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Abstract

The two key steps for analyzing proteomic data generated by high-resolution MS are database 

searching and postprocessing. While the two steps are interrelated, studies on their combinatory 

effects and the optimization of these procedures have not been adequately conducted. Here, we 

investigated the performance of three popular search engines (SEQUEST, Mascot, and MS 

Amanda) in conjunction with five filtering approaches, including respective score-based filtering, 

a group-based approach, local false discovery rate (LFDR), PeptideProphet, and Percolator. A total 

of eight data sets from various proteomes (e.g., E. coli, yeast, and human) produced by various 

instruments with high-accuracy survey scan (MS1) and high- or low-accuracy fragment ion scan 
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(MS2) (LTQ-Orbitrap, Orbitrap-Velos, Orbitrap-Elite, Q-Exactive, Orbitrap-Fusion, and Q-TOF) 

were analyzed. It was found combinations involving Percolator achieved markedly more peptide 

and protein identifications at the same FDR level than the other 12 combinations for all data sets. 

Among these, combinations of SEQUEST–Percolator and MS Amanda–Percolator provided 

slightly better performances for data sets with low-accuracy MS2 (ion trap or IT) and high 

accuracy MS2 (Orbitrap or TOF), respectively, than did other methods. For approaches without 

Percolator, SEQUEST–group performs the best for data sets with MS2 produced by collision-

induced dissociation (CID) and IT analysis; Mascot–LFDR gives more identifications for data sets 

generated by higher-energy collisional dissociation (HCD) and analyzed in Orbitrap (HCD–OT) 

and in Orbitrap Fusion (HCD–IT); MS Amanda–Group excels for the Q-TOF data set and the 

Orbitrap Velos HCD–OT data set. Therefore, if Percolator was not used, a specific combination 

should be applied for each type of data set. Moreover, a higher percentage of multiple-peptide 

proteins and lower variation of protein spectral counts were observed when analyzing technical 

replicates using Percolator-associated combinations; therefore, Percolator enhanced the reliability 

for both identification and quantification. The analyses were performed using the specific 

programs embedded in Proteome Discoverer, Scaffold, and an in-house algorithm (Build 

Summary). These results provide valuable guidelines for the optimal interpretation of proteomic 

results and the development of fit-for-purpose protocols under different situations.
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INTRODUCTION

To achieve comprehensive proteome profiling, a strategy achieving the optimal identification 

of peptides and proteins is indispensable in proteomic studies based on mass spectrometry 

(MS). With the wide use and rapid advancement of MS techniques in the past decade, 

database search engines such as SEQUEST,1 Mascot,2 Phenyx,3 OMSSA,4 XTandem,5 

MyriMatch,6 Andromeda,7 Morpheus,8 and MS Amanda9 are developed to interpret various 

types of MS2 spectra produced by different MS instruments. A spectrum generally contains 

mass-to-charge ratios (m/z) of precursor ions (MS1) and fragment ions (MS2) with 

respective intensity information. The general task of a search algorithm is to assign spectra 

to peptide sequences on the basis of the m/z values and intensities, and the quality of 

assignment is determined by a specific scoring system. For example, the SEQUEST 

algorithm, one of the most popular search engines, utilizes a cross-correlation (XCorr) score 

to evaluate the similarity between the experimental and the theoretical mass spectra 

computed based on the putative peptide sequences. Some other engines, such as Mascot, 

emphasize the rank of possible peptide matches that best fits the acquired tandem mass 

spectrum via probabilistic modeling. In response to the rapidly expanding availability of 

high-resolution MS, most recent algorithms, such as MS Amanda and Morpheus, are 

designed and optimized for analyzing high-resolution and high-accuracy spectra at both the 

MS1 and MS2 levels.

Quality control of the peptide-spectrum matching (PSM) is critical to achieve confident and 

accurate MS-based identification. Currently, the target–decoy search strategy is one of the 

most popular approaches to estimate the false-positive discovery rate (FDR).10 This method 

utilizes a concatenated database containing a forward-sequence database (target database) 

and a decoy database (a reversed, shuffled or randomized database of the same size as the 

target database). One key assumption is that the number of PSM from the decoy database 

equals the number of false positives from the target database, which permits the FDR 

estimation. Due to its conceptual simplicity and easy implementation, the target–decoy 

search strategy is widely applied to ensure confident identification in many search engines 

based on the corresponding scores, which examine peptide assignments. In addition, some 

efforts also have been made on FDR estimation without using decoy databases such as the 

early version of PeptideProphet,11 spectral probabilities,12 and the mixture-modeling 

method13 combining the PeptideProphet11 and Choi’s approach.14

Besides the utilization of score-based filtering to calculate FDR, many postsearch algorithms 

have been developed to perform further statistical classification between correct and 

incorrect PSMs,11,15–21 such as PeptideProphet11,21 and Percolator.17 PeptideProphet 

originally uses a linear discriminant analysis classifier to separate correct and incorrect 

PSMs in an unsupervised fashion (i.e., without decoy information)11 and is improved later 

by the semisupervised approach, using decoy PSMs to estimate probabilities from the 

discriminant scores.21 The Percolator17 identifies a subset of high-confidence target PSMs; 

on the basis of this data, the algorithm is trained to achieve an optimal separation of correct 

and incorrect PSMs using the support-vector-machines (SVM)-based classifier. Besides the 

