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Geminiviruses are ssDNA plant
viruses that cause significant agri-

cultural losses worldwide. The viruses do
not encode a polymerase protein and
must reprogram differentiated host cells
to re-enter the S-phase of the cell cycle
for the virus to gain access to the host-
replication machinery for propagation.
To date, 3 Beet curly top virus (BCTV)
encoded proteins have been shown to
restore DNA replication competency: the
replication-initiator protein (Rep), the
C2 protein, and the C4 protein. Ectopic
expression of the BCTV C4 protein leads
to a severe developmental phenotype
characterized by extensive hyperplasia.
We recently demonstrated that C4 inter-
acts with 7 of the 10 members of the Ara-
bidopsis thaliana SHAGGY-like protein
kinase gene family and characterized the
interactions of C4 and C4 mutants with
AtSKs. Herein, we propose a model of
how C4 functions.

Geminiviruses (family Geminiviridae)
are small plant DNA viruses with circular
single-stranded genomes that cause signifi-
cant losses in food, fiber, and cash crops
worldwide.1 The family consists of 7 gen-
era: Becurtovirus, Curtovirus, Eragrovirus,
Mastrevirus, Topocuvirus, and Turncurto-
virus have monopartite genomes, while
the Begomovirus can have mono- or bipar-
tite genomes.2 The absence of a polymer-
ase gene in geminiviruses requires that the
S-phase of the cell cycle be reactivated in
terminally differentiated cells following
virus infection to gain access to cellular
DNA replication machinery for virus
propagation. The replication-initiator
protein (Rep) is present in all geminivi-
ruses and is the only viral protein essential
for replication. It is required to restore

DNA replication competency to termi-
nally differentiated host cells.3,4 In addi-
tion, in the curtovirus genus, the Beet
curly top virus (BCTV) C2 protein is
involved in enhancing replication compe-
tency, although the molecular mechanism
is unclear,5 and the BCTV C4 protein has
been shown to restore DNA replication
competency.6

Most geminiviruses do not induce
cell proliferation, but some curtovirus
C4 proteins are very proficient at regu-
lating cell cycle progression and pro-
moting mitosis.6-9 The BCTV C4
protein induces vein swelling and ena-
tions in BCTV-infected hosts and
hyperplasia in transgenic Arabidopsis
plants.6-10 Curtovirus C4 genes, like all
geminivirus C4 and AC4 genes (the C4
gene in bipartite begomoviruses is des-
ignated AC4), are nested within the Rep
genes and encode small proteins of
approximately 10 kDa, depending on
the virus. The BCTV C4 protein inter-
acts with members of the Arabidopsis
SHAGGY-like protein kinase (AtSK)
family.7,11,12 AtSKs are homologues of
the glycogen synthase kinase 3 (GSK3)
family of serine/threonine kinases
(GSK3a and GSK3b) in animals.13

However, in plants the AtSK gene fam-
ily has evolved into 10 members to
address diverse plant-specific func-
tions.14,15 Seven AtSK members have
been implicated in brassinosteroid (BR)
signaling.16 The BRs are steroid hor-
mones that regulate plant growth and
development. We and others showed
that expression of C4 in transgenic Ara-
bidopsis disrupts the BR pathway, indi-
cating a direct role for C4 in regulating
BR signaling.7,11,12

Keywords: AtSK, BCTV, C4 protein, cur-
tovirus, cell cycle, geminivirus, hyperpla-
sia, replication

© C Michael Deom and Katherine Mills-Lujan
*Corrrespondence to: C Michael Deom; Email:
deom@uga.edu

Submitted: 10/02/2015

Accepted: 10/14/2015

http://dx.doi.org/10.1080/15592324.2015.1109758

This is an Open Access article distributed under the
terms of the Creative Commons Attribution-Non-
Commercial License (http://creativecommons.org/
licenses/by-nc/3.0/), which permits unrestricted
non-commercial use, distribution, and reproduction
in any medium, provided the original work is prop-
erly cited. The moral rights of the named author(s)
have been asserted.

