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ABSTRACT

The human immunodeficiency virus (HIV-1) envelope glycoproteins (Env) mediate virus entry through a series of complex con-
formational changes triggered by binding to the receptors CD4 and CCR5/CXCR4. Broadly neutralizing antibodies that recog-
nize conserved Env epitopes are thought to be an important component of a protective immune response. However, to date,
HIV-1 Env immunogens that elicit broadly neutralizing antibodies have not been identified, creating hurdles for vaccine devel-
opment. Small-molecule CD4-mimetic compounds engage the CD4-binding pocket on the gp120 exterior Env and induce Env
conformations that are highly sensitive to neutralization by antibodies, including antibodies directed against the conserved Env
region that interacts with CCR5/CXCR4. Here, we show that CD4-mimetic compounds sensitize primary HIV-1 to neutraliza-
tion by antibodies that can be elicited in monkeys and humans within 6 months by several Env vaccine candidates, including
gp120 monomers. Monoclonal antibodies directed against the gp120 V2 and V3 variable regions were isolated from the immu-
nized monkeys and humans; these monoclonal antibodies neutralized a primary HIV-1 only when the virus was sensitized by a
CD4-mimetic compound. Thus, in addition to their direct antiviral effect, CD4-mimetic compounds dramatically enhance the
HIV-1-neutralizing activity of antibodies that can be elicited with currently available immunogens. Used as components of mi-
crobicides, the CD4-mimetic compounds might increase the protective efficacy of HIV-1 vaccines.

IMPORTANCE

Preventing HIV-1 transmission is a high priority for global health. Eliciting antibodies that can neutralize transmitted strains of
HIV-1 is difficult, creating problems for the development of an effective vaccine. We found that small-molecule CD4-mimetic
compounds sensitize HIV-1 to antibodies that can be elicited in vaccinated humans and monkeys. These results suggest an ap-
proach to prevent HIV-1 sexual transmission in which a virus-sensitizing microbicide is combined with a vaccine.

Preventing sexual transmission of human immunodeficiency
virus (HIV-1) is essential for altering the course of the global

pandemic of AIDS. Currently, over 36 million people are infected
by HIV-1; 2.0 million people are newly infected with the virus
annually, and nearly 1.2 million individuals succumb each year to
AIDS (1). Hence, there is an urgent need to develop vaccines or
other strategies that can prevent HIV-1 transmission.

HIV-1-neutralizing antibodies are an important component of
a protective vaccine-induced immune response. Passive adminis-
tration of HIV-1-neutralizing antibodies protects monkeys from
intravenous and mucosal challenge with simian-human immuno-
deficiency viruses (SHIVs) (2–7). The trimeric envelope glycopro-
tein (Env) spike on the virion surface is the only HIV-1-specific
target accessible to neutralizing antibodies (8–10). The titers of
antibodies against a specific region of Env (the gp120 V2 variable
region) correlated with the moderate efficacy observed in the
RV144 clinical vaccine trial (11–13). A primary focus of HIV-1
vaccine development is the elicitation of antibodies against Env
that protect against HIV-1 acquisition.

The HIV-1 Env trimer, which is composed of three gp120 ex-
terior subunits and three gp41 transmembrane subunits, mediates

virus entry into host cells (10). The unliganded HIV-1 Env trimer
is metastable (14–19). Binding of gp120 to the initial receptor,
CD4, triggers Env conformational changes that result in the for-
mation/exposure of two elements: (i) the gp120 binding site for
the second receptor, CCR5 or CXCR4, and (ii) the gp41 heptad
repeat (HR1) coiled coil (20–35). Binding of gp120 to the CCR5 or
CXCR4 coreceptor induces further Env conformational changes
that result in the formation of an energetically stable gp41 six-
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helix bundle that promotes the fusion of the viral and target cell
membranes (18–20, 36).

As a successful persistent virus, HIV-1 has evolved Env trimers
that exhibit substantial genetic variability and a heavily glycosy-
lated surface, which represent major challenges for the elicitation
of broadly neutralizing antibodies (10, 37–40). Most anti-Env an-
tibodies elicited during natural infection do not neutralize HIV-1,
and those that do usually are strain restricted, allowing virus es-
cape (31, 41–45). Only after several years of infection in some
HIV-1-infected individuals are more broadly neutralizing anti-
bodies generated (43, 46–49). Broadly HIV-1-neutralizing anti-
bodies typically display unusual features, such as long comple-
mentarity-determining regions that allow binding to the heavily
shielded, conserved epitopes on the surface of the unliganded Env
trimer (46, 50, 51). Some neutralizing antibodies with modest
breadth bind Env carbohydrate-dependent epitopes (51–58).

Even the best current HIV-1 Env immunogens elicit antibodies
that inhibit the infection of only the small subset of primary vi-
ruses that are more prone to neutralization (51, 59–62). The sen-
sitivity of HIV-1 strains to antibody neutralization depends upon
the integrity of the Env epitope and Env reactivity; the latter prop-
erty indicates the propensity of unliganded Env to undergo con-
formational changes (16, 63). A successful HIV-1 vaccine must
cover a range of phylogenetically diverse transmitted/founder vi-
ruses, most of which have Envs of low reactivity and exhibit low
sensitivity to neutralization by antibodies (16, 63–65). Thus, a
successful HIV-1/AIDS vaccine should elicit antibodies that rec-
ognize conserved elements of the Env trimer in its “closed,” unli-
ganded conformation. Most potently neutralizing antibodies re-
quire minimal conformational change in the unliganded Env
trimer for their binding (16, 66).

The CD4-bound Env intermediate differs significantly in con-
formation from the unliganded state (67, 68). The more “open”
conformation of the CD4-bound Env results in the exposure of
the highly conserved gp120 surface involved in CCR5/CXCR4
binding (23, 24, 69, 70). The conserved coreceptor-binding sur-
face on gp120 overlaps with V3 and CD4-induced (CD4i) epitopes
(69–75). Antibodies against these epitopes are efficiently elicited
soon after HIV-1 infection in humans (76–78). Moreover, these
types of antibodies can be elicited by the immunization of animals
and humans with Env proteins (78–84). The ease with which these
antibodies are elicited by immunization depends upon the ability
of the Env immunogen to bind CD4 in the host; for example,
the level of these antibodies was significantly higher in rabbits
transgenic for human CD4 than in control rabbits (79, 80). CD4i
antibodies were elicited in wild-type rabbits by gp120 cores in
proportion to how closely the engineered cores resembled the
CD4-bound state (83, 84). CD4i- and V3-directed antibodies also
were elicited by HIV-1 Env immunogens in monkeys, whose CD4
is efficiently bound by HIV-1 gp120 (78–82). The CD4i- and V3-
directed antibodies exhibit little neutralizing activity against most
primary HIV-1, as their epitopes are not exposed in the unligan-
ded state of Env and are sterically inaccessible once the viral Env
spike binds CD4 on a target cell (85, 86). If, however, these
epitopes can be exposed on a virus that has not yet engaged cellular
CD4, CD4i- and V3-directed antibodies effectively neutralize a
wide range of HIV-1 and even some heterologous HIV-2 strains
(76–79, 82, 86).