PeptideProphet’s LDA or Percolator’s SVM classifier, Searle et al. used log-likelihood ratios 

generated by naïve Bayesian classifiers to perform local FDR (LFDR) estimation for the 
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classification of correct versus incorrect PSMs.22 In addition, we have developed a simple 

group-based approach, separating PSMs into different groups based on peptide 

characterizations, such as the missed internal cleavage sites and modification state prior to 

FDR filtering, to achieve a better sensitivity of peptide and protein identification for analysis 

of PSMs from various search engines such as SEQUEST, Mascot, and X!Tandem.23

Though new search engines and filtering approaches have been continuously developed thus 

far, to our knowledge, the effects of different combinations of the two steps have not been 

adequately evaluated. In this work, we performed the evaluation of different combinations of 

popular search engines and postprocessing approaches to achieve optimal peptide and 

protein identification. Popular search engines (e.g., SEQUEST, Mascot, and MS Amanda) 

and filtering approaches (e.g., respective score-based filtering, group-based approach, 

PeptideProphet, Percolator, and LFDR) were comprehensively assessed using eight data sets 

(three replicates per data set) generated from a variety of organisms (E. coli, yeast, and 

human) by various mass spectrometers. In total, 360 analyses (three engines × five filtering 

approaches × eight data sets × three replicates) were performed. This study provides a 

practical guideline on choosing proper combinations under different situations to maximize 

proteomic coverage, which is valuable for proteomics researchers.

MATERIALS AND METHODS

Data Sets Used in This Study

The possible combinations of search engines and filtering approaches were tested with eight 

data sets (n = 3/data set) as shown in Table 1: (1) yeast sample analyzed on a Thermo 

Scientific LTQ Orbitrap XL using CID with MS2 analysis in the ion trap (XL CID–IT 

yeast); (2) human cell-line sample (MCF7 cells) analyzed on a Thermo Scientific Orbitrap-

Elite using CID with MS2 analysis in IT (Elite CID–IT human); (3) human cell-line sample 

(Hela cells) analyzed on a Thermo Scientific Orbitrap-Fusion using CID with MS2 analysis 

in IT (Fusion CID–IT human); (4) yeast sample analyzed on a Thermo Scientific Orbitrap-

Fusion using HCD with product-mass-spectra analysis in IT (Fusion HCD–IT yeast); (5) E. 
coli sample analyzed on an Agilent 6530A (Q-TOF E. coli); (6) yeast sample analyzed on a 

Thermo Scientific LTQ Orbitrap Velos using HCD with product-mass-spectra observation in 

the orbitrap (Velos HCD–OT yeast); (7) human cell-line sample (Hela cells) analyzed on a 

Thermo Scientific Q-Exactive using HCD with product-mass-spectra observation in OT (QE 

HCD–OT human); and (8) human cell-line sample (PANC-1 cells) analyzed on a Thermo 

Scientific Orbitrap-Fusion using HCD with product-mass-spectra analysis in OT (Fusion 

HCD–OT human). The data sets for Velos HCD–OT yeast and QE HCD–OT human were 

described in a previous publication by Michalski et al.,24 and Q-TOF E. coli was described 

in Wenger et al.;8 these three data sets are available at http://www.chem.wisc.edu/~coon/

Downloads/Morpheus/. The data set for Fusion HCD–IT yeast is available at https://

chorusproject.org/anonymous/download/experiment/449795368199176159, as described in 

the report by Hebert et al.25 The sample preparation and MS analysis of data set Elite CID–

IT human (MCF7 cells) were performed as previously described26 and also analyzed in 

triplicate. The remained data sets were described in detail as below.
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Sample Preparation

The HeLa protein digest standard, a tryptic digest of HeLa S3 cell lysate, was purchased 

from Thermo Scientific, Pierce. The PANC-1 cells (treated by 20 nM gemcitabine for 72 h) 

were from Dr. William J. Jusko’s lab at the department of Pharmaceutical Sciences in 

University at Buffalo, and yeast cells were from Kinex Pharmaceuticals (Buffalo, NY). Cell 

samples were homogenized in an ice-cold lysis buffer (50 mM Tris–formic acid, 150 mM 

NaCl, 0.5% sodium deoxycholate, 2% SDS, and 2% NP-40 and pH 8.0) using a Polytron 

homogenizer (Kinematica AG). After homogenization was performed for a 5–10 s burst at 

15 000 rpm for ten cycles, the mixture was then sonicated in a cold room for ~10 min with a 

low-power sonicator until the solution was clear. Lysates were centrifuged at 140 000g for 1 

h at 4 °C, and the resulting supernatant was collected. The protein concentration was 

determined using a BCA protein assay (Pierce, Rockford, IL), and the remaining samples 

were stored at −80 °C until further analysis. Each sample, containing 100 μg of total protein, 

was reduced with 3 mM TCEP for 10 min and then alkylated with 20 mM IAM for 30 min 

in darkness. In this study, a precipitation and on-pellet-digestion procedure was used to 

perform precipitation and tryptic digestion as previously described.27,28

Nano-LC–MS/MS Analysis

The peptide mixture of yeast was analyzed using an ultrahigh-pressure Eksigent (Dublin, 