Addendum to: Mills-Lujan K, Andrews DL, Chou
C-w, Deom CM. The roles of phosphorylation
and SHAGGY-like protein kinases in geminivirus
C4 protein induced hyperplasia. PLoS ONE 2015;
10:e0122356. Doi:10.1371/journal.pone.0122356

www.tandfonline.com e1109758-1Plant Signaling & Behavior

Plant Signaling & Behavior 10:12, e1109758; December 2015; Published with license by Taylor & Francis
ARTICLE ADDENDUM

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/


C4 protein from Beet curly top
virus interacts with multiple

AtSKs

We recently showed that C4 interacts
with 7 of the 10 AtSKs (clade 1 AtSKs-
11,-12,-13; clade 2 AtSKs-21,-22,-23;
and clade 3 AtSK32),12 the same 7 AtSKs
involved in regulating BR signaling
(Table 1). Bikinin, a selective inhibitor of
the 7 AtSKs implicated in BR signaling,
induced hyperplasia in Arabidopsis similar
to that induced by C4 (Table 1).12 An
array of functions are attributed to
AtSKs,16 especially AtSK21, which is the
most well studied AtSK. The numerous
cellular functions regulated by AtSK21
suggests that other AtSK family members
may also regulate a wide variety of over-
lapping and individual AtSK-specific
functions.15,16,17 Even within redundant
functions, the degree of substrate specific-
ity can vary between AtSKs.18 In some
instances, preferential tissue-specific AtSK
expression is observed,15 and it is likely
that expression levels of individual AtSKs
vary at different stages of development.
Therefore, C4 likely impacts a large num-
ber of diverse functions regulated by clade
1 AtSKs, clade 2 AtSKs and AtSK32.

Requirements for a functional C4/
AtSK interaction

The C4/AtSK interactions and C4
function require the presence of a phos-
phorylated Ser/Thr residue at amino acid
position 49.12 In addition, AtSKs must be
catalytically active to interact with C4,

supporting their role in phosphorylating
C4.12 Residue 49 is part of a proline-
directed Ser/Thr kinase phosphorylation
motif (Ser/Thr-Pro). Ser/Thr-Pro motifs
are phosphorylated by members of a large
family of proline-directed Ser/Thr kinases
in eukaryotes, including AtSKs, and regu-
late a diverse array of cellular processes.19

While most peptide bonds have the more
energetically favored trans isomer, proline
can exist in either a cis or trans conforma-
tion. Phosphorylation of Ser/Thr-Pro
motifs limits the rate of cis/trans isomeriza-
tion, which plays an important role in reg-
ulating protein structure,19 and may be
essential in regulating C4 function.

C4 requires plasma membrane
localization for function

Geminivirus C4/AC4 proteins contain
a conserved N-myristoylation motif
required for localization to the plasma
membrane (PM).11,20 We recently showed
that BCTV C4/AtSK complexes localize
primarily to the PM and nucleus. Disrup-
tion of the C4 N-myristoylation motif
resulted in a nonfunctional C4 mutant,
C4G2A, that failed to induce hyperplasia.
The mutant retained the ability to bind
AtSKs, but localized to the cytosol and
nucleus, indicating that the formation of
C4/AtSK complexes does not require asso-
ciation with the PM, but that functional
C4/AtSK complexes do require PM locali-
zation.12 The targeting of a portion of
both C4G2A/AtSK and C4/AtSK com-
plexes to the nucleus suggests that nuclear
localization is not necessary to induce

hyperplasia. Similarly, the AC4 protein of
the East African cassava mosaic Cameroon
virus (EACMCV) required an N-myris-
toylation motif and PM localization for
function. Interestingly, the AC4 protein
suppresses the systemic phase of RNA
silencing and has not been shown to
induce hyperplasia.20

