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Abstract

PD-L1 and PD-1 (PD) pathway blockade is a highly promising therapy and has elicited durable 

anti-tumor responses and long-term remissions in a subset of patients with a broad spectrum of 

cancers. How to improve, widen, and predict the clinical response to anti-PD therapy is a central 

theme in the field of cancer immunology and immunotherapy. Oncologic, immunologic, genetic 

and biological studies focused on the human cancer microenvironment have yielded significant 

insight into this issue. In this Review, we focus on tumor microenvironment; evaluate several 

potential therapeutic response markers including the PD-L1 and PD-1 expression pattern, genetic 

mutations within cancer cells and neoantigens, cancer epigenetics and effector T cell landscape, 

microbiota, and their mechanisms of action and roles in shaping, being shaped and/or predicting 

therapeutic responses. We also discuss a variety of combinations with PD pathway blockade and 

their scientific rationales for cancer treatment.
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Introduction

The tumor microenvironment is the primary location in which tumor cells and the host 

immune system interact. Characterization of the nature of immune responses in the human 

cancer microenvironment holds the key to understanding protective tumor immunity and 

improving and empowering current cancer immunotherapy. Accumulating evidence has 
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revealed that the interaction between tumor cells and the host immune system fosters tumor 

immune evasion and ultimately results in tumor dissemination, relapse, and metastasis (1-3). 

Study of different cancer infiltrating immune cell subsets including CD4+Foxp3+ regulatory 

T cells (Tregs) (4), antigen presenting cells (APCs) (5, 6), myeloid derived suppressor cells 

(MDSCs) (7) and effector T cell subsets (8-13), and immune signature networks (3) have 

defined the nature of immune responses in the human cancer microenvironment and have 

allowed for elucidation of the critical importance of reversing immune suppressive 

mechanisms, including programmed cell death 1 ligand (PD-L1, B7-H1, CD274) and 

programmed cell death receptor 1 (PD-1, CD279) pathway (herein PD pathway) blockade 

(1, 2, 14, 15) to engender potent anti-tumor immunity. The identification of PD-L1 (16, 17), 

the finding that PD-1 is a receptor for PD-L1 (18), and the demonstration of the expression, 

regulation, and function of the PD pathway in the human cancer microenvironment (5, 14, 

16, 17, 19-23) have provided scientific rationales and direct support for the current clinical 

application of PD pathway blockade (Table 1).

B7-H1 was cloned in 1999 (16). PD-1 has been subsequently identified as a counter-receptor 

for B7-H1 (18), and B7-H1 is therefore also known as PD-L1 to emphasize this receptor–

ligand interaction. The expression profile of PD-L1 in human cancers has been previously 

reviewed (14). In addition to tumor cells (14, 17), high levels of PD-L1 protein expression 

have been observed in human tumor-associated APCs including tumor environmental 

dendritic cells (DCs), tumor draining lymph node DCs (5, 24), macrophages (20, 25), 

fibroblasts (26) and T cells (27, 28). PD-L1 expression can be induced or maintained by 

many cytokines (5, 17, 29, 30), of which interferon-γ (IFNγ) is the most potent. The 

association between tumor infiltrating T cells, IFNγ signaling genes, and PD-L1 expression 

suggests that effector T cell-derived IFNγ contributes to high levels of PD-L1 expression in 

the tumor microenvironment (31). Immune-induced tumor PD-L1 expression is considered 

to be an adaptive resistance mechanism for tumor cells in response to immune challenge 

(31-33). In addition, oncogenic phosphatase and tensin homolog (PTEN) loss results in 

enhanced PD-L1 expression in glioma (34) and triple negative breast cancer cells (35). In 

human T cell lymphoma, PD-L1 expression may depend on the expression and enzymatic 

activity of chimeric nucleophosmin (NPM) and anaplastic lymphoma kinase (ALK) (36). 

Thus, PD-L1 expression can also be regulated by intrinsic oncogenic pathways.

In addition to PD-L1, PD-L2 (B7-DC, CD273) also interacts with PD-1 with similar affinity 

to deliver a potentially suppressive signal. The immunologic function of this interaction in 

cancer immunity, however, may not be critical due to relatively rare expression of PD-L2 on 

cancer cells as well as its interaction with a potentially stimulatory receptor, repulsive 

guidance molecule b (RGMb) (15)(Figure 1).

PD-1 is absent on resting T cells and was initially found in activated mouse T cells upon 

TCR engagement (37) and subsequently in exhausted T cells in chronic infection murine 

models (38, 39). In patients with different types of cancer, high levels of PD-1 expression 

are detected in tumor infiltrating T cells including tumor antigen-specific T cells, 

presumably due to chronic antigenic stimulation. These human tumor associated PD-1+ T 

cells are functionally impaired and their biological activity can be partially recovered with 

PD-1 or PD-L1 blockade (19-23). A recent study reports that a subset of human melanoma 
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cells express PD-1 and melanoma cell-intrinsic PD-1 promotes melanoma cell growth (40). 

This finding, however, is inconsistent to previous result that PD-1 expression is predominant 

on tumor infiltrating lymphocytes but insignificant in melanoma based on 

immunohistochemistry analysis (41). The role of specific reagents and techniques in 

detecting PD-1 expression by tumor cells is important to further understand the biologic 

importance of the data. The magnitude of this surprising finding remains to be prospectively 

determined in additional studies across tumor types in patients. Thus, PD-L1 and PD-1 are 

expressed by various cellular components in the human tumor microenvironment, where 

they can inhibit anti-tumor T-cell immunity (Figure 1). This geographic expression profile is 

an important feature for PD pathway blockade.

In this review we focus on the human cancer microenvironment and PD pathway blockade. 

We propose that human anti-tumor immune responses are controlled and regulated by tumor 

somatic mutations, epigenetic alterations, and environmental cues. We discuss these three 

aspects and emphasize the relevant studies in the human cancer microenvironment and link 

scientific rationales to clinical combinational therapy with PD pathway blockade.

