including 

TET2, UTX, EZH2, and DNMT3A [52].

Three studies with 18, 19, and 31 CMML patients treated with decitabine found CR rates of 

10%, 50%, and 58% and objective response or hematologic improvement rates of 67%, 

11%, and 19%, respectively [135-137]. More recently, a study of 39 patients with advanced 

CMML treated with decitabine found CR in 10% of patients and an overall response rate of 

38% (median duration of response 13 months, range 4 to 21 months) [139]. Similarly, a 

study of 38 CMML patients treated with 5-azacytidine found CR in 11% of patients and HI 

in 25% of patients (median duration 6.5 months, range 3 to >50 months) [140]. The most 

common adverse effects were those associated with cytopenias.

5.4. Investigational agents

Investigational agents that have been used for treatment of CMML include topoisomerase I 

inhibitors, sapacitabine, clofarabine, tyrosine kinase inhibitors, thalidomide/lenalidomide, 

all-trans retinoic acid, histone deacetylase inhibitors, JAK2 inhibitors, and 

farnesyltransferase inhibitors. Treatments of CMML with these agents largely reflect the 

approaches used for MDS, and they are outlined in Table 3.

The most studied topoisomerase 1 inhibitor is topotecan, which has been used alone, in 

combination with cytarabine, and in combination with thalidomide [142-146]. Treatment 

with single-agent topotecan produced a CR rate of 28% in 25 patients with CMML [142], 

and addition of cytarabine in a combination regimen increased the CR rate to 44% in another 

study, which included 27 patients with CMML [144].

Sapacitabine is an orally administered deoxycytidine analog whose mechanism of action is 

distinct from that of cytarabine [147]. In a single study at The University of Texas MD 

Anderson Cancer Center, two patients with CMML treated with sapacitabine responded with 

CR or bone marrow CR for 2 and 3.3 months, respectively. A patient whose CMML 

transformed into AML also responded to sapacitabine with CR without recovery of platelets 

for 2.2 months. All three patients had been treated previously with decitabine, and the AML 

patient had also been treated previously with clofarabine [148]. Clofarabine, a second-

generation nucleoside analog has also been tested in patients with MDS including those with 

CMML. In another MD Anderson study, out of 6 patients with CMML, 2 achieved CR 

[149]. Both clofarabine and sapacitabine are currently used when disease progresses despite 

the use of hypomethylators [150].

Tyrosine kinase inhibitors have been used specifically to treat CMML associated with a 

rearrangement of the platelet-derived growth factor receptor beta (PDGFRB) gene, which is 
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a tyrosine kinase receptor in the MAP kinase pathway [37, 38]. Some CMML patients 

without a PDGFRB rearrangement who were treated with imatinib had no significant 

response [151, 152]. One study investigated the use of semaxanib, a multikinase inhibitor 

that selectively targets VEGF receptor 2 tyrosine kinase. Of the 6 patients with CMML in 

the study, 1 (17%) had stable disease for longer than 6 months. Cytogenetic abnormalities in 

treated patients were not reported [153]. It is worthwhile to note that aberrant activation of 

ROS1, a tyrosine kinase, was detected in the CD34+ cell compartment for 70% of CMML 

patients in one recent study [86].

The immunomodulator thalidomide and its derivative lenalidomide have both been used to 

treat CMML. In one series, thalidomide was studied in MDS patients, and 3 patients with 

CMML were included. One patient experienced hematologic improvement, with a platelet 

response [154]. In another study, none of four patients with CMML had a response [155]. A 

larger study included 13 CMML patients who received thalidomide alone or in combination 

with arsenic trioxide, topotecan, or ciprofloxacin plus dexamethasone. The overall response 

rate was approximately 21%; however, individual responses for patients with CMML were 

not reported [156].