Soluble CD4 and CD4 miniproteins have been shown to in-
duce the CD4-bound state on HIV-1 variants and to render them

susceptible to neutralization by CD4i and V3 antibodies (76–79,
82, 86). Small-molecule compounds (less than 500 Da) also have
been discovered that bind HIV-1 gp120 and block the gp120-CD4
interaction (87). The prototypic CD4-mimetic compounds NBD-
556 and NBD-557 only weakly inhibited a few HIV-1 isolates (87–
89). NBD-556 binds in a well-conserved pocket on gp120 and can
induce conformational changes in gp120 similar to those induced
by CD4 (88–91). Structure-based design has led to the improve-
ment of the affinity and antiviral potency and breadth of the CD4-
mimetic compounds (92–95). Recently developed analogues have
been shown to inhibit infection by a range of HIV-1 primary
strains (94, 95). Moreover, at subinhibitory concentrations, these
CD4-mimetic compounds induced the exposure of previously
cryptic Env epitopes and sensitized primary HIV-1 to neutraliza-
tion by CD4i- and V3-directed monoclonal antibodies (15, 96).
These analogues also sensitized primary HIV-1 to neutralization
by serum from rabbits immunized with a gp120 core engineered
to be fixed in the CD4-bound state (96). The efficiency with which
the gp120 core immunogens elicited rabbit antibodies that neu-
tralized the sensitized HIV-1 correlated with the degree of fixation
to resemble the CD4-bound state (83, 84, 96). These results sug-
gested that HIV-1 Env immunogens that could bind CD4 in the
immunized host also elicit antibodies that could neutralize pri-
mary HIV-1 sensitized by CD4-mimetic compounds. Here, we
test this hypothesis in monkeys and humans immunized with
multiple HIV-1 vaccine candidates.

MATERIALS AND METHODS
Compounds. The CD4-mimetic compounds (�)(R,R)BNM-III-170 and
(R,R)BNM-IV-147 are referred to as BNM-III-170 and BNM-IV-147, re-
spectively, throughout the manuscript. The compounds were synthesized
and the chemical structure characterized as described previously (92–95).
The compounds were dissolved in dimethyl sulfoxide (DMSO) at a stock
concentration of 10 to 20 mM, aliquoted, and stored at �20°C. Each
compound then was diluted to 1 mM in serum-free Dulbecco’s modified
Eagle’s medium (DMEM) and used for different assays.

Cell lines. 293T human embryonic kidney and Cf2Th canine thymo-
cytes (ATCC) were grown at 37°C and 5% CO2 in Dulbecco’s modified
Eagle’s medium (Invitrogen) containing 10% fetal bovine serum (Sigma)
and 100 �g/ml penicillin-streptomycin (Mediatech, Inc.). Cf2Th cells sta-
bly expressing human CCR5 and CD4 were grown in medium supple-
mented with 0.4 mg/ml G418 and 0.2 mg/ml hygromycin (Invitrogen).

Recombinant luciferase viruses. 293T human embryonic kidney cells
were cotransfected with plasmids expressing the pCMV�P1�env HIV-1
Gag-Pol packaging construct, the HIV-1 envelope glycoproteins, or the
envelope glycoprotein of the control amphotropic murine leukemia virus
(A-MLV) and the firefly luciferase-expressing vector at a DNA ratio of
1:1:3 �g using the Effectene transfection reagent (Qiagen). Cotransfection
produced recombinant, luciferase-expressing viruses capable of a single
round of infection. The virus-containing supernatants were harvested 36
to 40 h after transfection, spun, aliquoted, and frozen at �80°C until
further use. The reverse transcriptase (RT) levels of all virus stocks were
measured as described previously (97).

Infection by single-round luciferase viruses. Cf2Th-CCR5-CD4 tar-
get cells were seeded at a density of 6 � 103 cells/well in 96-well luminom-
eter-compatible tissue culture plates (PerkinElmer) 24 h before infection.
On the day of infection, BNM-III-170 or BNM-IV-147 (0 to 100 �M) was
incubated with recombinant viruses (10,000 RT units) at 37°C for 30 min.
In the case of sensitization assays, a constant concentration of compounds
was incubated with virus for 30 min at 37°C, and then 17b or other anti-
bodies (over a range of 0 to 100 �g/ml) or plasma at different dilutions was
added to the virus-compound mixture and incubated for an additional 30
min at 37°C. The mixtures then were added to the target cells and incu-
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bated for 48 h at 37°C. After this time, the medium was removed from
each well and the cells were lysed by the addition of 30 �l passive lysis
buffer (Promega) and three freeze-thaw cycles. An EG&G Berthold LB
96V microplate luminometer was used to measure the luciferase activity
of each well after the addition of 100 �l of luciferin buffer (15 mM MgSO4,
15 mM KPO4, pH 7.8, 1 mM ATP, and 1 mM dithiothreitol) and 50 �l of
1 mM 99% Firefly D-luciferin free acid (Prolume).