Mechanisms of action of the PD signaling pathway

How does PD signaling mediate dysfunctional tumor immunity? PD-L1+ cells, particularly 

PD-L1 expressing APCs and tumor cells, engage PD-1+ T cells, resulting in T cell 

dysfunction. Multiple modes of action are thought to explain T cell-immune evasion via the 

PD pathway. The engagement of PD-L1 and PD-1 may cause T cell apoptosis, anergy, 

exhaustion, and IL-10 expression (Figure 1). PD-L1 may function as a molecular ”shield” to 

protect PD-L1+ tumor cells from CD8+ T cell-mediated lysis (14, 15). In addition to PD-1, 

an interaction between PD-L1 and CD80 has been demonstrated in mouse models (42, 43) 

(Figure 1). Activated T cells and APCs may express CD80, and CD80 may function as a 

receptor and deliver inhibitory signals when engaged by PD-L1 (42, 43). It has been shown 

that PD-L1 can function as a receptor to ”back” transmit signals into T cells (44) and tumor 

cells (45) to affect their survival whereas the intracellular biochemistry of this “back” 

signaling is yet to be determined. Thus, PD-L1 could act as both ligand and receptor to 

execute immune-regulatory functions.

In addition to PD-L1, PD-1 is a receptor for PD-L2. RGMb is a binding partner for PD-L2 

(46) (Figure 1). Thus, PD blockade may not be biologically identical and differing blockade 

may shift the balance in their interaction with their binding partners, leading to potential 

varied biological outcomes (Figure 1). Notably, the relationship between CD80, PD-1 and 

RGMb, PD-L1 and PD-L2 in their cellular expression profile, expression regulation, 

potential molecular interaction, and functional relevance in human tumor immunity and 

checkpoint immunotherapy have not been completely defined. Furthermore, as PD-L1 is 

expressed by different types of cells and mediates immune regulation via different 

mechanisms, it is not totally understood which major cellular and molecular mechanisms are 

correlated with clinical responses to PD pathway blockade in patients with cancer. 

Nonetheless, current clinical trials demonstrate similar clinical response patterns for anti-PD 

therapy (Table 1), suggesting that major cellular and molecular mechanisms associated with 

a clinical response may be shared in PD blockade. Future studies of the tumor 
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microenvironment in patients with or without immunotherapy will hopefully demonstrate 

the dynamics of these various interactions and the underlying cellular and molecular 

mechanisms, which are relevant for the further understanding of how immune elements 

shape and predict therapeutic response and non-response (Figure 1).

Clinical trials and response biomarkers of PD pathway blockade

Clinically, PD pathway blockade has demonstrated important activity across a spectrum of 

different tumor types spanning both solid tumors and hematologic malignancies including 

bladder cancer(47), breast cancer(48, 49), colorectal cancer(48, 50-53), diffuse large B-cell 

lymphoma(54), follicular lymphoma(55), gastric cancer(48), head and neck squamous cell 

carcinoma(49), Hodgkin lymphoma(56), melanoma(48-52, 57-65), ovarian cancer(48, 49), 

non–small-cell lung cancer (NSCLC) (48-51, 66-70), pancreatic cancer(48, 49), renal cell 

carcinoma (RCC) (48-51, 71), prostate cancer(50, 51), sarcoma(49), small-cell lung cancer 

(SCLC) (49), and uterine cancer(49). The objective response rates are varied from different 

cancer types in different clinical trials (Table 1). Based on current clinical data, bladder 

cancer(47), melanoma(48-52, 57-65), mismatch repair–deficient colorectal cancer(53) and 

certain hematopoietic malignancies (54, 56) may be among the most responsive cancer 

types. Specific features of particular clinical trials are summarized (Table 1) and discussed 

in the following sections.

Although head-to-head comparisons of antibodies to PD-1 and PD-L1 have not been done, 

levels of clinical response and toxicities appear to be generally consistent with either 

approach. Immune-related toxicities occur with PD pathway blockade but are much less 

frequent than those observed with cytotoxic T lymphocyte antigen-4 (CTLA-4) blockade 

(62, 63). The most frequently observed toxicity encountered with PD pathway blockade is 

fatigue, which often does not require treatment and does not necessarily limit duration of 

therapy. However, inflammatory pneumonitis has been observed, which may be fatal if not 

addressed promptly with corticosteroids or other means of immune suppression. Rare, high 

grade events like pneumonitis or interstitial nephritis may necessitate cessation of therapy. 

Yet, clinical responses remain durable despite cessation of therapy and even after immune 

suppression, implying that the optimal duration of therapy with PD pathway blocking agents 

remains to be determined. Given that PD pathway blockade induces a clinical response in 

subsets of cancer patients (Table 1), a central question is whether and how therapeutic 

responsiveness is predicted and/or is shaped by host and tumor components. There are many 

ongoing efforts to identify predictive biomarkers of PD pathway blockade. Recent studies 

have provided hints to associate clinical responses with several potential biomarkers (Figure 
2).

Does expression level of PD-L1 predict clinical response (Figure 2)?

Tumor cells and APCs express high levels of PD-L1, and tumor associated PD-L1+ DCs 

mediate T cell suppression (5, 14). Tumor tissues of RCC (72), esophageal, gastric (73, 74), 

and ovarian (75) cancers show that PD-L1 expression is an indicator of poor prognosis for 

patient survival. It is reasonable to hypothesize that PD-L1 in tumor and/or APCs in the 

tumor microenvironment may predict or be associated with the clinical response of PD 
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blockade. In support of this, a correlation has been observed between the expression of 

tumor tissue PD-L1 and the likelihood of the response to anti-PD therapy in patients with 

melanoma (48, 51), NSCLC (66), and RCC (41). An 87% objective response is observed in 

patients with relapsed or refractory Hodgkin's lymphoma treated with anti-PD-1 (Table 1). 

In line with this, an amplification of PD-L1 and PD-L2 is detected in lymphoma cells in 

these patients (56). In addition to PD-L1 expression in tumor, expression of PD-L1 in tumor 

infiltrating immune cells, particularly myeloid APCs (macrophages and myeloid DCs), is 

correlated with clinical responses to anti-PD-L1 treatment in several types of cancer (Table 
1) (49). In contrast, most progressing patients show a lack of PD-L1 upregulation by either 

tumor cells or tumor-infiltrating immune cells (49). However, the results in trials with anti-

PD-1 (64) and the combination of anti-PD-L1 and anti-CTLA-4 suggest that melanoma 

patients can have a clinical response regardless of the tumor cell PD-L1 status (58, 76). 