One study combined two investigational therapies for patients with MDS and included 6 

patients with CMML. Patients were treated with topotecan at 1.25 mg/m2 on days 1-5 of a 

21-day cycle for three cycles and were then evaluated. If blasts were <5% or had decreased 

by >50%, the patients were then treated with thalidomide at 100 mg/day (with dose 

escalation up to 300 mg/day) for up to 1 year. Otherwise, the patients were retreated with 

topotecan until blast indices had reached the levels required to change the therapy to 

thalidomide. Of the 6 patients with CMML, 1 (with karyotype 46, XY, del(7)(q11.2)[20]) 

had a partial response with hematologic improvement in erythroid cells and became 

transfusion independent. The findings suggested that the combined regimen, which was 

generally well tolerated, or maintenance therapy with thalidomide once a decrease in blasts 

is achieved, may be appropriate for selected CMML patients [146].

Two studies that looked at thalidomide in combination with 5-azacytidine or as a part of the 

TADA regimen (thalidomide, arsenic trioxide, dexamethasone, and ascorbic acid) reported 

response rates of 50% and 38%, respectively [157, 158]. In the study by Bejanyan et al. the 

TADA regimen was evaluated also in 15 patients with MDS/MPN-unclassifiable, a large 

number of difficult-to-classify patients whose clinical characteristics overlap with CMML. 

In another study, lenalidomide was used to treat CMML-2 in a patient who had a del(5q) 

cytogenetic abnormality. A single 14-day course of lenalidomide at 25 mg/day, administered 

in preparation for allogeneic stem cell transplantation, resulted in cytoreduction and blast 

clearance in the patient [159].

Three studies investigating the histone deacetylase inhibitor valproic acid (VPA) for 

treatment of MDS and CMML obtained inconclusive results for CMML patients [160-162]. 

Vorinostat (suberoylanilide hydroxamic acid) is another histone deacetylase inhibitor that 

was approved by the Food and Drug Administration for cutaneous T-cell lymphoma. It was 

investigated for treatment of MDS alone, and no CMML patients were included [163]. 
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Notably, the MDS/CMML–derived cell line P39 was inhibited by vorinostat alone (as well 

as by bortezomib alone) in a preclinical study [164].

As noted, some patients with CMML possess mutations in JAK2, suggesting that 

constitutive activation of the JAK/STAT pathway may be targetable for therapy. The JAK2 
inhibitor ruxolitinib has been tested in a limited number of CMML patients [44]. 

Additionally, Padron et al. have recently reported a GM-CSF-dependent STAT5 

hypersensitivity in up to 90% of CMML patients, with potential therapy targeting GM-CSF 

and the JAK/STAT pathway [76].

Because CMML cells often carry RAS mutations leading to increased RAS protein activity, 

the RAS-activation pathway has been the target of potential therapeutics [165]. The RAS-

activating enzyme farnesyltransferase has been targeted with specific farnesyltransferase 

inhibitors (FTIs). In the largest multicenter study to date, 35 CMML patients were treated 

with the FTI lonafarnib at 200-300 mg twice daily. The overall response rate was 29%, with 

two patients with CMML-2 achieving CR [166]. Another FTI, tipifarnib, has been 

investigated in phase 1 and 2 trials, as well as in combination with idarubicin and cytarabine 

for treatment of MDS [167-170]. In a phase 2 study, 17 patients with CMML-1 or CMML-2 

received tipifarnib at a dose of 300-600 mg twice daily, and 3 had CR (18%), with a median 

survival of 14.5 months [170]. Although myelosuppression was the most commonly 

observed adverse effect with tipifarnib, it is notable that some CMML patients have had 

rapid onset of leukocytosis with lonafarnib or tipifarnib treatment, which may be akin to 

leukemia differentiation syndrome [167, 171].

5.5. Conclusions

Although many therapies have been tested against CMML (additional experimental 

therapies are detailed in Table 3), much work remains to identify optimal treatment for 

individual patients. In addition, appropriate response criteria have not previously been 

defined specifically for patients with MDS/MPN, and as criteria are designed, treatments 

may be better assessed. As the classification of patients with CMML continues to evolve, so 

will treatment protocols. Stratification based on patient and disease characteristics has 

become increasingly important to treatment decisions. With the dawn of more sophisticated 

assays, such as next-generation sequencing, targeted therapy will be directed at patients who 

would maximally benefit from them. Simultaneously, an increasing understanding of the 

underlying mechanisms that drive the pathogenesis of this unique disorder will improve the 

classification, prognostication, and treatment of patients with CMML.
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