ELISA. The titer of anti-gp120 antibodies in the plasma of immunized
monkeys and humans was measured by enzyme-linked immunosorbent
assay (ELISA). Ninety-six-well ELISA plates (REACTI-BIND; Fisher Sci-
entific) were coated with 100 �l of 2 �g/ml purified recombinant HIV-
1YU2 gp120 with a C-terminal His-6 tag, which was produced transiently
by the transfection of 293F cells. Coated plates were incubated at 4°C
overnight. Plates were washed three times with phosphate-buffered saline
(PBS) containing 0.1% Tween 20 and blocked with 200 �l/well of 1%
bovine serum albumin (BSA) in PBS and incubated at 37°C for 1 h. Block-
ing buffer was aspirated, and serial dilutions of preimmune or immunized
human or monkey plasma were added in duplicate in a final volume of 100
�l/well and incubated at 37°C for 1 h. Plates were washed three times with
PBS containing 0.1% Tween 20. Goat anti-human Fc gamma horseradish
peroxidase (HRP) (Jackson ImmunoResearch Laboratories) was diluted
1:10,000 with blocking buffer, and 100 �l was added to each well and
incubated at 37°C for 1 h. Plates were washed three times with PBS con-
taining 0.1% Tween 20. 3,3=5,5-Tetramethylbenzidine (TMB) single so-
lution substrate (Life Technologies) was added at a final volume of 100
�l/well and incubated at room temperature for 5 min to allow color to
develop before reading at an optical density of 450 nm. Mean titer values
are reported. The titers of anti-gp120 antibodies that resulted in an ELISA
signal 2.5 times the value obtained for the negative control and 5 times the
value obtained for the negative control (preimmune) plasma were esti-
mated.

RESULTS
Direct inhibition of HIV-1 infection by small-molecule CD4-
mimetic compounds. We examined the ability of two recently
designed and synthesized CD4-mimetic compounds, BNM-III-
170 and BNM-IV-147 (93), to inhibit HIV-1 entry. Recombinant
HIV-1 expressing the firefly luciferase gene was pseudotyped with
different envelope glycoproteins, either HIV-1JR-FL or HIV-1YU2

Env or, as a control, the amphotropic murine leukemia virus (A-
MLV) Env. The recombinant viruses were incubated with cells
expressing CD4 and CCR5 in the presence of different concentra-
tions of the compounds. BNM-III-170 and BNM-IV-147 specifi-
cally inhibited the wild-type (wt) HIV-1JR-FL virus with 50% in-
hibitory concentrations (IC50s) of 22 and 7 �M, respectively (Fig.
1 and Table 1). Both compounds inhibited the HIV-1YU2 virus even
more potently (Table 1 and and Melillo et al., unpublished). The
HIV-1JR-FL S375W and HIV-1YU2 S375W mutants, in which the
gp120 Phe 43 cavity is occupied by the indole ring of the substituted
tryptophan residue (84, 98), were resistant to BNM-III-170 (Table 1).
In contrast, the HIV-1YU2 S375A mutant was even more sensitive to
BNM-III-170 than wild-type HIV-1YU2. These results are consistent
with the expectation that the antiviral activity of CD4-mimetic com-
pounds depends upon their interaction with the gp120 Phe 43 cavity
(88, 91–95).

BNM-III-170 sensitizes diverse HIV-1 strains to neutraliza-
tion by an antibody against a CD4-induced gp120 epitope. We
tested the ability of BNM-III-170 to sensitize different strains of
HIV-1 to neutralization by the 17b monoclonal antibody, which
recognizes a CD4-induced (CD4i) epitope (73, 74, 86). Recombi-
nant HIV-1 encoding firefly luciferase was pseudotyped with the
Envs from different primary HIV-1 strains and then incubated
sequentially with a subneutralizing concentration of BNM-III-

170 or BNM-IV-147, the 17b antibody, and Cf2Th-CD4/CCR5
cells. After 48 h, the luciferase activity in the target cells was mea-
sured as an indication of infection efficiency. As controls, we
tested viruses pseudotyped with HIV-1JR-FL and HIV-1YU2 Env
mutants containing residues at gp120 position 375 that either fill
(S375W) or expand (S375A) the Phe 43 cavity. Recombinant
HIV-1 pseudotyped with the A-MLV Env was used as an addi-
tional control for specificity. The wild-type primary HIV-1 viruses
were resistant to neutralization by the 17b antibody alone, but
several viruses became exquisitely sensitive to 17b neutralization
in the presence of subneutralizing concentrations of BNM-III-170 or
BNM-IV-147 (Fig. 2A and Table 1). After treatment with BNM-III-
170, both wild-type HIV-1JR-FL and wild-type HIV-1YU2, as well as
the HIV-1YU2 S375A mutant, were neutralized by the 17b antibody
(Table 1). In contrast, the HIV-1JR-FL S375W and HIV-1YU2 S375W
mutants were not inhibited by the 17b antibody, regardless of the
presence of BNM-III-170. As expected, viruses with the A-MLV Env
also were resistant to 17b neutralization. These results indicate that
gp120 binding by BNM-III-170 is critical for its ability to sensitize
HIV-1 to neutralization by the 17b antibody, similar to the results
seen for other CD4-mimetic compounds (96).

BNM-III-170 sensitizes HIV-1 to neutralization by antibod-
ies generated in an HIV-1-infected individual. As antibodies di-
rected against CD4-induced Env epitopes are commonly elicited
during natural HIV-1-infection (76–78), we tested the neutraliza-
tion of HIV-1JR-FL by the serum of an HIV-1-infected individual
in the absence and presence of BNM-III-170. In the absence of
BNM-III-170, higher concentrations of this serum resulted in a
specific enhancement of HIV-1JR-FL infection (Fig. 2B). When
BNM-III-170 was added at subneutralizing concentrations, HIV-
1JR-FL was efficiently neutralized by the serum. Both the enhance-
ment and neutralization of HIV-1JR-FL were specific, as no effect of
the serum on infection of viruses with the A-MLV Env was ob-
served. Thus, antibodies that can neutralize HIV-1 after treatment
with a CD4-mimetic compound are present in some HIV-1-in-
fected people.

FIG 1 Inhibition of HIV-1JR-FL infection by CD4-mimetic compounds. Re-
combinant HIV-1 encoding firefly luciferase was pseudotyped with the HIV-
1JR-FL Env or the A-MLV Env. Viruses were incubated with Cf2Th-CD4/CCR5
cells in the presence of the indicated concentrations of the CD4-mimetic com-
pounds BNM-III-170 and BNM-IV-147. After 48 h, the luciferase activity in
the target cells was measured. The level of infection relative to that seen in the
absence of the compound is reported. The means and standard deviations
from triplicate samples within a typical experiment are shown.

HIV-1 Sensitization to Antibodies
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BNM-III-170 sensitizes HIV-1 to neutralization by monkey
plasma elicited by Env immunization. Previous studies demon-
strated that CD4-mimetic compounds could sensitize primary
HIV-1 strains to neutralization by sera from rabbits immunized
with gp120 cores that were modified to stabilize the CD4-bound
conformation (84, 96). We tested the plasma of rhesus macaques
immunized with multiple HIV-1 Env vaccine candidates for the
presence of antibodies that neutralize the primary virus, HIV-1JR-FL,
treated with a subinhibitory concentration of BNM-III-170. Five
groups of monkeys were studied.