Notably, the host immune cell PD-L1 expression, particularly PD-L1 expression in DCs in 

the tumor microenvironment and draining lymph nodes (5), has not been specifically 

examined in majority of clinical trials. Furthermore, activated T cells or innate immune cells 

can release type I and II IFN and stimulate de novo PD-L1 expression. Presumably, blocking 

newly induced PD-L1 can affect therapeutic responses. In support of this possibility, across 

multiple cancer types, responses to anti-PD-L1 therapy are frequent in patients with high 

PD-L1 expression in tumor-infiltrating immune cells, particularly macrophages and DCs, in 

the course of tumor regression (41, 47, 49). Hence, the relevance of host PD-L1 expression 

in shaping the clinical response to PD pathway blockade is important to consider.

Furthermore, PD-L1 expression may be clustered rather than diffuse in tumor tissues (17, 

31) and is likely localized to the area where IFNγ+ T cells infiltrate (31). Thus, current 

needle biopsy-based sampling of human tumor tissues may miss PD-L1 positive area and 

give false negative results. This problem may be overcome by an in vivo imaging method 

using radiolabeled high affinity PD-1 variants to assess PD-L1 expression in entire tumor as 

shown in tumor bearing mouse model (77). In addition, oncogene-driven expression of 

tumor PD-L1 may not correlate with tumor-infiltrating T cells. It remains to be determined 

whether the therapeutic efficacy of PD pathway blockade is similar between patients with 

oncogenic PD-L1+ tumors (31, 41, 78) and immune-driven PD-L1+ tumors.

With current limitations of clinical sampling methods, the expression of PD-L1 on the 

surface of tumor cells and immune cells prior to immunotherapy may be a useful, but not a 

definitive predictive biomarker of the response to the PD pathway blockade. Unlike the 

presence of oncogenic driver mutations, PD-L1 expression is a dynamic and inducible 

biomarker which is more of a relative indicator of the likelihood of response, rather than a 

binary predictor of response.

Do cancer neoantigens and/or somatic mutations predict a clinical response (Figure 2)?

The immune system can recognize developing cancers. Therapeutic manipulation of 

immunity can induce tumor regression. While tumor associated antigens (TAAs) are largely 

self-antigens, cancers contain somatic genetic mutations, which could be specific to the 

cancer. These mutation associated antigens can be tumor specific antigens and be presented 

to and recognized by T cells in patients with cancer. Aligned with this notion, the tumor 
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mutational antigen (neoantigen) T cell response has been documented in a genetically 

engineered, autochthonous mouse model of sarcomagenesis (79), in a highly immunogenic 

methylcholanthrene (MCA) induced mouse sarcomas model (80), and in mouse vaccine 

models (81, 82). In patients with melanoma, tumor mutation-specific CD4+ (83, 84) and 

CD8+ (85) T cells are found, and these cells can mediate tumor regression. Vaccination with 

melanoma-derived mutant peptides augments T cell immunity directed at naturally occurring 

dominant neoantigens and subdominant neoantigens (86). Although the antigen specificity is 

unknown, the mismatch repair-defective subset of colorectal cancer displays high tumor 

infiltration of Th1-type T cells and CD8+ T cells along with high PD-L1 and PD-1 

expression (87). Using large-scale genomic data sets of solid tumor tissues, the number of 

predicted MHC class I-associated neoantigens is correlated with the cytolytic activity of 

CD8+ T cells (88).

Several lines of evidence support a link between PD pathway blockade and tumor mutation-

derived antigen specific T cell responses. In the mouse MCA sarcoma model, treatment with 

anti-PD-1 and/or anti-CTLA-4 activates tumor mutational antigen specific T cells and results 

in tumor rejection (89). In patients with colorectal cancers, mismatch-repair status predicts 

clinical benefit of PD-1 blockade (53). In patients with NSCLC treated with anti-PD-1, high 

nonsynonymous mutation burden is associated with improved objective response, durable 

clinical benefit, and progression-free survival, and mutated antigen-specific CD8+ T cell 

responses parallel tumor regression (67). Lung cancer and melanoma are found to be 

clinically responsive in two early clinical trials with anti-PD therapy (51). These two types 

of cancer have high numbers of somatic mutations as a result of exposure to cigarette smoke 

and ultraviolet radiation. Biopsied specimens of regressing melanoma lesions are infiltrated 

by CD8+ T cells in patients treated with anti-PD therapy (57). A high objective response rate 

to anti-PD-1 therapy is observed in patients with microsatellite instable colorectal cancer, 

but not in patients with mismatch repair-proficient colorectal cancer (53). Similarly, in 29 

stage IV NSCLC patients, there were 63% and 0% response rates respectively with high and 

low nonsynonymous mutation burden (67) (Table 1). The data suggest that the increased 

number of mutation-associated neoantigens may be associated with the enhanced 

responsiveness to PD pathway blockade in some cancer patients.

Notably, we are at the beginning of our understanding of the relationship between mutant 

tumor neoantigens, their T cell responses, and cancer immunotherapy responses. Several 

observations are worth noting in this regard: (a) Melanoma and lung cancer naturally possess 

high levels of mutations. (b) High levels of mutations may not necessarily form high levels 

of immunogenic neoantigens; this may simply be a probabilistic phenomenon. (c) There is 

no direct evidence demonstrating that neoantigen specific T cells mediate tumor elimination 

in patients treated with PD pathway blockade. (d) Multiple factors including PD-L1 and 

PD-1 expression levels, effector T cell tumor trafficking, and environmental cues 

(microbiota) may contribute to immunotherapeutic responses. Nonetheless, recognizing the 

intrinsic ability of the immune system to specifically target the unique mutations potentially 

shared by many cancer types (90) is an important part of understanding the mechanism of 

cancer immunotherapy (91).
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Do Th-1 type chemokines, tumor infiltrating T cells, and T cell clonality predict clinical 
responses (Figure 3)?

