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Background—Hyper- and hypokalemia are clinically silent, common in patients with renal or cardiac disease, and are life
threatening. A noninvasive, unobtrusive, blood-free method for tracking potassium would be an important clinical advance.

Methods and Results—Two groups of hemodialysis patients (development group, n=26; validation group, n=19) underwent high-
resolution digital ECG recordings and had 2 to 3 blood tests during dialysis. Using advanced signal processing, we developed a
personalized regression model for each patient to noninvasively calculate potassium values during the second and third dialysis sessions
using only the processed single-channel ECG. In addition, by analyzing the entire development group’s first-visit data, we created a global
model for all patients that was validated against subsequent sessions in the development group and in a separate validation group. This
global model sought to predict potassium, based on the T wave characteristics, with no blood tests required. For the personalized model,
we successfully calculated potassium values with an absolute error of 0.36+0.34 mmol/L (or 10% of the measured blood potassium).
For the global model, potassium prediction was also accurate, with an absolute error of 0.444-0.47 mmol/L for the training group (or
11% of the measured blood potassium) and 0.5+0.42 for the validation set (or 12% of the measured blood potassium).

Conclusions—The signal-processed ECG derived from a single lead can be used to calculate potassium values with clinically
meaningful resolution using a strategy that requires no blood tests. This enables a cost-effective, noninvasive, unobtrusive strategy
for potassium assessment that can be used during remote monitoring. (/ Am Heart Assoc. 2016;5:e002746 doi: 10.1161/

JAHA.115.002746)
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lood potassium levels are tightly regulated homeostati-

cally and are critical for normal physiological cellular
function. " Fluctuations in potassium values are found in many
disease states and can expose patients to life-threatening
arrhythmias.®® Compelling evidence shows that in patients
with renal or cardiac disease, even modest potassium changes
may lead to morbidity, hospitalization, and death.® Moreover,
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evidence-based therapies used to treat these conditions,
including adrenergic blockade, potassium-sparing diuretics,
and renin—angiotensin antagonism, result in hyper- or hypoka-
lemia. After the potassium-sparing diuretic spironolactone was
shown to lower heart failure mortality in a randomized
prospective trial, hospitalization for hyperkalemia tripled and
mortality doubled.” As the prevalence of these diseases and
their risk factors (hypertension and diabetes) rise, and as the
population continues to age, increasing numbers of patients will
be at risk of hyper- and hypokalemia.®”’

Potassium levels outside the normal range are concerning
because they are usually clinically silent and occur without
warning to the patient or provider in the absence of blood
tests.'® In addition, a standard 12-lead ECG is diagnostic only
after the onset of severe hyper- or hypokalemia. There is a
critically unmet need for a noninvasive method of measuring
potassium prior to clinically significant changes that may lead
to arrhythmogenic death so as to initiate timely lifesaving
treatment.’ " Noninvasive remote potassium monitoring would
permit the administration of evidence-based life-saving mea-
sures and medications, including recently developed safe and
effective potassium-lowering medications.'* '
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Recently, in a small cohort of dialysis patients, we demon-
strated that the signal-processed 12-lead ECG can detect subtle
T wave changes that, in turn, can be used to calculate blood
potassium concentrations reliably.'® To facilitate clinical appli-
cability, a less cumbersome, noninvasive approach is required.
To that end, the goal of this study was to refine our processing
methodology to reduce detection requirements to a single
channel (to enable mobility and home use) and to demonstrate a
correlation between the processed ECG and potassium as well
as use the ECG to prospectively calculate potassium values
reliably. Potassium value extraction using a single lead would
permit use in wearable, wireless ECG patches and possibly in
implantable loop recorders and cardiac implantable electronic
devices (pacemakers and defibrillators). To test the hypothesis
that the properly processed ECG could be used to calculate
serum potassium from a single lead and to do this reliably both
with and without an initial “seeding” blood test to train the
algorithm, we performed a prospective trial in a cohort of
dialysis patients.

Methods

Inpatients and outpatients aged >18 years undergoing clini-
cally indicated hemodialysis at the Mayo Clinic in Rochester,

Minnesota, were prospectively enrolled under institutional
review board—approved protocols after providing written
informed consent. In all patients, 12-lead ECG data were
acquired using electrodes in standard clinical positions,
recorded with a Siesta 802 system (Compumedics) starting
immediately before the onset of dialysis and continuing until
its termination. Signal acquisition was performed at a rate of
1024 samples per second. Data were analyzed using the
Matlab environment (MathWorks).