(i) Nonhuman primate (NHP) 62.1 (Center for HIV/AIDS
Vaccine Immunology and Immunogen Design [CHAVI-ID]).
Six rhesus macaques were immunized over the course of 136
weeks with gp120 and gp140C glycoproteins from different trans-
mitted/founder and primary HIV-1 (99). For weeks 0 to 24, the
gp120 and gp140C immunogens were selected based on their af-
finity for the unmutated common ancestor and intermediate an-
cestors of the CH01-CH04 neutralizing antibody lineage (99,

100). Plasma from week 123 was tested for the ability to neutralize
HIV-1JR-FL that had been incubated with either a subinhibitory
concentration of BNM-III-170 or a DMSO control. In the absence
of BNM-III-170, none of the plasma samples from the six vacci-
nated monkeys neutralized HIV-1JR-FL (Fig. 3A). In the presence
of a subinhibitory concentration of BNM-III-170, all six plasma
potently neutralized HIV-1JR-FL. The observed neutralization was
specific, as the virus pseudotyped with the A-MLV Env was not
inhibited. These results indicate that BNM-III-170 can potently
sensitize a primary, neutralization-resistant HIV-1 to antibodies
raised in monkeys to gp120/gp140C immunogens.

(ii) NHP 36 (CHAVI-ID). Two groups of 5 rhesus macaques
were primed with different ALVAC canarypox vectors followed by
three boosts with a combination of the same ALVAC vector and a
mixture of two gp120 glycoproteins from a clade B HIV-1 strain
and a clade E HIV-1 strain (99, 101). The group 1 monkeys were
immunized with an empty ALVAC vector, whereas the group 2
monkeys were immunized with ALVAC VPC, which encodes

TABLE 1 Inhibition of HIV-1 Env variants by CD4-mimetic compounds and the 17b CD4i antibody

Virus Clade

IC50 of:

17ba (�g/ml)
17b � 50 �M
BNM-III-170a (�g/ml)

17b � 50 �M
BNM-IV-147a (�g/ml)

BNM-III-170b

(�M)
BNM-IV-147b

(�M)

JR-FL wt B �30 0.2 � 0.0 0.2 � 0.0 18.9 � 3.8 6.7 � 0.9
JR-FL S375W B �30 �30 �30 �100 90.5
YU2 wt B �30 0.2 � 0.1 0.1 1.2 � 0.1 0.4
YU2 S375W B �30 �30 �30 �100 88.7
YU2 S375A B �30 0.2 � 0.0 0.4 0.6 � 0.0 0.4
A4 A �30 1.6 � 0.8 11.0 � 6.7 4.5 � 1.4 1.8 � 0.4
B6 B �30 �30 �30 47.6 � 19.0 15.8 � 1.4
C5 C �30 5.7 � 4.8 17.2 � 8.5 9.2 � 2.7 5.9 � 2.1
C11 C �30 �30 �30 36.6 � 8.4 14.4 � 0.3
C17 C �30 �30 20.1 � 9.9 7.4 � 0.6 4.4 � 0.9
821 D �30 1.5 � 1.2 12.8 � 8.3 0.5 � 0.0 0.5 � 0.0
859 D �30 19.2 � 9.6 10.3 � 9.9 2.5 � 0.2 1.1 � 0.2
AG266 AG Subtype �30 �30 12.9 � 8.8 25.2 � 1.5 7.7 � 0.2
A-MLV �30 25.5 � 4.5 �30 88.7 � 11.2 81.2 � 9.4
a Recombinant HIV-1 encoding firefly luciferase was pseudotyped with the indicated HIV-1 Env (or A-MLV Env control). Viruses were incubated with 50 �M CD4-mimetic
compound (BNM-III-170 or BNM-IV-147) or with DMSO and then with different concentrations of the 17b antibody. After incubation of the viruses with Cf2Th-CD4/CCR5 cells
for 48 h, the cells were lysed and luciferase activity was measured. The inhibitory concentration (IC50) of the 17b antibody is reported. Means and standard deviations from
triplicate samples within an experiment are shown. ND, not determined.
b The inhibitory concentrations (IC50) for the direct antiviral effect of BNM-III-170 and BNM-IV-147 were determined as in footnote a.

FIG 2 BNM-III-170 sensitizes HIV-1JR-FL to neutralization by antibodies. Recombinant HIV-1 encoding firefly luciferase was pseudotyped with the HIV-1JR-FL

Env or the A-MLV Env. Viruses were incubated with either DMSO (open symbols) or 30 �M BNM-III-170 (filled symbols) and then with the 17b CD4i antibody
at the indicated concentration (A) or with serum from an HIV-1-infected individual at the indicated dilution (B). After incubation of the viruses with
Cf2Th-CD4-CCR5 cells for 48 h, the cells were lysed and luciferase activity was measured. The level of infection relative to that seen in the absence of the antibody
is shown. The means and standard deviations from triplicate samples within an experiment are shown; the experiment shown in panel A was repeated more than
10 times and the experiment in panel B once, with similar results.
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HIV-1 Gag, Pol, and Env proteins (101). The immunization
scheme in the group 2 monkeys recapitulates that used in the
RV144 clinical vaccine trial in Thailand, which resulted in 	32%
protection from HIV-1 acquisition (12). Plasma collected at week
55, 2 weeks after the last boost, were tested. In the group 1 mon-
keys, three of the plasma potently neutralized HIV-1JR-FL pre-
treated with BNM-III-170, and the other two plasma samples ex-
hibited weak inhibition (Fig. 3B). In the group 2 monkeys, all five
plasma potently neutralized HIV-1JR-FL treated with BNM-III-170
(Fig. 3C). None of the plasma neutralized HIV-1JR-FL in the ab-
sence of BNM-III-170. The plasma exhibited minimal inhibition
of HIV-1 pseudotyped with the A-MLV Env in either the presence
or absence of BNM-III-170. These results indicate that an RV144-
like immunization regimen, including ALVAC VPC, was more
effective at eliciting antibodies that neutralized the sensitized
HIV-1JR-FL than a comparable immunization regimen using
gp120 glycoproteins with the empty ALVAC vector.