Th1-type chemokines are correlated with effector T cell density in some human tumors and 

are also positively associated with cancer patient survival (8, 10, 92). However, a crucial 

question is why some tumors are “inflamed” with effector T cell infiltration while others are 

not. Two research teams have proposed plausible mechanisms to address this question. In a 

murine melanoma model, tumor intrinsic β-catenin signaling negatively controls chemokine 

CCL4 expression. CCL4 mediates DC tumor trafficking. Thus, tumor β-catenin activation 

results in poor CCL4 expression and subsequently limits DC recruitment and DC-mediated 

T cell activation (Figure 3) (93). In human ovarian cancer (94) and colon cancer (95), poor 

T cell tumor infiltration is attributed to potent epigenetic silencing of tumor Th1-type 

chemokines CXCL9 and CXCL10, which mediate effector T cell and natural killer (NK) cell 

tumor migration (Figure 3) (94, 95). Polycomb repressive complex 2 (PRC2), the 

demethylase JMJD3-mediated histone H3 lysine 27 trimethylation (H3K27me3), and DNA 

methylation repress the expression of Th1-type chemokines and subsequently restrain 

effector T cell trafficking into the cancer microenvironment (94, 95). These studies suggest 

that intrinsic tumor oncogenic (93) and epigenetic (94, 95) pathways control T cell 

activation and/or migration. Both epigenetic silencing (96) and β-catenin signaling are 

intrinsic tumorigenic mechanisms and are associated with cancer stem cell properties. Thus, 

oncogenic genetic and epigenetic pathways may play dual biologic and immunologic roles 

in supporting tumor progression and limiting spontaneous and therapeutic-induced tumor 

specific T cell immunity (Figure 3).

PD-L1 expression is clearly important in the tumor microenvironment (5, 14, 15, 33). A 

major feature of PD pathway blockade is immune regulation specifically at the tumor site 

(15). Hence, it is reasonable to assume that pre-existing tumor infiltrating immune cells and 

Th1 type chemokines may correlate with clinical response to PD pathway blockade. In 

support of this possibility, recent clinical trials suggest that intra-tumoral T cell infiltration 

and Th-1 type gene expression and a clonal TCR repertoire are associated with improved 

clinical responses to anti-PD therapy (47, 97). The frequency of mutational antigen specific 

T cells and their functional status in the tumor infiltrating T cell populations remain to be 

investigated and compared prior to and post cancer immunotherapy. Given that oncogenic 

genetic (93) and epigenetic (94, 95) pathways control effector T cell tumor trafficking, 

epigenetic marks, enhancer of zeste homolog 2 (EZH2) and DNA methyltransferase 1 

(DNMT1), are negatively associated with CD8+ T cells and patient survival (94, 95), and 

epigenetic reprograming synergistically increases the effect of PD-L1 blockade(94), it will 

be interesting to explore whether tumor specific genetic and epigenetic marks are associated 

with the clinical response to anti-PD therapy (Figure 2).

Do microbiota contribute to clinical responses to PD pathway blockade?

Recent studies have shown that the gut microbiome can affect the outcome of cancer 

chemotherapy in murine models (98, 99). Chemotherapy induced Th1 and Th17 responses 

are enhanced by translocating commensals and contributes to tumor eradication (98, 99). 

This is in line with the anti-tumor role of polyfunctional Th17 cells in human ovarian cancer 

(11, 92). Similarly, commensal bacteria can alter the therapeutic effect of anti-PD-L1 
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therapy in mice bearing subcutaneous tumors, and the response to PD-L1 blockade is 

enhanced by supplementation with “good” bacteria, Bifidobacterium, during treatment 

(100). Interestingly, the antitumor effects of anti-CTLA-4 also depend on distinct 

Bacteroides species. In mice and patients, T cell responses specific for B. thetaiotaomicron 
or B. fragilis are associated with efficacy of CTLA-4 blockade (101). It appears that immune 

responses modulated by the gut microbiome can have systemic effects on tumor immunity 

and cancer therapy. It remains to be defined if the gut microbiome of cancer patients will 

have an important impact on PD pathway blockade including cancer neoantigen specific T 

cell responses and effector T cell tumor infiltration. Nonetheless, these studies raise the 

possibility that beneficial microorganisms may be an adjuvant for cancer immunotherapy. 

Thus, it will be scientifically and clinically interesting to profile patient gut microbiota and 

dissect the relationship with immune responses and clinical outcomes in the course of cancer 

immunotherapy.

We have discussed several biomarkers in shaping and predicting the clinical response to PD 

pathway blockade (Figure 2). Are there definite translational biomarkers for PD pathway 

blockade? Based on the immune profile, cancers may be classified into “inflamed” and 

“non-inflamed” types. The former is enriched with a Th1-type immune signature including 

Th1-type chemokines and effector T cells (presumably containing mutated antigen specific 

T cells) (94) and likely expresses a high amount of PD-L1. The latter is poorly immune 

infiltrated and likely expresses a limited amount of PD-L1. Recent clinical studies, largely 

from patients with melanoma, suggest that the “inflamed”, but not the “non-inflamed” tumor 

type, is highly responsive to PD pathway blockade (Figure 2). However, lymphocyte-rich 

regions may not be always associated with PD-L1 expression (41, 78, 102). Biologically, the 

“non-inflamed” tumor type may be closely associated with an epithelial-mesenchymal-

transition (EMT) and stem-like type subgroup. In line with this possibility, the Th1-type 

immune profile is controlled by stem-like associated oncogenic and epigenetic pathways 

including β-catenin and PRC2 complex (93-95). Thus, immune “inflamed” cancers may be a 

“non-EMT/stem like type” and are more likely responders to PD blockade therapy. 

Analogously, the non-responders (or minimal responders) may be lacking T cell infiltration 

and Th1-type chemokines, less specific mutations and neoantigens, and enriched with 

multiple layers of immune suppressive mechanisms and potential EMT/stem-like types 

(Figure 2). An urgent next step is to define and develop combinatorial therapy to improve 

and enhance the clinical response in patients with different types of cancer.