Patient Groups

The algorithm development group (group 1) consisted of 26
patients who underwent 3 dialysis sessions as part of the
study (Figure 1). At each dialysis session, blood was drawn for
analysis at 3 time points: before dialysis; at the midpoint of
dialysis, after temporarily clamping the heparin line (if in use),
stopping dialysate flow, and decreasing the blood flow rate to
100 mL/min for at least 15 seconds; and after dialysis, after
stopping dialysate flow and decreasing the blood flow rate to
100 mL/min for at least 15 seconds. This group was used to
develop the algorithm tested in this report. Although the
algorithm applied concepts developed in our previous work, '®
the filtering and processing were novel to better account for
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Figure 1. Patient flow. This diagram depicts patient enrollment and analysis. The development group
consisted of 26 patients who underwent 3 dialysis sessions, the first of which was the training session used
to create a personalized template. The personalized template was tested on days 3 and 5. During each
dialysis session, blood was drawn before, during, and after dialysis. Another 8 patients composed validation
group 2A, which underwent 3 dialysis sessions with 2 blood tests. Last, validation group 2B was composed
of 11 patients who had undergone previous study but whose data were not used for creation of the

algorithm. Further details are described in the text.
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ambient electrical noise and intermittent poor signal quality
and to permit single-lead recording, as detailed below.

The validation group was composed of 2 subgroups
(groups 2A and 2B). Group 2A consisted of 8 patients, each
of whom underwent 3 recorded dialysis sessions with 2 blood
tests, 1 before and 1 immediately following dialysis. Group 2B
consisted of 11 patients who had been previously studied so
that full dialysis and digitized ECG data were available.'® None
of the data from the patients in group 2 were used to create
the potassium prediction algorithms described in this paper.

Analysis

Results are presented as mean+SD unless otherwise noted.
To compare performance of different prediction models,
absolute errors were calculated between observed and
predicted measurements and summarized.

Analysis Strategies

Personalized analysis

For each patient in group 1, a single dialysis session was used
to identify each patient’s potassium “dose-response curve”
that defined the relationship between the processed ECG
parameter and the measured potassium value for each
patient. Of the 3 dialysis sessions, the first was used to seed
the algorithm by defining the processed ECG parameter—
potassium relationship. The ECG data from the second and
third dialysis sessions were then used to calculate potassium
values, and the blood tests were used to calculate the error in
the calculated potassium. Although group 1 was defined as
the algorithm development group, for the purposes of the
personalized analysis, the first session was used for person-
alization, and the next 2 sessions were used to test the
results of the personalized strategy.

Global analysis

The global analysis strategy assumed that the relationship
between the signal-processed ECG and blood potassium was
universal or at least stable for humans (species specific), as
opposed to specific for each person, and thus that potassium
determination could be performed without seeding the
algorithm using blood tests from each patient (a completely
blood-free “bloodless blood test”). To perform the global
analysis, we combined all data from the first dialysis session
of all patients in group 1 into a composite group. This was
used to create a global model of the relationship between the
signal-processed ECG and serum potassium. This global
model was tested in 2 ways. First, we assessed the ability
of this model to calculate the potassium during the second
and third sessions for the patients in group 1. In other words,

we tested the model’s ability to calculate potassium in
subsequent dialysis sessions using the same cohort that
developed the model. Next, we tested the global model by
applying it to the patients in group 2 (validation group), none
of whom contributed data to model creation.

ECG Signal Processing and Analysis

Electrode selection and segmentation

ECG data from all patients were processed using a multistage
signal-averaging algorithm. In this work, we sought to analyze
electrodes in similar precordial positions between sessions to
mimic anticipated deployment using prolonged monitoring via
a single channel patch or a subcutaneous device. To
accomplish this, for each session, only data from the single
lateral precordial lead (ie, 1 of V3 through Vi) with the
greatest amplitude T wave was used to calculate potassium.
Signal amplitude between sessions was normalized to the
square root of the T wave amplitude. We used this as our first-
generation approach to minimize electrode-placement wan-
dering; more advanced strategies are under development. In
addition, in this early demonstration project, we included only
patients with a positive uniphasic T wave in the lead under
analysis. The ECG data were divided into 72-second segments
to allow overlap of 1-minute intervals. The processing
algorithms were then applied to each segment. This resulted
in every 1-minute segment having a processed, filtered,
averaged representative ECG complex. This processed ECG
complex was used for morphological feature extraction.