CA) nano-2D Ultra capillary and nano-LC system coupled to a LTQ Orbitrap XL hybrid 

mass spectrometer (Thermo Fisher Scientific, San Jose, CA). The mobile phase consisted of 

0.1% formic acid in 2% acetonitrile (A) and 0.1% formic acid in 88% acetonitrile (B). The 

peptide mixture was loaded onto a reversed-phase trap (300 μm i.d. × 0.5 cm), with 1% 

mobile phase B at a flow rate of 10 μL/min, and the trap was washed for 3 min. A series of 

nanoflow gradients (flow rate of 250 nL/min) was used to back-flush the trapped samples 

onto the nano-LC column (75 μm i.d. × 75 cm, packed with 3 μm particles) for separation. 

The nano-LC column was heated to 52 °C to improve the chromatographic resolution and 

reproducibility. A 7 h shallow gradient was used to achieve sufficient peptide separation, as 

previously described.29 The data-dependent product ion mode was applied and an MS1 

survey scan (m/z 310–1800) at a resolution of 60 000, followed by seven MS2 scans using 

CID activation mode, was set to fragment the top seven most abundant precursors in the 

survey scan. The target values for MS1 by Orbitrap and MS2 by ion trap were 6 × 106 and 1 

× 104. The dynamic exclusion was enabled with the following settings: repeat count, 1; 

repeat duration, 30 s; exclusion list size, 500; and exclusion duration, 40 s. The activation 

time was 30 ms, with an isolation width of 3 Da for ITMS; the normalized activation energy 

was 35%, and the activation (q) was 0.25. The yeast sample was analyzed in triplicate.

Respective peptide mixtures of Hela and PANC-1 cells were analyzed on an Orbitrap Fusion 

tribrid mass spectrometer (Thermo Fisher Scientific). The settings of mobile phases, the 

reversed-phase trap, and the nano-LC column were same as described above. A 160 min 

gradient was applied in these analyses. The gradient profile was as following: 0 to 3% B 

over 3 min; 3 to 6% B over 5 min; 6 to 28% B over 118 min; 28 to 50% B over 10 min; 50 to 

97% B over 1 min; and, finally, isocratic at 97% B for 23 min. The data-dependent product-

ion mode was applied for all analyses. For HCD–OT fragmentation and detection, MS1 

survey scans (m/z 310 to 1800) were performed at a resolution of 60 000 with an AGC target 
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of 5 × 105. MS2 was performed by isolation at 1.6 Th with the quadrupole for HCD 

fragmentation. The normalized collision energy was 35%, and tandem mass spectra were 

analyzed by Orbitrap with a resolution of 15 000. The MS2 AGC target was set to 5 × 104, 

and the max injection time was 50 ms. Peptide precursors with charge state 2–6 were 

sampled for MS2. The dynamic exclusion was enabled with the following settings: repeat 

count, 1; repeat duration, 50 s; exclusion duration, 45 s; mass tolerance, ± 10 ppm; signal-to-

noise (S/N) threshold, 2. Monoisotopic precursor selection was turned on. The instrument 

was run in top-speed mode with a cycle time of 3 s. For CID–IT fragmentation and 

detection, MS1 survey scans (m/z 310 to 1800) were performed at a resolution of 120 000 

with a 5 × 105 AGC target. MS2 was performed by isolation at 1.6 Th with the quadrupole 

for CID fragmentation. The normalized collision energy was 30%, and tandem mass spectra 

were analyzed by ion trap with rapid scan rate. The MS2 AGC target was set to 1 × 104, and 

the max injection time was 50 ms. Only peptide precursors with a charge state of 2–6 were 

sampled for MS2. The dynamic exclusion was enabled with the following settings: repeat 

count, 1; repeat duration, 50 s; exclusion duration, 45 s; S/N threshold, 2. Monoisotopic 

precursor selection was turned on. The instrument was also run in top-speed mode with a 

cycle time of 3 s. Each sample was analyzed in triplicate.

Database Search and Postsearch Filtering Analyses

Proteome Discoverer (PD) version 1.4.1.14 (Thermo-Scientific) was used to perform the 

database search against respective Swiss-Prot protein database (version June 2012) for these 

raw data files. The search engines SEQUEST-HT, Mascot (version 2.4.0), and MS Amanda 

(version 1.4.4.2822) were implemented in PD as previously described.9 A total of 20 238 

entries, 4431 entries, and 7801 entries were presented in the respective human, E. coli, and 

yeast databases. The downloaded mzML files for Q-TOF and the remaining raw files were 

searched directly by these three search engines through PD. The search parameters used 

were as follows: 20 ppm tolerance for precursor ion masses, 1.0 Da for fragment ion masses 

analyzed by ion trap, 0.02 Da for fragment ion masses analyzed by Orbitrap, and 0.05 Da for 

fragment ion masses of data set generated by Q-TOF (Table 1). A total of two missed 

cleavages were permitted for fully tryptic peptides. Carbamidomethylation of cysteines 

(+57.0215 Da) was set as a fixed modification, and variable modifications of methionine 

oxidation (+15.9949 Da) and N-terminal acetylation (+42.0106 Da) were allowed. The false 

discovery rate (FDR) was determined by using a target–decoy search strategy.30 The 

sequence database contains each sequence in both forward and reverse orientations, enabling 

FDR estimation.