Combinatorial regimens with PD pathway blockade

Because of the complexity of immune regulatory mechanisms and the heterogeneity of 

tumor and host, it is envisioned that combination immunotherapies will be required to 

efficiently treat a larger proportion of cancer patients (1). Continuing advances in our 

understanding of immune regulation and tumor immunity will allow for the development of 

new combination(s) for the treatment of different types of cancer. Based on particular 

limitations of single agent therapy and combinatorial scientific rationales, we have discussed 

a few examples of therapeutic combinations (Figure 4).
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Enforcing effector T cell trafficking with epigenetic reprogramming drugs

Th1-type chemokines and effector T cell tumor infiltration are associated with therapeutic 

responses to PD pathway blockade (Figure 2). Histone modification and DNA methylation 

epigenetically repress tumor Th1-type chemokines and subsequently determine effector T 

cell trafficking into the tumor microenvironment (94, 95). It may be reasonable to surmise 

that cancer epigenetic reprograming may remove Th1-type chemokine repressive marks and 

promote effector T cell trafficking into the tumor microenvironment and improve the 

therapeutic efficacy of PD pathway blockade. In support of this, treatment with cancer 

epigenetic reprograming drugs including EZH2 inhibitors, DZNep (103), a selective 

inhibitor of EZH2 methyltransferase activity, GSK126 (104), and a DNMT inhibitor, 5-

aza-2′deoxycytidine (5-AZA dC), enhance tumor Th1-chemokine production and T cell 

trafficking into tumor (94, 95) and augment therapeutic effects of PD-L1 blockade and T cell 

therapy in a preclinical model (94). Furthermore, treatment with azacitidine up-regulates 

IFN signature genes in several human cancer cell lines (105, 106). 5-AZA dC treatment 

enhances the cancer and germline antigen NY-ESO-1 expression in human ovarian cancer 

cells (107) and promotes chemokine expression and T cell tumor trafficking in a mouse 

ovarian cancer model (108). Thus, epigenetic reprogramming can unlock the repressed Th1-

type chemokines, IFN-signature genes, and tumor antigen expression, and may therefore 

condition tumor from poor T cell infiltration to rich T cell infiltration and ultimately 

potentiate PD blockade therapy (94, 95, 108).

Supplementation of effector T cells with adoptive T cell therapy (ACT)

There may be insufficient functional effector T cells in the tumor microenvironment. ACT, 

including in vitro expanded peripheral blood or tumor infiltrating T cells (TILs) and 

genetically engineered chimeric antigen receptor (CAR) T cells, is an important therapeutic 

approach. However, activated human TILs and TAA-specific T cells express PD-1(19-23, 

109). These data suggest a potential benefit for the combination of ACT and PD pathway 

blockade. In further support of the role of PD-1 blockade in ACT, melanoma TILs with zinc 

finger nuclease (ZFN)-mediated gene editing of PD-1 display increased effector function in 

vitro (110). New clinical trials will be warranted to further evaluate this strategy. 

Mechanistically, PD pathway blockade prior to ACT may prepare the specific “soil”, the less 

suppressive tumor microenvironment (1), for the transferred T cells to home and function. 

Given that transferred T cells are often activated and express PD-1 and immune activation 

can stimulate PD-L1 expression in tumor cells and APCs in the tumor microenvironment, it 

is assumed that concurrent or post PD pathway blockade to ACT may improve the 

functionality of the transferred T cells.

Promotion of T cell function via targeting TNF family and T cell metabolism

The tumor microenvironment is highly immunosuppressive in patients with advanced cancer. 

Targeting immunosuppressive mechanisms is considered an effective strategy to treat 

patients with cancer (1). On the other hand, it remains logical to directly stimulate and 

activate the immune cells in combination with PD pathway blockade (111). To this end, we 

can manipulate certain TNF family signaling ways in patients with cancer.
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(a) CD40 and CD40L—The interaction of CD40 and CD40L delivers a potent 

costimulatory signal to T cells. The humanized CD40 agonist antibody CP-870893 in 

combination with chemotherapy is currently in clinical trials to treat patients with pancreatic 

cancer (112). Two other anti-CD40 antibodies, dacetuzumab and HCD122 are currently 

being tested in hematologic malignancies (113).

(b) OX40 and OX40L—The interaction of OX40 and OX40L may potentiate T cell 

activity (114) and agonistic anti-OX40 antibodies and OX40 ligands are currently being 

studied in clinical trials (115) (NCT02219724, NCT02410512, and NCT02221960).

(c) 4-1BB (CD137)—CD137 engagement may preferentially stimulate CD8+ T cells and 

NK cells. Administration of agonistic anti-4-1BB antibody improves T cell immunity in 

various murine tumor models (116). Recent clinical trials have shown promising results in 

single agent or in combination with anti-PD therapy for the treatment of advanced solid 

tumors (NCT02179918, NCT02554812).

(d) Targeting T cell metabolism—Recent studies reveal that abnormal metabolism 

impairs effector T cell function in the tumor microenvironment (13, 117, 118). 

Reprogramming tumor metabolism would be an interesting option in combination with PD 

pathway blockade (Fig. 4).

Thus, there are scientific rationales to support the combination with all of these agonistic 

antibodies and approaches with PD pathway blockade. Clinical studies will be needed to 

conclusively demonstrate the precise indications, effectiveness and side effects of given 

combination in treating specific type of cancer.

Subversion of immunosuppressive networks in the tumor microenvironment

Immunosuppressive networks are major obstacles for spontaneous and therapy-induced anti-

tumor immunity (1). The clinical responses observed by blocking inhibitory B7 family 

members provides solid evidence to target additional immunosuppressive components in the 

tumor microenvironment.