Signal processing and averaging and “big data”
Strategy

In each 72-second, high-resolution, single-lead ECG segment,
between 50 and 200 beats (depending on ectopy/filtering)
were typically averaged and processed to a single represen-
tative complex. This resulted in a large ratio between the input
and the output of the data-processing algorithm, creating
significant data redundancy. The robust data redundancy
permitted ECG signal cleaning using a novel strategy, an
artifact detector, that rejected suboptimal data to permit high-
fidelity analysis from a single electrode, as opposed to
filtering the data and introducing possible distortions. The
artifact detector identified changes in the baseline using linear
and nonlinear filtering of the ECG at low frequencies. It
automatically scored the signal and applied an adaptive
threshold chosen using the entire segment’s mean and
median scores. Any section of signal that exceeded the
threshold was defined as contaminated with artifact and
discarded (Figure 2). The second step of the algorithm
involved detection of QRS complexes'”'® and a correlation
filter that eliminated ectopic and aberrant complexes. In the
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Figure 2. Artifact rejection algorithm. In this time-compressed ECG tracing, the voltage amplitude is shown
on the y-axis, and time is shown on the x-axis. The green line indicates the decision to accept or reject the
signal as clean or noisy; when the line is positive, the signal is accepted, and when it becomes zero, the signal
is rejected for noise. In the center section, the green line becomes zero, and the signal is rejected. The 2 blow-
up boxes demonstrate a magnified sample of ECG from a segment in which the signal was accepted by the
algorithm (left box) and a segment during which it was rejected by the algorithm (right inset box). The purple
line depicts the algorithmically calculated real-time score assessing signal quality (larger value indicates more
noise, poorer signal). When the purple signal-quality line exceeds the horizontal black line (a threshold line),
the signal is excessively noisy and is rejected (as indicated by the green line becoming zero). Due to data
redundancy, noisy data are rejected and sufficiently clean signals are retained to permit analysis.

third step of the algorithm, all complexes were aligned using a
fiducial point in the QRS, and complexes that varied from the
median pattern were removed. In the final step, complexes
were signal averaged to remove noise and to smooth the
waveform morphology.

ECG feature extraction

The averaged processed ECG complex was used for feature
extraction for analysis. T wave peak and end points were
selected in an automated manner, as described previously.'®
The algorithm then automatically selected a representative
section of the descending T wave to estimate its slope (T-right
slope) using the mean derivative approach.'® ' T wave
amplitude (T-amp) was measured as the difference in
millivolts between the T wave peak and end. After deriving
these values of the T-right slope and T-amp, a Kalman filter®?
was used to reduce noise, taking advantage of the fact that
the rate of serum potassium change over 72 seconds is
limited and that abrupt segmental changes represent a
segmental anomaly as opposed to a true potassium change.

Potassium and feature tracking during dialysis

To validate the correlation between the features selected and
potassium values, we built a tool for temporal progression
analysis. This tool permitted “fast-forward” ECG analysis using

the methods described. The tool demonstrates the progress of
the automated ECG analysis on the dialysis timeline and
representative corresponding potassium blood tests in a time-
lapsed manner. An example of tool usage to analyze feature
extraction during dialysis run is shown in Video S1 and Figure 3.

Creation of Prediction Models

With the personalized strategy, potassium values from the
T—right slope
VT-amp
linear least squares estimator for each patient. The second
and third ECG recordings were extracted, processed, and

plugged into the estimator for prediction purposes.