In this study, Scaffold v4.3.4 (Proteome Software, Portland, OR) and custom software Build 

Summary23 were applied to generate peptide and protein lists using different postsearch 

filtering approaches. Here, protein FDR was calculated as the number of decoy proteins 

divided by the number of target proteins. The FDR was set to 0.01 at both the peptide and 

the protein levels. In cases where the target and decoy PSMs had the same score (spectra 

could be assigned to target or decoy peptides), the decoy was preferred. The score threshold 

yielding the largest number of target protein groups at less than or equal to 1% FDR was 

determined. Score-based, group-based, and Percolator postprocessing approaches were 

summarized by Build Summary, while PeptideProphet and LFDR were analyzed and 
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summarized by Scaffold. For score-based postsearch filtering, PSMs were sorted and 

selected according scores to achieve the protein FDR of 1%: ascending XCorr for 

SEQUEST-HT, ascending ion score for Mascot, and ascending MS Amanda score for MS 

Amanda. For PeptideProphet (with δ mass correction) and LFDR, ascending probability was 

used to select confident PSMs for SEQUEST-HT, Mascot, and MS Amanda. For Percolator, 

the ascending SVM score was used for these three search engines. For the group-based 

postsearch filtering approach, PSMs were further separated into different groups on the basis 

of the missed internal cleavage sites and modification state besides the peptide charges prior 

to FDR filtering with ascending respective scores. The protein with the longest sequence 

was selected as the representative protein for the protein group. Percolator (version 2.04) 

was used to generate q values, SVM scores, and posterior error probabilities through the 

stand-alone application or PD including Percolator as a component. Software Build 

Summary23 was further developed and updated to enable FDR analysis according to the 

SVM score by Percolator and score by MS Amanda. The newest version of Build Summary 

can be downloaded freely at https://github.com/shengqh/RCPA.Tools/releases/.

RESULTS AND DISCUSSION

In recent years, the prevalent use of high-resolution MS and the related technical advances 

elicited the development of various new search engines and postprocessing approaches. 

However, to our knowledge, optimization and evaluation of the combinations of these two 

critical steps was not adequately conducted. Here, we assessed the effects of different 

combinations of search engines and filtering approaches for the interpretation of high-

resolution MS data. A total of three popular search engines representing different 

characteristics (SEQUEST, Mascot, and MS Amanda (i.e., SEQUEST, emphasis on 

similarity; Mascot, emphasis on probability; and MS Amanda, emphasis on high-accuracy 

MS2 spectra)) were selected. Meanwhile, the five most popular filtering approaches 

(original-score-based filtering, group-based, PeptideProphet, Percolator, and LFDR) were 

assessed for each search engine. In addition, eight data sets (three replicates per data set) 

generated from three organisms (E. coli, yeast, and human) by various MS instruments 

including LTQ Orbitrap XL, Q-TOF, Orbitrap Velos, Orbitrap Elite, Q-Exactive, and 

Orbitrap Fusion were investigated. Commercially available software such as Proteome 

Discovery (Thermo-Scientific) and Scaffold (Proteome Software) and a custom algorithm 

Build Summary23 were utilized to perform database searches and results summaries. The 

MS and database search parameters were shown in Table 1, and the detailed flowchart of this 

experiment was shown in Figure 1.

Investigation Using SEQUEST algorithm

SEQUEST, developed by Eng et al. in 1994,1 is one of the most popular database-searching 

algorithms. It first computes a preliminary score (Sp) for all candidate peptides based on 

peaks that are common in experimental and theoretical spectra and then uses cross-

correlation (Xcorr) analysis of these top candidates based on the rank of preliminary score 

(Rsp). A total of two scores (Xcorr and ΔCn (the difference of Xcorr between the first hit 

and the second hit)) are commonly used to determine high-confidence identifications. 

Generally, it is required that a ΔCn value is at least 0.1 regardless of charge state.1,31 Here, 
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we used a cutoff of ΔCn values ≥0.1 and adjusted Xcorr scores to obtain desired FDR. This 

approach is named as the SEQUEST score-based approach (SEQUEST–score). As shown in 

Figure 2, the naïve score-based filtering method was not optimal for all MS data sets. LFDR, 

a new postprocessing algorithm incorporated in Scaffold version 4, was developed to 

evaluate the confidence level of peptides based on a Bayesian approach to local false 

discovery rate, and especially improves identification for high-mass-accuracy data.22 Except 

for the CID–IT data (data sets A–C), LFDR achieved more identifications than the score-

based and PeptideProphet approaches when processing data by SEQUEST (Figure 2), as 

was expected. However, Percolator significantly outperformed the other four methods in 

PSMs, distinct peptides, and protein groups of all of the data sets analyzed (Figure 2). 