(a) Targeting Tregs—Tregs actively inhibit T cell-mediated anti-tumor immunity in the 

human cancer microenvironment (4). Targeting Tregs is proposed as a therapeutic strategy to 

treat patients with cancer (119-121). Tregs express CTLA-4. Anti-CTLA-4 antibody may 

deplete Tregs in the tumor (122). Ipilimumab, a fully human anti-CTLA-4 mAb was 

approved by the U. S. Food and Drug Administration (FDA) in 2011 for the treatment of 

patients with advanced melanoma (123). Ipilimumab monotherapy produces clinical 

responses in 10-20% of patients and extends overall survival in metastatic melanoma, with 

20% of patients surviving 3 years or longer (123, 124). In a phase I trial of anti-PD-1 

combined with anti-CTLA-4 in patients with advanced melanoma, rapid and deep tumor 

regressions were observed in 53% of patients treated at the optimal dose level (58). Phase II 

and III clinical trials have confirmed these observations and further demonstrate the 

beneficial effects on the objective-response rate and the progression-free survival among 

patients with advanced melanoma who had not previously received treatment (63, 76) (Table 
1). Interestingly, in patients with tumors demonstrating < 5% PD-L1 expression, this 
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combination appears to be more effective than either agent alone (63). However, the 

response rate for monotherapy with CTLA-4 blockade is generally lower than PD blockade 

in patients with melanoma (Table 1) (62, 63). Durability of responses with each approach is 

a topic of current study. Nonetheless, anti-CTLA-4 treatment may deplete Tregs and 

potentially increase the ratio between effector T cells and Tregs in the tumor 

microenvironment. Thus, this combination therapy has been approved by the FDA for 

treatment of BRAF V600 wild-type unresectable or metastatic melanoma. This treatment, 

however, may carry a relatively high frequency of immune-related toxicity. Therefore, a 

sequenced model with PD pathway blockade therapy first followed by anti-CTLA-4 later 

may be considered. In addition to anti-CTLA-4, other strategies targeting Tregs (121) 

including transforming growth factor (TGF) β signaling blockade may be used in 

combination with PD blockade (125). Tregs migrate into the human cancer 

microenvironment through CCL22 and CCR4 signaling pathway (4, 119). Blocking this 

pathway may enhance the effects of PD blockade. An anti-CCR4 antibody 

(mogamulizumab) can deplete circulating Tregs in patients with T cell leukemia and 

lymphoma (126). Ongoing studies are evaluating the efficacy of anti-CCR4 in combination 

with PD pathway blockade (NCT02301130). Human tumor associated Tregs express the 

ectonucleotidases CD39 and CD73, convert ATP to adenosine, and inhibit T cell activation 

by the adenosinergic pathway (92). A CD73-specific antibody has demonstrated an additive 

activity when combined with PD-1 antibodies in murine tumor models (127). Thus, CD39, 

CD73, adenosine and adenosine A2a receptor (ADORA2A) signaling blockade may be 

combined with PD pathway therapy to treat patients with cancer.

(b) Targeting myeloid cells—Human tumor associated MDSCs and inhibitory APCs 

including macrophages actively inhibit T cell-mediated anti-tumor immunity (5-7) and 

promote cancer stemness (7, 128) in the human cancer microenvironment. Given the roles of 

indoleamine-2,3-dioxygenase (IDO) in MDSC-mediated T cell suppression (129), the use of 

IDO inhibitor(s) (INCB024360) (32) with PD blockade is a potential option for 

combinatorial therapy.

(c) Targeting additional potentially immune inhibitory immunoglobulin 
superfamily molecules—The expression of B7-H3 (B7RP-2, CD276) and B7-H4 (B7x, 

B7S1) is found in different types of human tumor tissues (6, 14, 130, 131). In human 

hepatocellular carcinoma (HCC) B7-H3 expression is linked to limited T cell proliferation 

and IFN-γ production (132). B7-H3 blockade resulted in increased CD8+ T cell influx in 

murine pancreatic cancer (133) while some studies showed that B7-H3 could promote tumor 

immunity (132). Tumor-associated macrophages express B7-H4 and are able to suppress 

tumor-specific T cells (6). Therefore, immune modulatory role of B7-H3 and B7-H4 in 

different types of tumor or host cells is under debate (134, 135). Several clinical studies, 

however, have been initiated to test the effect of anti-B7-H3 antibodies in single agent 

(NCT02628535) or in combination with anti-CTLA-4 (NCT02381314) or with anti-PD-1 

(NCT02475213) for treating solid tumors.

PD-1H (Dies1, VISTA, DD1α) is a more recently identified B7-CD28 family molecule and 

was shown to be an immune inhibitory ligand in a mouse tumor model and in a mouse 
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experimental autoimmune encephalomyelitis (EAE) model (136). However, using PD-1H 

deficient mice and agonistic antibodies, this molecule was shown also to be an immune 

inhibitory receptor on T cells (137, 138). Thus, VISTA blockade in single agent or in the 

combination of anti-PD blockade may be potential regimens to be examined in future 

clinical trials once the necessary reagents are available.

The expression of T cell immunoglobulin mucin 3 (Tim-3) (139, 140), lymphocyte 

activation gene 3 protein (LAG3) (23), and T cell immunoglobulin and ITIM domain 

(TIGIT) (141, 142) are reported in human cancer infiltrating T cells. Blockade of Tim-3 

(139, 140) and LAG3 (23, 143) and TIGIT (141, 142) with anti-PD antibody increases 

effector T cell function. Thus, the combinations of PD pathway with Tim-3, LAG3, and 

TIGIT blockade have been proposed and tested in clinical trials (NCT01968109, 

NCT02460224).

Targeting tumor specific antigen and antigen presentation

(a) Neoantigen vaccine—Traditional vaccines can activate T cells and induce immune 

responses to targets on tumor cells, but there is not substantial evidence of reproducible 

clinical responses in patients with established tumors (144). Interestingly, PD pathway 

blockade can increase the anti-tumor efficacy of conventional vaccines in animal models 

(145-147). As somatic genetic mutations could generate unique tumor specific neoantigens 

and neoantigen specific T cell responses (148), vaccination with immunogenic neoantigens 

has been examined in animal models (81, 82, 89). Mutated antigen specific T cell responses 

can be found in patients with cancer (67, 83-86). Thus, a novel vaccination platform will be 

likely incorporated with specific neoantigens and potentially in combination with PD 

pathway blockade. Ongoing research efforts are aimed at increasing the efficiency of 

producing personalized neo-epitope vaccines and also possibly identifying shared 

neoantigens for use along with immune modulating antibodies. As the tumor 

microenvironment is immunologically suppressive (1) and metabolically dysregulated (13, 

117, 118), in addition to inducing and/or expanding neoantigen specific T cells via specific 

vaccination, it is also crucial to ensure that these T cells can efficiently traffic into and 

survive in the cancer microenvironment (Figure 4).