(iii) NHP 54 (CHAVI-ID). Ten rhesus macaques were immu-
nized with gp140 Envs corresponding to those Env sequences ob-
served at multiple time points in a human infected with clade C
HIV-1 who raised broadly neutralizing antibodies (CAP206) (99,
102). Five of the monkeys were immunized with gp140 Envs that
sequentially were observed in the CAP206 study, and five of the
monkeys were immunized with a mixture of gp140 Envs corre-
sponding in sequence to the swarm of viruses observed in the

infected individual (99, 102). Plasma samples collected at week 38,
2 weeks after the last boost, were tested for the ability to neutralize
HIV-1JR-FL in the absence or presence of subneutralizing concen-
trations of BNM-III-170. Plasma from most of the monkeys im-
munized with sequential or swarm gp140 Envs exhibited the abil-
ity to neutralize HIV-1JR-FL after pretreatment with BNM-III-170
(Fig. 3D). No neutralization of HIV-1JR-FL that was not incubated
with BNM-III-170 was seen. Minimal effects of the plasma on
infection of the virus with the A-MLV Env were observed in the
absence and presence of BNM-III-170. Thus, immunization with
CAP206 gp140 Env variants elicited plasma antibodies that could
neutralize HIV-1 that was sensitized by BNM-III-170. Of note, the
titers of neutralizing antibodies against sensitized HIV-1JR-FL were
not as high in NHP 54 as those seen in the two monkey studies
described above (NHP 62.1 and NHP 36). One variable that could
account for this difference is the time at which the immune plasma
were collected. An earlier time point was used with NHP 54 than
with NHP 62.1 and NHP 36. Another variable is the degree of
divergence between the Env immunogen and the HIV-1JR-FL

strain used in the neutralization arrays. NHP 54 immunizations
were conducted with a clade C HIV-1 Env, whereas the NHP 62.1
and NHP 36 immunizations included a clade B Env immunogen,
which belongs to the same clade as HIV-1JR-FL. These possible
explanations will be addressed in the studies below.

(iv) NHP 79 (CHAVI-ID). The CH505 Envs were derived at

FIG 3 Monkeys immunized with different HIV-1 Env immunogens generate antibodies that neutralize HIV-1JR-FL sensitized with BNM-III-170. Recombinant,
luciferase-expressing viruses with HIV-1JR-FL Env or A-MLV Env were incubated with 30 �M BNM-III-170 (green) or without compound (red). The viruses
subsequently were incubated with the indicated dilution of plasma from immunized monkeys prior to incubation with Cf2Th-CD4/CCR5 cells for 48 h. The level
of infection relative to that seen in the absence of plasma is shown. The means and standard deviations from triplicate samples in a typical experiment are shown.
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multiple time points from a clade C HIV-1-infected African sub-
ject who generated a broadly neutralizing antibody response
(103). In NHP 79 (group 1), four rhesus macaques were immu-
nized with GLA-SE adjuvant and the CH505 gp120 glycoprotein
derived on day 7 after infection. Plasma samples from 21 weeks of
immunization were tested. The plasma neutralized HIV-1JR-FL

that had been incubated with BNM-III-170 but did not inhibit
infection of the untreated HIV-1JR-FL (Fig. 3E). Minimal effects of
the plasma on A-MLV infection were observed. These results in-
dicate that immunization with a clade C gp120 can elicit antibod-
ies that neutralize the clade B HIV-1JR-FL treated with BNM-III-
170. Moreover, these antibodies can be elicited as early as 21 weeks
of immunization.

(v) Sundling et al. NHP study (Karolinska Institutet). Six rhe-
sus macaques were immunized with a soluble HIV-1YU2 gp140-F
trimer (with a fibritin foldon) administered in adjuvant (104). All
six monkey plasma samples potently neutralized HIV-1JR-FL that
was sensitized by BNM-III-170 (Fig. 3F). These plasmas exhibited
only weak inhibition of the virus pseudotyped with the A-MLV
Env. Control plasma from monkeys immunized with adjuvant
alone did not neutralize HIV-1JR-FL in either the presence or ab-
sence of BNM-III-170 (data not shown).

Together, the above-described studies demonstrate that vari-
ous HIV-1 gp120 and/or soluble gp140 Env immunogens can
elicit antibodies in monkeys that neutralize a heterologous pri-

mary HIV-1 previously treated with subneutralizing concentra-
tions of a CD4-mimetic compound.

Time course of neutralizing antibody elicitation. The elicita-
tion of neutralizing antibodies against BNM-III-170-sensitized
HIV-1JR-FL was documented after an extensive period of immuni-
zation in some of the above-described nonhuman primate studies.
To investigate whether shorter immunization regimens might
elicit these antibodies, we tested the plasma of selected monkeys
from earlier time points in the immunization schedule.

In our initial study of NHP 62.1 monkeys, we evaluated the
plasma from animals that received 8 immunizations (week 123).
We demonstrated that 6/6 monkeys immunized with gp120 and
gp140C glycoproteins had circulating antibodies that could neu-
tralize HIV-1JR-FL that had been sensitized by BNM-III-170 (Fig.
3A). To investigate the time course of elicitation of these antibod-
ies, the plasma from these six monkeys was tested at 8, 14, 20, 26,
and 86 weeks following initial immunization. At week 8, after two
immunizations, only one of the six monkeys exhibited circulating
antibodies that neutralized the BNM-III-170-sensitized HIV-
1JR-FL (Fig. 4A). By week 14, after three immunizations, three of
the monkeys had these antibodies in their plasma, and a fourth
animal exhibited weak activity (Fig. 4B). By week 20, after four
immunizations, 4/6 monkeys had antibodies that potently neu-
tralized HIV-1JR-FL in the presence of BNM-III-170, and the re-
maining two monkeys exhibited weak activity (Fig. 4C). By 26

FIG 4 Time course of elicitation of antibodies that neutralize sensitized HIV-1JR-FL. (A to E) Plasma samples from NHP 62.1 (CHAVI-ID) collected at the
indicated times of immunization were tested for the ability to neutralize recombinant HIV-1 with HIV-1JR-FL or A-MLV Envs, in either the absence (red) or
presence (green) of BNM-III-170 (30 �M). The means and standard deviations from triplicate samples are shown. (F) The titers of plasma that neutralized 50%
of HIV-1JR-FL were plotted versus the time of immunization for each monkey in NHP 62.1. The numbers identify the individual monkeys in the study.
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weeks, after five immunizations, all 6 monkeys had circulating
antibodies that neutralized the BNM-III-170-treated HIV-1JR-FL

but not the untreated virus (Fig. 4D). These antibodies also were
evident in the plasma collected at 86 weeks, after six immuniza-
tions, from all 6 monkeys (Fig. 4E). The time course of elicitation
of antibodies that neutralized the BNM-III-170-sensitized HIV-
1JR-FL is summarized in Fig. 4F.