Compared to the naïve score-based approach, improvements by Percolator ranged from 55 to 

88%, 44 to 85%, and 14 to 39% at the PSM, distinct peptide, and protein group levels, 

respectively, in the eight data sets. For all of the CID–IT data (data sets A–C), the group-

based approach and PeptideProphet achieved the second and third highest numbers in all 

categories. For all HCD-OT data (data sets F–H), the LFDR and group-based approach 

achieved the second and third highest numbers in all categories. As for the Fusion HCD–IT 

yeast and Q-TOF E. coli data sets, the group-based approach and LFDR achieved similar 

improvements, although both were inferior to the results from Percolator.

To further validate the peptide identification from different filtering approaches, we 

visualized the overlap of these five combinations using a five-way Venn diagram. Data 

shown in Figure 3A is for one LC/MS analysis of yeast proteome by Fusion HCD–IT 

followed by SEQUEST searching. A total of 30 960 distinct peptides were identified, among 

which 15 804 (51.0%) were common for all five filtering approaches. SEQUEST–score 

resulted in the lowest number of peptide identifications (16 114), and 98.1% (15 804) of 

these peptides were identified by all other four filtering approaches. Moreover, 21.6% of the 

total identified peptides are unique to SEQUEST–Percolator; by comparison, only less than 

1% of peptides are unique to each of the other four combinations. Therefore, SEQUEST–

Percolator identified substantially more distinct peptides than other combinations, and the 

peptides identified by other combinations overlap well with these by SEQUEST–Percolator.

We further investigated the distribution of the number of distinct peptides assigned to each 

protein by these combinations. As shown in Figure 2D, the use of group-based, 

PeptideProphet, LFDR, and Percolator approaches identified more peptides and proteins, 

and the percentages of proteins containing ≥4 distinct peptides were higher (Figure 3B) than 

SEQUEST–score. SEQUEST–Percolator achieved the highest percentage of proteins 

containing ≥4 peptides (63.1% versus 47.5% by SEQUEST–score), while the percentage of 

one-peptide-hit proteins was only 14.6%, compared with 24.3% by SEQUEST–score. A 

minimum of two distinct peptides per protein is often required to enhance the quantitative 

reliability and accuracy for targeted and global quantification.32–34 Consequently, the 

increase of proteins containing multiple peptides by SEQUEST–Percolator can provide not 

only better identification but also improved protein quantification.
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Investigation Using the Mascot Algorithm

The probabilistic scoring method has been applied in many search engines such as Mascot,2 

X!Tandem,5 and OMSSA,4 among which Mascot is by far the most popular. Mascot 

calculates the ions score to examine whether a particular peptide spectrum match is a 

random event. Similar to the observations for SEQUEST, the original score-cutoff method 

using the ions score (Mascot–score) resulted in the lowest number of identifications at the 

same protein FDR level; Percolator also outperformed the other four filtering methods in the 

numbers of identified PSMs, distinct peptides, and protein groups in all of the data sets at a 

protein FDR of 1% (Figure 4). In these data sets, Mascot–Percolator provided, respectively, 

34.6 to 175.9%, 31.9 to 154.0%, and 8.6 to 68.3% more PSM, distinct peptides, and protein 

groups compared to the Mascot–score approach. Apparently, Percolator is the method-of-

choice for postprocessing both low- and high-accuracy MS data produced by Mascot, 

consistent with a previous study.35 Among the other four filtering approaches, LFDR 

achieved superior overall performance in comparison to score-based, group-based, and 

PeptideProphet approaches, as shown in Figure 4. Only in data sets E and F in the group-

based approach achieved similar or slightly higher (~1%) identifications in protein groups 

than the LFDR results. Although SEQUEST–LFDR was found not to be optimal for CID–IT 

data (Figure 2A–C) as discussed above, Mascot–LFDR achieved the second-best 

performance for those data sets with low-accuracy MS2 spectra. The excellent performance 

of Mascot–LFDR was also demonstrated in other data sets from different species (data not 

show).

The five-way Venn diagram of distinct peptides identified by these processing methods in a 

Fusion HCD–IT yeast data set is shown in Supplemental Figure 1A; 21726 (68.4%) peptides 

were commonly identified by all the five filtering approaches after a Mascot search. The 

uniquely identified peptides in each of the five combinations were 0, 0.4%, 0.2%, 1.2%, and 

6.3% of total peptides, respectively, by Mascot–score, Mascot–group, Mascot–

PeptideProphet, Mascot–LFDR, and Mascot–Percolator. Again Mascot–Percolator identified 

markedly more peptides than other combinations. In summary, when using the Mascot 

database search, Percolator and LFDR provide the best results for all data sets with low- or 

high-accuracy MS2 spectra.