In the global prediction approach, we combined the first-
visit data of all group 1 patients to create a “global estimator.”
To combine the ECGs from all patients, we normalized the
T-right slope with the square root of the T-amp.

first dialysis session and were used to build a

Results

We recorded ECG data during 129 dialysis sessions in 51
patients, with a mean of 2.5 sessions per patient. Patients
had a mean age of 58416 years, and 66% were men. The
mean left ventricular ejection fraction was 5947, and 9% of
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Figure 3. Temporal change of potassium using the temporal progression tool. This image is a still frame
taken from Video S1. The left panel shows a representative ECG complex that has been processed, filtered,
and displayed. The dashed ECG complex is an initial processed ECG acquired before dialysis commenced.
The overlapping blue ECG tracing demonstrates the processed ECG acquired at the end of dialysis, at which
point potassium had dropped from 5.0 to 3.4 mmol/L. The peak and the end of the T wave are continuously
calculated by the algorithm and updated during the course of dialysis by the temporal progression tool, as
shown in Video S1. The peak (tPeak) and the end (tOff) of the T wave are labeled. The brown straight line
between tPeak and tOff shows the automatically calculated slope for that time interval, the T-right slope.
The 4 inset boxes to the right depict additional processing and data. The potassium value indicates the 3
blood potassium test results for this patient during the dialysis run demonstrated. The straight line between
these points is assumed and does not reflect any actual data. The top-right box demonstrates the feature
used to calculate potassium in blue. The brown line in the center depicts the application of the Kalman filter
used to remove transient, artifactual deviations to calculate the final potassium value. The bottom-left box
demonstrates the nonnormalized T-right slope over time, and the bottom-right box demonstrates the heart

rate plot during the dialysis run.

analyzed patients had a history of myocardial infraction. In
those patients excluded from the analysis due to unusable
ECG, left ventricular ejection fraction was 46+16%, and 67%
of patients had a history of myocardial infarction. Biphasic or
inverted T waves precluded analysis of any data in 6 patients
(11% of the study population) and precluded analysis of a
single visit from 1 patient.

Personalized Analysis

The personalized estimator was tested on 26 patients who
had all 3 visits with 3 blood tests during each visit, except
for 3 patients in whom 1 blood test or an ECG at the time
of phlebotomy was not available. The measured blood
potassium value was 3.940.8 mmol/L. The mean absolute
error across 2 subsequent visits (6 blood tests per
patient) was 0.36+0.34 mmol/L. The median absolute
error was 0.26 mmol/L, and the averaged percentage
error was 10% of the serum potassium blood test result
(Figures 4 and 5).

Global Analysis (No Seeding Blood Test)

The global estimator was tested in 2 populations. The first
population tested was group 1 (the development group), in
which the global estimator was used to calculate the
potassium in the second and third dialysis sessions. The
absolute error value in 2 different visits (6 blood tests total)
was 0.44+0.47 mmol/L, the median absolute error was
0.33 mmol/L, and the averaged percentage error was 11% of
the serum potassium blood test result. Using the square root
of the T wave to normalize the T-right slope improved the
results of the global analysis.

When the global analysis was applied in group 2 (validation
population, none of the data of which contributed to model
creation), the measured blood potassium value was
4.240.95 mmol/L. The absolute error value in 6 blood tests
for group 2A and 3 blood tests for group 2B was
0.540.42 mmol/L; median error was 0. 41 mmol/L, and
averaged percentage error was 12% of the serum potassium
blood test result.
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The temporal progression tool confirmed the utility of using
the T-right slope as a parametric feature to calculate
potassium. In addition, it confirmed that the temporal change
in calculated potassium paralleled changes in the blood tests
and suggested a more accurate means of assessing potas-
sium values during dialysis (Figure 6 and Video S1).
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Discussion

In patients with cardiovascular and/or renal disease,
hyperkalemia is frequent, life-threatening, and usually
asymptomatic.>®> The emergence of safe and effective
medications that lower potassium underscores the impor-
tance of detection of hyperkalemia.''>'*%* The ability to
remotely, unobtrusively, frequently, and noninvasively assess
potassium through a single-channel signal-processed ECG
would permit currently available wireless ECG patches,
implanted monitors, and cardiac devices to infer measure-
ments of potassium; would address a critical need; and would
affect a large population. In this study of patients undergoing
hemodialysis, the signal-processed ECG was able to calculate
potassium values with a mean error of 0.36+0.34 mmol/L
using a personalized strategy that required a seeding blood
test, providing a clinically meaningful value via individualized
medicine. Importantly, even without personalization and in the
absence of any blood draws, clinically useful estimates of
potassium were obtained, providing potassium values with a
mean error of 0.54£0.42 mmol/L, and could be useful for
alerts and trending. These findings, using a single lead of high-
resolution ECG data, suggest that this approach may be
suitable for remotely monitoring potassium in dialysis
patients. This population is at high risk for hyperkalemia
and sudden death, often in the 12 hours before a dialysis
session, suggesting a hyperkalemic mechanism.’