The group 2 monkeys in NHP 36 received an RV144-like vac-
cination regimen and generated antibodies that neutralized the
BNM-III-170-sensitized HIV-1JR-FL by 55 weeks following the ini-
tiation of immunization (Fig. 3C). Plasma taken from 4/5 mon-
keys at week 27 after initial inoculation, after the monkeys re-
ceived two ALVAC VPC primes and two gp120 boosts,
neutralized the BNM-III-170-sensitized HIV-1JR-FL virus (data
not shown). Weaker neutralizing activity was detected in the
plasma of the remaining monkey. These studies indicate that by 26
to 27 weeks after inoculation of monkeys with Env immunogens,
antibodies capable of neutralizing a BNM-III-170-sensitized pri-
mary HIV-1 can be elicited.

Neutralization of different sensitized HIV-1 strains by im-
munized monkey plasma. The neutralization of BNM-III-170-
sensitized HIV-1AD8, HIV-1YU2, and HIV-1JR-FL by plasma from
immunized monkeys was tested. Plasma from monkeys in
CHAVI-ID NHP 62.1, NHP 79, and NHP 109 neutralized these
viruses in the presence of a subinhibitory concentration of BNM-
III-170 but not in the absence of the compound (Table 2). These
results indicate that antibodies generated in monkeys by Env im-
munization are capable of neutralizing diverse HIV-1 strains sen-
sitized by BNM-III-170.

Elicitation of antibodies that neutralize sensitized HIV-1 in
vaccinated humans. The above-described study of monkeys
(NHP 36) suggested that an immunization regimen similar to that
used in the RV144 clinical vaccine trial (12, 99) could elicit anti-
bodies that efficiently neutralize BNM-III-170-sensitized HIV-
1JR-FL (Fig. 3C). We investigated whether Env-vaccinated humans in
the RV144 trial raised such antibodies. We tested preimmune and
immune plasma from 15 randomly selected RV144 subjects for the
ability to neutralize HIV-1JR-FL in the absence and presence of BNM-

III-170 and BNM-IV-147 (Fig. 5). None of the plasma significantly
inhibited HIV-1JR-FL in the absence of the compounds (Table 3 and
Fig. 5). Plasma from five of the Env-vaccinated individuals specifi-
cally neutralized HIV-1JR-FL but not the A-MLV Env pseudotype in
the presence of subinhibitory concentrations of BNM-III-170 and
BNM-IV-147. Preimmune plasma from these individuals did not
neutralize HIV-1JR-FL in the presence of BNM-III-170 and BNM-IV-
147. These results suggest that some humans primed with ALVAC
VPC and boosted twice with ALVAC VPC plus clade B/E gp120 gly-
coproteins generate antibodies that neutralize HIV-1JR-FL sensitized
by BNM-III-170 and BNM-IV-147.

Compared with the monkeys in NHP 36 (Fig. 3C), the human
subjects in this RV144 cohort exhibited lower levels and frequen-
cies of antibodies that neutralized the BNM-III-170-sensitized
HIV-1JR-FL (Fig. 5 and Table 3). We used an ELISA to measure the
levels of gp120-reactive antibodies in the plasma of the RV144
vaccinees and the immunized monkeys in group 2 of NHP 36. A
correlation was observed between the presence of antibodies that
neutralized the BNM-III-170-sensitized HIV-1JR-FL and the titer
of anti-gp120 antibodies in the plasma of the RV144 vaccinees
(Fig. 5C). Only the RV144 subjects with reciprocal anti-gp120
titers of at least 1,000 had plasma antibodies that neutralized the
BNM-III-170-sensitized HIV-1JR-FL. These anti-gp120 titers were
in the lower range of those observed in the monkeys in group 2 of
the NHP 36 study (Fig. 5C). These results suggest that individual
differences in the antibody response to the RV144 immunization
regimen among human vaccinees likely contribute to the ob-
served differences in the levels of antibodies that neutralize the
BNM-III-170-sensitized HIV-1JR-FL.

Env epitopes targeted by antibodies that neutralize sensi-
tized HIV-1. Monoclonal antibodies directed against conserved
CD4i and V3 epitopes have been shown to neutralize primary
HIV-1 strains that have been exposed to a CD4-mimetic com-
pound (15, 96). CD4i and anti-V3 antibodies can be elicited by
vaccination of monkeys with some Env immunogens (76, 78). We
hypothesized that these types of antibodies in the plasma of the
Env-vaccinated monkeys contributed to the observed neutraliza-
tion of the BNM-III-170-sensitized HIV-1JR-FL. To test this hy-

TABLE 2 Inhibition of primary HIV-1 Env isolates by CD4-mimetic compounds in the presence of 17b CD4i antibody or plasma from immunized
monkeys

Antibody/compound

IC50 fora:

HIV-1JR-FL HIV-1YU2 HIV-1AD8 A-MLV

BNM-III-170b 17.4 �M 1.9 �M 3.6 �M �100 �M
17b �30 �g/ml �30 �g/ml �30 �g/ml �30 �g/ml
NHP 79-5356, wk 21 �1:80 �1:80 �1:80 1:160
NHP 62.1-5097, wk 123 �1:80 �1:80 �1:80 1:160
NHP 109-6117, wk 71 �1:80 �1:80 �1:80 �1:80
NHP 109-6204, wk 71 �1:80 �1:80 �1:80 1:160
17b � BNM-III-170 0.2 �g/ml 
0.2 �g/ml 0.2 �g/ml �30 �g/ml
NHP 79-5356, wk 21, � BNM-III-170 1:320 1:640 1:640 1:80
NHP 62.1-5097, wk 123, � BNM-III-170 1:640 1:1,280 1:1,280 �1:80
NHP 109-6117, wk 71, � BNM-III-170 1:1,280 1:1,280 1:1,280 �1:80
NHP 109-6204, wk 71, � BNM-III-170 1:640 1:1,280 1:1,280 1:160
a Recombinant HIV-1 encoding firefly luciferase was pseudotyped with the indicated HIV-1 Env (or A-MLV Env control), as described in the footnotes to Table 1. Viruses were
incubated with 10 �M BNM-III-170 (YU2 and AD8), 50 �M BNM-III-170 (JR-FL and A-MLV), or DMSO and then with different concentrations of the 17b antibody or dilution
of plasma. The nonhuman primates (NHP) 6117 and 6204 were subjects in CHAVI-ID NHP 109, and both were members of group 1, which received basiliximab (1 mg) after
immunization with CH505 T/F gp120 in GLA-SE adjuvant. The concentration of the 17b antibody (�g/ml) or the titer of the plasma that neutralized 50% of the virus infection is
indicated. Means and standard deviations from triplicate samples within an experiment are shown.
b The inhibitory concentration (IC50) for the direct antiviral effect of BNM-III-170 was determined as described in footnote a.
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pothesis, we examined the ability of monoclonal antibodies iso-
lated from the immunized monkeys to neutralize HIV-1JR-FL in
the absence and presence of BNM-III-170.