Investigation Using MS Amanda Algorithm

MS Amanda was recently designed to cope with the need of interpreting high-accuracy 

tandem mass spectra,9 and the general applications of MS Amanda to data generated by 

HCD, ETD, and CID fragmentation were reported. In this study, as shown in Figure 5, the 

numbers of PSMs, distinct peptides, and proteins identified from low-accuracy MS/MS data 

sets (sets A–D) by MS Amanda–score were significantly lower than those from SEQUEST–

score or Mascot–score (Figures 2 and 4). This indicates that MS Amanda may not be 

optimal for the identification of MS2 data produced by a low-accuracy detector such as IT, 

regardless of the fragmentation type (CID or HCD). On the basis of this result, here we 

mostly focus on the analysis of high-resolution and high-accuracy MS2 data for MS 

Amanda. Similar to the observations for SEQUEST and Mascot, Percolator performed better 

than the other four postprocessing methods (Figure 5E–H). MS Amanda–Percolator 

provided an average of 27.9%, 27.6%, and 13.1% more PSM, distinct peptides, and protein 
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groups, respectively, in data sets E–H, compared to the results from MS Amanda–score. The 

group-based filtering approach achieved the second-best overall performance for analyzing 

data sets E–H (Figure 5E–H). The overlap analysis of peptides identified by these five 

combinations for MS Amanda is shown in Supplemental Figure 1B. A total of 7227 (61.0%) 

peptides were commonly identified by all combinations for a replicate of the QE HCD–OT 

human data set. Among the five combinations, 15.6% of total peptides were unique to MS 

Amanda–Percolator, while only 0, 0.6%, 0.4%, and 0.5% were unique to the MS Amanda–

score, MS Amanda–group, MS Amanda–PeptideProphet, and MS Amanda–LFDR 

approaches, respectively. About 97% of distinct peptides identified by MS Amanda–score, 

96% identified by MS Amanda–group, 97% identified by MS Amanda–PeptideProphet, and 

97% identified by MS Amanda–LFDR approaches were also confidently identified by the 

MS Amanda–Percolator approach. This result highlights the excellent reliability and 

sensitivity of the MS Amanda–Percolator approach for analyzing high-accuracy MS2 data.

Evaluation of Different Search Engines

In previous studies, original score-based filtering approaches are often used to compare 

different search engines;8,9 this study demonstrated that Percolator afforded the best 

performance out of the five popular postprocessing approaches. Therefore, we performed the 

comparison of three search engines (SEQUEST, Mascot, and MS Amanda) using both the 

score-based approach (Supplemental Figure 2) and the Percolator approach (Figure 6). Of 

these three search engines, SEQUEST and Mascot are algorithms designed for HCD, ETD, 

and CID fragmentation with high- or low-accuracy MS2 spectra, while MS Amanda is 

optimal for high-accuracy MS2 data and for identifying more peptides at the same FDR than 

SEQUEST and Mascot, as previously reported.9

As shown in Supplemental Figure 2A–D, for those data sets with low-accuracy MS2 

(analyzed in IT), MS Amanda–score underperformed the others regardless the activation 

mode (HCD or CID). Conversely, for high-accuracy MS2 data (data set E–H) produced by 

various MS instruments (Q-TOF, QE, Velos, and Fusion) for a variety of organisms (E. coli, 
yeast, and human), MS Amanda–score achieved the best performance as expected 

(Supplemental Figure 2E–H), consistent with the previous report.9 SEQUEST–score 

identified more PSMs, peptides, and protein groups for all CID–IT data (data sets A–C) than 

did the MS Amanda–score and Mascot–score approaches. Interestingly, for the Fusion 

HCD–IT yeast data set (from Coon’s lab),25 Mascot–score achieved the better performance 

(Supplemental Figure 2D), with increases of 40%, 40%, and 8% respectively at PSM, 

distinct-peptide, and protein-group levels over SEQUEST–score. To further confirm this 

interesting observation, we used another Fusion HCD–IT data set generated from human 

samples in our own lab and found significant increases of 53%, 52%, and 23%, respectively, 

for PSMs, distinct peptides, and protein groups by the Mascot–score over the SEQUEST–

score approach (Supplemental Figure 3). These results indicated that MS Amanda–score 

achieved the best performance for data sets with high-accuracy MS2, while the SEQUEST–

score and Mascot–score, respectively, excel at CID–IT and Fusion HCD–IT data sets.

The use of Percolator depends on support vector machine (SVM) training and learning to 

discriminate between the correct and incorrect peptide-spectrum matches.17 While the 
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Percolator had been individually applied for search engines such as SEQUEST, Mascot, and 

X!Tandem,19,35,36 to our knowledge, the comparison of performance of Percolator across 

different search engines has not yet been comprehensively conducted. Here, we compared 

the combinations of Percolator with each search engine, and the results were shown in 

Figure 6. Apparently, these three combinations achieved similar PSMs, distinct peptides, and 

protein groups, while SEQUEST–Percolator slightly outperformed Mascot–Percolator and 

MS Amanda–Percolator for the CID–IT data sets. Interestingly, although MS Amanda is 

designed for high-accuracy MS2 data, when Percolator was used, its performances for both 

high- and low-accuracy data sets are similar to those of the other two search engines, which 

is contrary to the findings when the score-based method is used. Even though MS Amanda is 

not optimal for CID–IT data, MS Amanda–Percolator achieved the better performance than 

Mascot or SEQUEST coupling with the other four filtering approaches (score-based, group-

based, PeptideProphet, and LFDR), which once again indicated that Percolator is a better 

processing approach. This could be attributed to the 19 key features (Supplemental Table 1) 

considered by Percolator (v2.04), which greatly reduce the inherent preference by different 

search engines, improving the performance of peptide-spectrum matches and enabling the 

analysis of any MS data set with their best performance. This notion is demonstrated by 

another example in which the SEQUEST– and Mascot–Percolator approaches showed 

similar results when Fusion HCD–IT data sets are analyzed (Figure 6D), despite the fact that 

the Mascot–score approach appreciably outperformed the SEQUEST–score approach for the 

same data set, as described above.