Several algorithmic strategies were applied to achieve a
high level of precision. One was application of an artifact
detector concept, in which the availability of redundant data
permitted use of an automated artifact detector that
discarded poor-quality data rather than attempt to filter or
clean it. This fundamental strategy may be applicable to the
analysis of a large number of physiological signals for which
mild or moderate latency is tolerable. Given that potassium
values are not available clinically in the absence of blood
tests, even once- or twice-daily assessments would represent
a significant advance, particularly in high-risk patients recently
discharged from the hospital. Delays of minutes or hours in

Figure 4. Algorithmically calculated and laboratory potas-
sium values. A, The algorithmically estimated potassium value
using the personalized prediction system is on the ordinate,
and the laboratory-derived value is on the abscissa. Panels (B)
and (C) reflect the same, using the global methodology. B, The
first dialysis run was used to create global parameters, and
those parameters were then tested in the same patients in
dialysis runs 2 and 3. C, A separate validation set of patients
was used to test the parameters developed using patient
group 1. The yellow line represents a perfect match between
calculated and laboratory potassium values, and the red
boundaries represent the area for which each predicted value
is within the 0.5 mmol/L absolute error range.
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determination of a potassium value are generally acceptable
clinically. Broadly, a major challenge in remote patient
monitoring is the issue of artifact and noise, commonly
present when nonobtrusive, well-tolerated sensors are used
to acquire often-noisy signals in ambulatory patients. Lever-
aging data redundancy may be applicable in a large array of
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physiological signal and monitoring applications. A second
strategy was the use of the Kalman filter, historically used to
distinguish returning radar signals caused by flocks of birds
from those of tracked airplanes by recognizing constraints in
the abruptness of change of trajectory and velocity of which
an airplane is capable. In a similar manner, we recognized that
a marked change in potassium over a time frame of a few
minutes, particularly if not a consistent change, represents
measurement error, permitting correction and increased
accuracy.

In this study, we used advanced algorithms to further
validate the use of easily obtained ECG repolarization to
predict potassium in both personalized and global prediction
models in hemodialysis patients. We focused on single-lead
recordings to allow practical implementation and used 2 T
wave features that we found best correlated with potassium in
our prior work.'® These were used to develop both the
personalized and global predictor models. The use of the
descending T wave in lateral precordial leads mechanistically
corroborated the relationship between potassium and repo-
larization. Extracellular potassium differentially affects the
action potential repolarization in midmyocardial compared
with endocardial and epicardial myocytes, reflected predom-
inantly on the surface ECG as the T-right slope.?* Changes in
extracellular potassium concentrations affect the transmem-
brane voltage gradient of each myocyte, in aggregate
summarized as the surface T wave. The function of potassium
channels is essential to life, and their genetic sequence is
highly conserved on an evolutionary scale, with similar
sequences in a variety of species including bacteria and
humans.?® Consequently, transmembrane channels are ideal
microsensors of potassium levels, and global analysis is
feasible, supporting the concept that we are detecting the
sum of potassium changes at the cellular level and accounting
for our unique fidelity in detecting subtle changes.

We previously described the correlation between the T-
right slope and T-amp and potassium, and in this work, we
used the correlation in a personalized and global predictive
manner. Corsi et al?® found a similar relationship between the

Figure 5. Cumulative mean absolute error in calculated potas-
sium. In all panels, the abscissa shows the mean absolute error in
calculated potassium, and the ordinate indicates the percentage of
patients with that error. Panel (A) demonstrates the error when
using the personalized predictor model. In panel (B), we see the
same presentation of the data but using the global predictor
applied to group 1 patients. In other words, the group of patients
used to create the global model then had that model tested in
subsequent dialysis sessions. In panel (C), the global predictor was
applied to an independent cohort of patients (group 2A and 2B) to
assess the parameters developed for one set of patients with
regard to the other. As can be seen, when using the personalized
predictor (A), 92% of patients had a mean absolute error
<0.6 mmol/L. Abs indicates absolute.
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Figure 6. Comparison of trends in potassium during dialysis using
processed ECG and blood potassium. The left and right panels each
show a dialysis run in 2 separate patients. Blue points indicate the
potassium blood test results, and the brown line indicates the
calculated real-time potassium level. Note that the blue lines
interpolated between the blood test results are not based on actual
data. Also note the strong similarity in trends and potassium
changes between the ECG-derived and blood potassium values. This
suggests that trending could be used to identify rising or falling
potassium values, even in the absence of an absolute numerical
value for potassium.