Monoclonal antibodies were derived from monkeys immu-
nized in CHAVI-ID NHP 62.1: 900973 (directed against the gp120
C terminus); 900974, 900990, and 902067 (directed against the
gp120 V3 region); and 902090 (directed against the gp120 V2
region). Another V3 region-directed antibody, GE2.JG8, was gen-
erated from monkey F124 immunized in the Sundling et al. study
(104) after sorting single Env-specific memory B cells (105). Two
human monoclonal antibodies (CH22 and CH23) directed
against the gp120 V3 region were derived from subjects in the
RV135 clinical HIV-1 vaccine trial (106). The 830A antibody, de-
rived from an HIV-1-infected individual, recognizes a discontin-

uous epitope comprising residues from the gp120 V2 region (107,
108). None of the monoclonal antibodies neutralized untreated
HIV-1JR-FL (Table 4). However, in the presence of subneutralizing
concentrations of BNM-III-170, all of the antibodies except
900973 (directed against the gp120 C terminus) potently neutral-
ized HIV-1JR-FL. These results indicate that some of the antibodies
that mediate neutralization of HIV-1JR-FL sensitized by BNM-III-
170 and that are generated by vaccination of monkeys and hu-
mans are directed against the gp120 V2 and V3 regions.

Cooperativity between a CD4-mimetic compound and anti-
bodies. To test whether CD4-mimetic compounds and antibodies
synergize to inhibit primary HIV-1, we examined the neutraliza-
tion of HIV-1JR-FL and A-MLV over a range of concentrations of
BNM-III-170 and 17b antibody (Fig. 6A and B). The results in

FIG 5 Some RV144 vaccinees generate antibodies that neutralize sensitized HIV-1. (A) Recombinant, luciferase-expressing viruses with HIV-1JR-FL Env or
A-MLV Env were incubated with 30 �M BNM-III-170 (green) or without compound (red). The viruses subsequently were incubated with the indicated dilution
of plasma from human subjects in the RV144 HIV-1 vaccine trial. Preimmune plasma samples are designated by open symbols and dashed lines and immune
plasma samples by closed symbols and unbroken lines. The virus-plasma mixtures were incubated with Cf2Th-CD4/CCR5 cells for 48 h, after which the cells were
lysed and luciferase activity measured. The level of infection relative to that seen in the absence of plasma is shown. The means and standard deviations from
triplicate samples within an experiment are shown; the experiment was performed twice with similar results. (B) Neutralization assays were performed as
described for panel A, except that 30 �M BNM-IV-147 was used instead of BNM-III-170. (C) The reciprocal titers of anti-gp120 antibodies measured by ELISA
are shown for immune plasma from RV144 vaccinees that are either negative or positive for the neutralization of BNM-III-170-sensitized HIV-1JR-FL. The
anti-gp120 antibody reciprocal titers of plasma from monkeys in group 2 of the NHP 36 study are shown for comparison. Differences between the groups were
analyzed by the Mann-Whitney U (t) test; the P value is shown for the comparison where statistical significance was achieved. n.s., not significant.
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Fig. 6A show that, at every concentration of BNM-III-170 tested,
the presence of the 17b antibody resulted in a lower level of virus
infection than that seen in the absence of antibody. Because little
or no neutralization of HIV-1JR-FL by the 17b antibody alone was
observed, our results imply that BNM-III-170 positively cooper-
ates with the 17b antibody to inhibit HIV-1 infection. Moreover,
the sensitization of HIV-1JR-FL to the inhibitory effects of the 17b
antibody were observed over the entire range of BNM-III-170
concentrations tested. These observations are consistent with a
model in which the small molecule’s direct antiviral effect requires
interaction with the Env trimer at a higher stoichiometry than that
which promotes sensitization of the virus to neutralization by the
17b antibody.

We also tested the potential cooperativity in HIV-1 inhibition be-
tween BNM-III-170 and two of the plasma samples from monkeys
immunized in the NHP 62.1 study (described above). The results
were qualitatively similar to those obtained with the 17b antibody
(Fig. 6C and D). At every concentration of added BNM-III-170, the
monkey plasma inhibited HIV-1JR-FL infection, although the inhibi-
tory effects of the plasma were less than those of the 17b antibody. At
the same dilutions, in the absence of BNM-III-170, the monkey
plasma did not significantly inhibit HIV-1JR-FL infection. Apparently,

BNM-III-170 can positively cooperate with antibodies elicited by im-
munization of monkeys to inhibit HIV-1 infection.

Stability of HIV-1 sensitization by CD4-mimetic compounds. A
previous study suggested that direct HIV-1 inactivation by CD4-
mimetic compounds is irreversible (14). To evaluate whether the
sensitization of HIV-1 to antibody neutralization can be reversed,
we incubated HIV-1 with a subneutralizing concentration of
BNM-III-170 for 2 h at 37°C. A control virus was incubated with
DMSO for the same time period. Virus preparations were divided
into two. One set of viruses was incubated with increasing concen-
trations of the 17b antibody, maintaining the original concentra-
tion of DMSO or BNM-III-170. The second set of viruses was pel-
leted, resuspended in buffer without DMSO or BNM-III-170, and
then incubated with different concentrations of the 17b antibody.
Infection of target cells then was measured for all of the viruses.

The sensitization of HIV-1JR-FL to neutralization by the 17b
antibody was comparable for the virus continuously exposed to
BNM-III-170 and for the BNM-III-170-treated virus that subse-
quently was washed and resuspended in compound-free medium
(Fig. 7). This result suggests that the sensitized state of HIV-1 is
sufficiently long-lived to withstand washing.