As shown in the Venn diagrams in Figure 7, superb overlap among the three search engines 

coupled to Percolator was observed, 90.8% at the peptide level and 91.2% at the protein 

level. Moreover, only ~1% of distinct peptides were unique to each of these three 

combinations (Figure 7), and more than 96% of peptides or proteins were commonly 

identified between two of the combinations. Such excellent overlap by different search 

engines implies excellent reliability of the results. By comparison, previous studies using a 

combination of multiple search engines with other filtering approaches showed a much 

lower extent of overlap among search engines,37,38 rendering it difficult to interpret the 

identification data. Therefore, the Percolator approach minimizes the preference and bias by 

different searching algorithms and thereby permits more confident identification. 

Additionally, combining the results of multiple search engines, a common practice when 

extensive identification is desired, may not be necessary when Percolator is utilized.

The Optimal Combinations for Specific Types of Data Sets

In this study, each data set has been analyzed by 15 different combinations (three search 

engines × five filtering approaches). The top six combinations in numbers of identification 

are presented for each data set in Table 2. The best identification number for each class (i.e., 

spectra, peptides, or protein group) in each data set was set as 100%. The data presented in 

Table 2 enables proteomics researchers to develop a fit-for-purpose data-processing 

approach based on the specific instruments and resources available. As shown in Table 2, 

combinations involving Percolator provided the best performance in all classes. For 

combinations without Percolator, SEQUEST–group gives the most IDs for the CID–IT data 

than the other combinations; Mascot–LFDR is the best for the Orbitrap Fusion HCD–IT and 
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Q-Exactive HCD–OT data sets; MS Amanda–group gives more identifications for the data 

sets by Q-TOF and Velos HCD–OT, and MS Amanda–PeptideProphet gives more 

identifications for the Fusion HCD–OT data set. These results highlight the importance to 

optimize the combinations of search engines and filtering approaches individually when 

Percolator is not used.

In this study, the Percolator showed overall best performances regardless the search engines 

employed. Recently, Kim et. al demonstrated that the database search algorithm MS–GF+ 

with the E-value filter method significantly identified more PSMs (17–38%) than Mascot–

Percolator.39 Here, we performed the comparison of Mascot–Percolator and MS–GF+ (E-

value) using the QE HCD–OT data set (n = three replicates), as the MS–GF+ algorithm was 

extensively trained with data generated from the Q-Exactive instrument.39 Moreover, 

MaxQuant7,40 was also a popular peptide and protein identification package, and 

PeptideProphet–iProphet41 gave the better performance than PeptideProphet alone. Thus, the 

newest version of MS–GF+ (beta v10282, released on December 19, 2014), MaxQuant 

(v1.5.2.8), and iProphet in the Trans-Proteomic Pipeline (TTP v4.8) were further selected 

for investigation, and the same search parameters described above were used. As shown in 

Supplemental Figure 4, MS–GF+ (E-value) identified by an average of 5.8% more PSMs but 

4.4% fewer peptides and 3.8% fewer proteins than Mascot–Percolator, while none of these 

differences is statistically significant (p > 0.05 by paired t-test). Therefore, the two methods 

identified similar number of proteins for data analysis from the Q-Exactive, the presumably 

optimal type of data set for MS–GF+. MaxQuant and Mascot–PeptideProphet and Mascot–

iProphet identified a similar number of protein groups, but both of them achieved fewer 

spectra and protein groups than the two methods mentioned above. Because Percolator 

works well for any types of data as discussed above, it is advisible to employ Percolator as a 

universal postprocessing approach. As a matter of fact, MS–GF+ coupling with Percolator 

has already been reported.42

Assessment of Quantitative Precision for Percolator-Associated Combinations

As discussed above, Percolator-associated combinations are the top performers and thus may 

enable more extensive proteomic identification, especially for low-abundance peptides and 

proteins. Because one of the most important tasks for proteomics is quantification, the 

impact of these combinations on protein quantitation should be evaluated as well; however, 

to our knowledge, such investigation has not been reported. Here, we compared the 

quantitative precision by Percolator-associated combinations versus the SEQUEST–score 

approach using the Fusion HCD–IT yeast data set (three replicates). Spectral counts (SpC) 

of proteins were used as the quantitative feature. The precision was expressed by coefficients 

of variation (CV) of SpC for the individual proteins in the three replicates. A total of 2903 

and 3502 protein groups were commonly identified, respectively, by the SEQUEST–score 

and SEQUEST–Percolator combinations. The median CV for quantification of individual 

proteins by SEQUEST–Percolator (14.3 ± 0.09%, median ± median absolute deviation) was 

significantly lower than that by SEQUEST–score (17.3 ± 0.11%), with a p value of 2.2 × 

10−16 by paired Wilcoxon ranked-sum test (Figure 8A). The distribution of CV versus 

relative protein abundance (the total spectral counts) of the 2816 proteins identified in both 

two combinations is shown in Figure 8B. For proteins identified by the SEQUEST–
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Percolator approach, 87.5% of proteins have CV values <30%, while only 72.8% of proteins 

fell under the same threshold for SEQUEST–score. As is clearly evident from Figure 8B, 

SEQUEST–Percolator achieved lower CV for lower-abundance proteins than did 

SEQUEST–score. Similar results were also observed when comparing the Mascot–

Percolator or MS Amanda–Percolator methods against original-score-based methods (data 

not shown). This is likely because the increase of confidently identified distinct peptides per 

protein group by Percolator. Therefore, the use of Percolator greatly improves both the 

quality for both identification and quantification and, therefore, may serve as a valuable tool 

for quantitative proteomic analysis.