(b) Oncolytic viral therapy—Talimogene laherparepvec (T-VEC) is a herpes simplex 

virus type 1–derived oncolytic immunotherapy designed to selectively replicate within 

tumors and produce granulocyte macrophage colony-stimulating factor (GM-CSF) (149). 

The US FDA has approved T-VEC for the local treatment of unresectable cutaneous, 

subcutaneous, and nodal lesions in patients with melanoma recurrent after initial surgery. T-

VEC may likely trigger DC differentiation and enhance antigen presentation, promote T cell 

activation and IFN-γ production, and induce PD-L1 expression. Thus, T-VEC may be a high 

priority agent for combination trials with PD blockade. A phase III study is currently 

exploring T-VEC with pembrolizumab (anti-PD-1) for unresected melanoma 

(NCT02263508).

Zou et al. Page 12

Sci Transl Med. Author manuscript; available in PMC 2016 September 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Targeting inflammatory mediators with COX-2 inhibitor

Prostaglandin E2 (PGE2) and its key synthesizing enzyme cyclooxygenase 2 (COX2) can 

directly mediate pro-tumor activities and recruit and induce MDSCs in the tumor 

microenvironment (150). However, PD pathway blockade may increase the expression of 

PGE2 and pro-tumor inflammatory cytokines, which potentially offsets the therapeutic 

effects of this blockade (151). Several pre-clinical models demonstrate that inhibition of 

COX-2 synergizes with PD pathway blockade in eradicating tumors (151, 152), suggesting 

that COX inhibitors could be useful adjuvants for immune-based therapies including PD 

blockade in cancer patients.

Targeting innate immune signaling pathway

The innate immune system and its major signaling type I and II IFN contribute to the 

antitumor immune response (3, 153). Human tumor associated plasmacytoid DCs induce 

IL-10+ regulatory T cells (154, 155). However, after activation, these human tumor 

associated plasmacytoid DCs are capable of producing large amount of type-I IFN (154, 

155). In tumor bearing mouse models, type I and II IFN signaling pathway is essential for 

therapeutic responses to chemotherapy (156, 157), radiation therapy (158, 159), and anti-

HER2/neu therapy (160). In line with mouse studies, in women with metastatic breast 

cancer, response to anti-HER2/Neu therapy correlates with natural killer (NK) cell 

associated antibody-dependent cell-mediated cytotoxicity (ADCC) (161). Furthermore, PD-

L1 expression can be potently stimulated through IFN signaling pathway. Thus, targeting 

innate immune signaling pathway in combination with PD pathway blockade is scientifically 

rationalized.

Targeting cancer cells

(a) Localized radiation—Radiation therapy is a well-recognized means to achieve local 

tumor destruction. It has been reported to trigger innate immune signaling pathways, impair 

regulatory T cells, activate CD8+ T cells, stimulate chemokine expression, and promote 

immune infiltration into tumors (158, 159, 162-164). However, radiation-induced 

inflammation (including IFN signaling) can enhance tumor PD-L1 expression (159, 163) 

which may reduce radiation-induced protective tumor immunity. Interestingly, increased PD-

L1 expression may provide a window of opportunity for PD pathway blockade. In line with 

this notion, radiation therapy combined with anti-PD therapy can synergistically promote 

anti-tumor immunity in several tumor bearing mouse models (159, 163, 165, 166). Although 

there is a solid scientific rationale to support the combination of radiation and PD pathway 

blockade, radiation parameters including dose, site, and time may be critical to the success 

of such a combination and need to be further explored. Given the challenges in 

recapitulating human radiation fractionation regimens in animal models, clinical trials will 

be essential to carefully sort out the feasibility of this approach. Such clinical trials will also 

provide an opportunity to examine if radiation induces immunogenic mutation-associated 

neoantigens and whether the induced mutations are associated with treatment response.

(b) Chemotherapy—Mouse studies suggest that therapeutic responses to some 

chemotherapy agents including anthracyclines and oxaliplatin, may partially depend on 
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immune responses, particularly type-I IFN signaling mediated immunity (156, 167). 

Interestingly, PD-L1 can be induced by the IFN signaling pathway. Oxaliplatin treatment 

promotes PD-L1+ plasmocyte tumor infiltration in a mouse prostate cancer model (168). 

These preclinical studies suggest that PD pathway blockade may enhance the efficacy of 

chemotherapy. As chemotherapy induces genetic mutations, it is also reasonable to 

hypothesize that such combinations may induce mutation specific neoantigen-specific T cell 

responses and affect clinical outcomes. Nonetheless, chemotherapy also modulates the 

immune system and PD pathway blockade depends on ongoing immune responses, 

especially those in the tumor microenvironment (15). Future clinical studies will determine 

which therapeutic modality including agents, doses, and timing will increase clinical 

responses in combination with PD pathway blockade.

(c) Targeting oncogenic signals—Anti-HER2/neu antibody therapy and multiple 

receptor tyrosine kinases (RTK) inhibitors (sunitinib, imatinib) interrupt oncogenic signals 

and mediate tumor regression. Recent studies indicate that anti-HER2/neu therapy (160) and 

RTK inhibitors (169) can promote T cell activation and trafficking. PD pathway blockade in 

combination with anti-HER2/neu antibody or RTK inhibitors may be considered in the 

treatment of certain cancers. Careful attention will need to be paid to proper dose and 

scheduling of targeted therapies with immunotherapies to avoid potential suppression of T 

cell or APC activity given the physiologic role for some of the targeted pathways.

Other potential combinations

In addition to T cell and APC subsets and tumor cells, vascular endothelial cells, stromal 

fibroblasts, cancer stem cells, and microbiota may be targeted in combination with PD 

pathway blockade. Vascular endothelial growth factor A (VEGF-A) and CXCL12 (154, 170, 

171) are highly expressed in the tumor microenvironment and mediate tumor angiogenesis. 