N-myristoylation alone is likely not
sufficient to stably anchor a protein to the
PM.21,22 A second signal in the myristoy-
lated protein, such as another fatty acyl
chain, a polybasic group of amino acids
that binds the negatively charged phos-
pholipids within the PM, or a domain
that interacts with another membrane pro-
tein is required for stability. Indeed, PM
localization of the AC4 protein of
EACMCV was shown to require palmi-
toylation of Cys 3 in addition to myristoy-
lation of Gly 2 in the N-myristoylation
motif.20 While BCTV C4 requires Gly2
for myristoylation,11 a second signal has
not been identified. Two likely possibili-
ties are the sole Cys9 residue in C4, which
is a putative site for palmitoylation, and/
or the 3 basic amino acids Lys13, Lys15,
and Arg17. The latter would be similar to
the Src protein of Rous sarcoma virus,
where 3 basic amino acids at the N-termi-
nus of the protein are necessary to stabilize
localization of the myristoylated protein
to the PM.23 Indeed, a mutation in C4 of
Lys13 to Ala13 resulted in a very mild
C4-like phenotype.12

How does the BCTV C4 protein
induce hyperplasia?

While extensive details of the mecha-
nism underlying the function of the C4
protein remain unknown, our recent find-
ings,12 and previously published work,7,11

provide a basis to propose a tentative
mechanistic model of how the BCTV C4
protein functions (Fig. 1). As indicated
above, the ability of the C4 protein to
restore replicational competency, as mani-
fested by extensive hyperplasia, requires
the formation of functional C4/AtSK
complexes at the PM. Therefore, inhibi-
tion or modulation of AtSK function(s)
by C4 likely occurs at the PM. This is sup-
ported by the fact that the presence or
absence of C4 influences specific AtSK-

Table 1. Arabidopsis thaliana SHAGGY-like protein kinase family.

Clade Name Locus
Identifier

C4
Interaction/BR Signaling/

Bikinin Inhibition

1 AtSK11 AT5G26751 C
AtSK12 AT3G05840 C
AtSK13 AT5G14640 C

2 AtSK21 AT4G18710 C
AtSK22 AT1G06390 C
AtSK23 AT2G30980 C

3 AtSK31 AT3G61140 ¡
AtSK32 AT4G00720 C

4 AtSK41 AT1G09840 ¡
AtSK42 AT1G57870 ¡
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PM interactions. In the absence of C4,
clade 2 AtSKs localized to the cytosol,
nucleus, and punctate regions on the
PM.12 This is in line with previous reports
of AtSKs localizing to the PM; AtSK21
was localized to the nucleus, cytosol, and
PM and AtSK41 was localized to the cyto-
sol and PM.24-26 When C4 is present, C4/
clade 2 AtSK complexes are distributed
evenly along the PM membrane. This
shift in localization is C4-dependent, since
the PM localization of AtSK41, which
does not interact with C4, is unchanged
in the presence of C4.12 More impor-
tantly, recent evidence suggests that PM
localization is critical for some AtSK func-
tion, AtSKs (putatively clade 1 and
clade2) were shown to interact with the
tracheary element differentiation inhibi-
tory factor receptor (TDR) at the PM and
play a crucial role in regulating xylem cell
differentiation.26 Furthermore, in Dro-
sophila, a PM-proximal GSK-3 activates
the Wnt signaling pathway by phosphory-
lating LRP6, a transmembrane protein,
that is critical for signal transduction.27,28

Similarly, the bikinin-induced hyper-
plastic phenotype could be explained by
bikinin inhibiting the function of AtSKs
that function at the PM.

While current experimental data sup-
port the model presented, additional infor-
mation is needed to elucidate details on
how the C4 protein modulates the host cell
cycle. Future experiments to identify spe-
cific C4/AtSK complexes involved in the
induction of hyperplasia, possible addi-
tional C4-interacting host proteins, and
possible host proteins that interact with
C4/AtSK complexes or modified C4/AtSK
complexes will provide additional insights
into how the BCTV C4 protein usurps the
host cell cycle to promote mitosis.
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