In summary, an optimal data-processing strategy for MS data interpretation is not only 

critical for extensive identification but also for reliable proteomic quantification. To explore 

the optimal strategy for peptide and protein identification, we evaluated three popular search 

engines combined with five postprocessing approaches. This comprehensive investigation 

was carried out with eight data sets generated by multiple laboratories from various MS 

instruments and proteomes using both commercial software and an in-house algorithm. It 

was found Percolator-associated approaches showed consistently better performances in 

both the identification and the label-free quantification for all data sets regardless of the 

search engines and, therefore, is advisable for proteomic analysis. The second-best strategies 

(without Percolator) under different data types and search engines were also identified. The 

results obtained in this study are highly valuable for directing the design and optimization of 

proteomics experiments.

Data Sharing

We have provided all the new raw files associated with this paper for free downloading. The 

project, “Investigation of Search Engines and Postprocessing Algorithms (ID: 819)”, is 

presented at www.chorusproject.org.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Flowchart for the optimization and evaluation of the combinations of search engines and 

postprocessing approaches. A total of three popular search algorithms (SEQUEST, Mascot, 

and MS Amanda) and five filtering approaches (score-based, group-based, PeptideProphet, 

LFDR, and Percolator) were investigated for analyzing different types of high-resolution MS 

data.
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Figure 2. 
Comparison of PSMs, distinct peptides, and protein groups identified at 1% protein FDR 

with SEQUEST, respectively coupled with score-based, group-based, LFDR, 

PeptideProphet, and Percolator filtering approaches. Data sets of (A) Orbitrap XL CID–IT 

yeast, (B) Elite CID-IT human, (C) Fusion CID–IT human, (D) Fusion HCD–IT yeast, (E) 

Q-TOF E. coli, (F) Velos HCD–OT yeast, (G) QE HCD–OT human, and (H) Fusion HCD–

OT human were analyzed. For all five combinations, SEQUEST–Percolator achieves the 

highest number in all three categories; the group-based approach achieves the second highest 

numbers for the CID-IT data sets (A–C); and LFDR achieves the second-highest number for 

HCD–OT data sets (F–H).
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Figure 3. 
(A) Overlap of distinct peptides identified by SEQUEST followed by postprocessing with 

score-based, group-based, LFDR, PeptideProphet, and Percolator approaches. (B) 

Distribution of distinct peptides per protein. A single randomly selected LC/MS run from the 

Fusion HCD–IT yeast data set was employed for this investigation, and 1% protein FDR was 

used.
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Figure 4. 
Comparison of PSMs, distinct peptides, and protein groups identified at 1% protein FDR by 

Mascot coupled, respectively, with score-based, group-based, LFDR, PeptideProphet, and 

Percolator filtering approaches. Mascot–Percolator achieves the highest number in all three 

categories.
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Figure 5. 
Comparison of PSMs, distinct peptides, and protein groups identified at 1% protein FDR by 

MS Amanda coupled, respectively, with score-based, group-based, LFDR, PeptideProphet, 

and Percolator filtering approaches. MS Amanda–Percolator achieves the highest number in 

all three categories.
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Figure 6. 
Comparison of PSMs, distinct peptides, and protein groups identified at 1% protein FDR by 

SEQUEST–Percolator, Mascot–Percolator, and MS Amanda–Percolator.
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Figure 7. 
Venn diagrams for (A) distinct peptides and (B) protein groups identified by SEQUEST–

Percolator, Mascot–Percolator, and MS Amanda–Percolator. The one LC–MS analysis in the 

Fusion HCD–OT Human data set was used. The exceptionally high peptide–protein overlap 

(>90%) among these three combinations indicates the high reliability of the results.

Tu et al. Page 22

J Proteome Res. Author manuscript; available in PMC 2016 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Coefficients of variations of the spectral counts for proteins identified by SEQUEST–score 

and SEQUEST–Percolator in the three replicates of Fusion HCD–IT yeast data set. (A) Box-

and-whisker plot analysis was employed to show the spread of protein CVs around the 

median value (the horizontal line inside the box); the bottom and top of the boxes 

correspond to the top 25th and 75th percentile of the CV distribution, and whiskers 

correspond to the minimum and maximum values. the Wilcoxon rank-sum test (WRS) was 

performed to compare the two sets, and a p value of <0.0001 was achieved. (B) The 

distribution of CV vs protein abundance. Red squares and blue triangles indicate 

SEQUEST–score and SEQUEST–Percolator data spots, respectively.
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