Targeting tumor stromal fibroblasts (172), CXCL12 and CXCR4 blockade (172), and VEGF 

targeted therapy (173) have been tested as combinatorial partners for immunotherapy in the 

literature. As human cancer microenvironmental immune cells including macrophages 

(128), MDSCs (7), Th22 cells (12) and inflammatory Tregs (174) and their associated 

cytokines IL-6 (128, 175, 176), IL-8 (177) and IL-22 (12) can promote and maintain the 

cancer stem cell pool, targeting cancer stem cell pathway with PD blockade may be an 

important option. The gut microbiota influence the host responsiveness to immunotherapy 

(100, 101). Beneficial bacteria inoculation or detrimental bacteria inhibition may be 

combined with PD pathway blockade in specific type of cancer. Additional potential 

combinatory strategies have been discussed in the literature (111).

Concluding remarks

PD pathway blockade has elicited durable clinical responses in patients with a broad 

spectrum of cancers with a reasonable toxicity profile (Table 1). This therapy largely relies 

on efficient T cell infiltration into tumor and effector T cell function in the tumor 

microenvironment. The human cancer immune microenvironment thus holds the key to 

understanding the nature of immunity in response to tumor progression and tumor 

immunotherapy (1, 15, 33). PD blockade may potentially induce and/or expand T cells 
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specific to mutated neoantigen in patients with cancer. Accumulating evidence points 

towards mechanism-based combination of various treatment regimens with PD pathway 

blockade to establish new standard of care for patients with cancer. Dynamic immunologic 

studies along with genetics and epigenetics in the human cancer microenvironment will 

guide the development of different combination therapies and generate novel insight into 

how the human immune system responds to and is shaped by a variety of tumor types.
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Figure 1. 
Mechanisms of action of the PD-L1 and PD-1 pathway. Tumor cells, APCs, and other cells 

express high levels of PD-L1. Engagement of PD-L1+ cells with T cells may induce T-cell 

apoptosis, anergy, functional exhaustion, or IL-10 production.
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Figure 2. 
Proposed potential response biomarkers of PD pathway blockade. Several biomarkers 

including high levels of PD-L1 expression, Th1-type chemokines, infiltrating T cells, 

mutations, low levels of immune suppressive elements, and EMT/stem-like features may be 

associated with an active response to PD pathway blockade.
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Figure 3. 
Mechanisms of poor tumor T cell infiltration. Active tumor β-catenin inhibits CCL4 

expression and limits CD103+ DC recruitment and CD8+ T cell activation. Th1-type 

chemokines CXCL9 and CXCL10 are repressed by EZH2 and DNMT-mediated epigenetic 

silencing. Consequently CD8+ T cells poorly infiltrate tumor.
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Figure 4. 
Scientific rationales of potential therapeutic combinations with PD pathway blockade. 

Multiple layers of immunosuppressive mechanisms, weak T cell activation, tumor intrinsic 

biological pathways contribute to cancer progression and therapy resistance. The different 

combinations with PD pathway blockade may yield a synergistic or additive clinical 

response.
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Table 1

Examples of clinical trials with PD-1 and PD-L1 blockade

Target and drug information Clinical response rate in different 
cancer types

Phase Cases References

Target: PD-1
Name: Nivolumab,Opdivo, BMS-936558, MDX-1106, 
ONO-4538
Isotype: Humanized IgG4a
Source: Bristol-Myers Squibb, Ono Pharmaceuticals

12.8% in treatment-refractory metastatic 
melanoma, castrate-resistant prostate 
cancer, RCC, NSCLC, or CRC

I 39 (50)

28% in advanced melanoma, 18% in 
NSCLC, 27% in RCC I 296 (51)

40% in melanoma treated with 
nivolumab + ipilimumab, 20% in 
nivolumab followed by ipilimumab

I 86 (58)

87% in relapsed or refractory Hodgkin's 
lymphoma I 23 (56)

14.5% in refractory NSCLC II 117 (70)

31.7% in advanced melanoma progressed 
after anti-CTLA-4 III 405 (65)

40% in previously untreated melanoma 
without BRAF mutation III 418 (64)

17% in previously treated advanced 
NSCLC II 129 (69)

29% in previously treated advanced RCC I 34 (71)

20% in advanced squamous-cell NSCLC III 272 (68)

57.6% (nivolumab + ipilimumab) vs 19% 
(ipilimumab) vs 43.7% (nivolumab) in 
untreated stage III or IV melanoma

III 945 (63)

Target: PD-1
Name: Pembrolizumab, Keytruda, MK-3475, lambrolizumab
Isotype: Humanized IgG4 kappa
Source: Merck

38% in melanoma I 135 (57)

26% in Ipilimumab-refractory advanced 
melanoma I 173 (61)

63% versus 0% in stage IV NSCLC 
patients with high and low 
nonsynonymous mutation burden

I 29 (67)

19.4% in advanced NSCLC I 495 (66)

40% and 0% in mismatch repair-
deficient/proficient CRC II 41 (53)

33% (pembrolizumab) and 11.9% 
(ipilimumab) in advanced melanoma III 834 (62)

Target: PD-1
Name: Pidilizumab or CT-011
Isotype: Humanized IgG1
Source: CureTech Ltd

51% in diffuse large B-cell Lymphoma 
(after HSCT) II 66 (54)

66% in relapsed follicular lymphoma II 32 (55)

Target: PD-L1
Name: MPDL3280A, RG7446
Isotype: Fc-modified human IgG1b
Source: Genentech/Roche

21% overall response rate in advanced 
incurable cancer NSCLC,SCLC, 
melanoma, RCC, CRC, gastric cancer, 
head and neck squamous cell carcinoma, 
breast cancer, ovarian, pancreatic cancer, 
uterine cancer, sarcoma, 
pancreatoduodenal cancer

I 277 (49)

52% in metastatic bladder cancer I 68 (47)

Target: PD-L1
Name: BMS-936559, MDX-1105
Isotype: Fully human IgG4a
Source: Bristol-Myers Squibb

17.3% in melanoma; 11.7% in RCC; 
10.2% in NSCLC; 5.9% in ovarian 
cancer

I 207 (48)
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Note: Clinical trials with less than 20 cases or published after October 1, 2015 were not included in the table. Abbreviations: RCC, renal cell 
carcinoma; NSCLC, non-small-cell lung cancer; CRC, colorectal cancer, HSC, Hematopoietic Stem-Cell Transplantation
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