T wave and potassium levels, corroborating our findings;
however, they created multidimensional Eigen leads using
principal component analysis, which required a 12-lead ECG.
Although such a strategy further supports the concept, it is
impractical for home use by ambulatory patients. We
specifically developed tools to permit adaptation to ambula-
tory patients. In addition, we used a different normalization
method, by using the square root of T-amp instead of T-amp
itself, and thus preserved some of the information yielded by
T-amp while minimizing between-patient and between-visit
ECG variability. Finally, our prediction was based on only

5 minutes of ECG instead of 15, which may be more practical
for remote monitoring applications.

The temporal progression tool we developed created an
animation of the processed ECG-calculated potassium in a
time-lapsed manner, permitting assessment of potassium
change during dialysis to facilitate assessment of the impact
of algorithm changes during development (Figure 3 and Video
S1). Moreover, using the tool, it was apparent that even if
there was an error in absolute potassium value, the trend of
the calculated potassium was very similar to the blood test
potassium trend and indeed may represent a more accurate
assessment than the presumed linearity plotted between
blood draw potassium values (Figure 6). Furthermore, such
information may prove helpful for determining whether an
additional dialysis session may be helpful, for identifying
interventions needed to lower (or raise) potassium, and for
guiding the duration and intensity of dialysis itself.

Our work is best understood in the context of its
limitations. In this initial implementation of the algorithm,
patients with biphasic, bimodal, or inverted T waves were
excluded, resulting in the exclusion of 6 patients (11.7% of
enrolled participants) from analysis, 66% of whom had a
history of myocardial infarction. In an additional patient, a
single dialysis session was excluded because of the presence
of T wave abnormalities at that visit alone; however, it is quite
likely that with additional analysis and development, a larger
set of ECG variants will become amenable to this form of
signal processing. Patients with active ischemia and acute
infarction likely will not be good candidates for this method-
ology; however, they are not typically treated via remote
monitoring, and access to blood tests is not generally a
challenge. The addition of currently available algorithms to
detect cardiac rhythm disorders and ischemia would add
useful functionality to the potassium assessment tool by
providing relevant clinical information and could modify or
withhold analysis when other important medical conditions
arise. Longer term following infarction, stabilization of T waves
will likely permit analysis, as we noted in the 9% of patients in
our analyzed cohort with a history of myocardial infarction.

A number of factors other than potassium levels affect the
ECG. These include variations in lead position,?’ alteration in
body position, changes in weight and volume status,?®
alterations in heart rate and rhythm, and development of
cardiac ischemia as well as other electrolytes that change
during dialysis. Some of these factors, most notably body and
lead position variability and fluid volume changes, likely
account for some of the estimation error. Several potential
sources of error can be eliminated using ECG template
analysis and/or a sensor-based accelerometer to record body
position. Despite the multiple potential sources of error, the
mean ECG-derived potassium error in this stable dialysis
population was only 0.5+0.42 mmol/L, or 12% on average. In
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addition, our T wave analysis validation testing was performed
in a relatively small cohort, and all of our participants were
dialysis patients. Future studies will extend these novel
algorithms to nondialysis patients and validate the algorithms
in larger cohorts. Last, we focused initially on potassium
because of its clinical importance and its known relationship
with ECG. Because other analytes exert known and different
forces on ECG, it may be possible to process recordings to
determine which ECG changes are attributable to which
analyte to provide estimates of blood concentrations of
elements beyond potassium, recognizing that some overlap
will exist and that sophisticated analysis will be required.

In summary, the signal-processed ECG derived from a single
lead can be used to calculate potassium values with clinically
meaningful resolution, using both a personalized strategy in
which an algorithm is individualized based on seeding blood
tests and a global analysis strategy that requires no blood
tests at all. This opens the door to noninvasive, unobtrusive,
remote, monitored potassium assessment. By enabling both
accurate potassium value ascertainment and trend detection,
alerts can be issued and interventions initiated, with the goal
of improving clinical outcomes.
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