TABLE 3 Inhibition of HIV-1JR-FL by plasma from RV144 subjects

a The 0100 visits occurred prior to vaccination and allowed the collection of preimmune plasma samples. The 0800 visit occurred at 26 weeks
after the initiation of vaccination, 2 weeks after the fourth vaccination (ALVAC-HIV twice, ALVAC-HIV � AIDSVAX-B/E twice).
b The reciprocal anti-gp120 ELISA titers of the plasma samples were determined as described in Materials and Methods.
c The titer of plasma that neutralized 50% of HIV-1JR-FL or A-MLV infection was determined, as described in the Materials and Methods.
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DISCUSSION

Controlling the global HIV-1/AIDS pandemic likely will require
the implementation of modalities to prevent sexual transmission
of the virus. In this regard, HIV-1 Env trimers represent attractive
targets due to their accessibility and functional lability, but they
also present challenges arising from interstrain variability and gly-
can shielding. Vaccine strategies that generate antibodies in unin-
fected individuals capable of potently neutralizing a wide range of

transmitted/founder HIV-1 variants have yet to be developed (60–
62). The HIV-1 Env immunogens tested to date raise antibodies
that fail to inhibit most primary HIV-1 strains, which exhibit low
Env reactivity (63, 64). Our results confirm that various Env im-
munization regimens in primates, some quite prolonged and
involving multiple immunogens, elicited only very low or unde-
tectable levels of antibodies capable of neutralizing the primary
HIV-1JR-FL isolate. HIV-1JR-FL in particular exhibits a low Env

TABLE 4 Neutralization of BNM-III-170-treated HIV-1JR-FL by monoclonal antibodies from vaccinated monkeys and humansa

Monoclonal
antibody gp120 epitope

IC50 (�g/ml) for:

HIV-1JR-FL A-MLV

Without
BNM-III-170

With
BNM-III-170

Without
BNM-III-170

With
BNM-III-170

17b CD4i �30 0.6 � 0.4 �30 �30
902090 V2 (171–177) �30 5.0 � 2.4 �30 �30
830A Fab Discontinuous V2i epitope �10 0.6 �10 �10
900973 C terminus (491–501) �30 �30 �30 �30
900974 V3 (304–317) �30 0.2 � 0.0 �30 �30
900990 V3 (318–327) �30 5.1 �30 �30
902067 V3 (304–314) �30 0.2 � 0.0 �30 �30
GE2 JG8 V3 (301–317) �100 0.6 �100 �100
CH22 V3 (304–320) �30 0.2 �30 �30
CH23 V3 (302–318) �30 3.3 �30 22.1
a The antibody concentration (IC50) that inhibited the infection of the recombinant viruses by 50% in the absence or presence of 30 �M BNM-III-170 is reported. In this assay, the
IC50s of BNM-III-170 alone were 20.7 � 7.6 �M for HIV-1JR-FL and �100 �M for A-MLV.

FIG 6 Cooperativity in HIV-1 inhibition between a CD4-mimetic compound and antibodies. Recombinant, luciferase-expressing viruses with HIV-1JR-FL Env
(A, C, and D) or A-MLV Env (B) were incubated with the indicated concentrations of BNM-III-170, followed by incubation with the indicated concentration of
either the 17b antibody (A and B) or the indicated dilution of plasma from two monkeys in CHAVI-ID NHP 62.1 (C and D). The viruses were used to infect
Cf2Th-CD4/CCR5 cells, and the level of infection was measured as described in Materials and Methods. The means and standard deviations from triplicate
samples are shown.
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reactivity and generally is difficult to neutralize by anti-HIV-1
antibodies (16, 96, 109, 110). However, HIV-1JR-FL is not unique
in this respect; the unliganded conformations of many primary
HIV-1 Envs, including those from transmitted/founder viruses (64),
present only a limited number of conserved epitopes for antibody
binding and virus neutralization (51, 60–62). In contrast, the induc-
tion of the CD4-bound state on a virus that has not yet engaged the
target cell results in a shortened infectious half-life and a dramatic
increase in susceptibility to neutralization by antibodies against the
conserved coreceptor-binding site (14, 15, 76, 86, 96). Recent struc-
ture-based design and synthesis has increased the potency and
breadth of small-molecule CD4-mimetic compounds, which can in-
duce the CD4-bound conformation of Env (88–95). Here, we dem-
onstrate that antibodies elicited in monkeys and humans by several
different Env immunogens potently neutralize primary HIV-1
treated with subneutralizing concentrations of a CD4-mimetic com-
pound, BNM-III-170.

Importantly, antibodies that neutralize primary HIV-1 that
has been sensitized by CD4-mimetic compounds recognize Env
conformations closer to the CD4-bound state rather than the un-
liganded state of Env (95). In this and a previous study (96),
monoclonal antibodies raised against gp120 CD4i and V3
epitopes neutralized primary HIV-1 only in the presence of CD4-
mimetic compounds. These conserved gp120 elements are not
formed/exposed in the unliganded state of Env but become so
after binding to CD4 or the CD4-mimetic compounds (70, 73–76,
86, 89, 95). Our results with the 830A monoclonal antibody from
HIV-1-infected humans (107, 108) and the 902090 monoclonal
antibody from an immunized monkey also suggest that some V2
epitopes on gp120 become readily available for antibody binding
after Env exposure to BNM-III-170 binding. The V2i antibody
830A recognizes a discontinuous epitope on the surface of a
�-barrel composed of V2 strands (108). The C strand (residues

171 to 177) of this V2 �-barrel is recognized by the 902090 anti-
body. Therefore, the V2 �-barrel is formed and at least partly
exposed after BNM-III-170 treatment; this is not the case in the
unliganded state of the HIV-1JR-FL Env.

Given that several antibodies neutralizing sensitized HIV-1
recognize Env conformations close to or identical to the CD4-
bound conformation, Env immunogens that can achieve and
present this conformation to the host immune system would be
expected to raise these antibodies more effectively. Indeed, in a
prior study of rabbits, HIV-1 gp120 cores engineered to remain in
the CD4-bound state elicited antibodies that neutralized sensi-
tized HIV-1 more efficiently (84, 96). The results presented here
demonstrate that these antibodies can be elicited in monkeys and
humans by a variety of Env immunogens. In these hosts, which
naturally express a CD4 molecule capable of binding HIV-1 Env
(78–81), Env immunogens able to bind CD4 apparently can pres-
ent the CD4-induced conformation of Env to the immune system.
In primates, unlike the situation in rabbits, any Env immunogen
that retains the ability to bind CD4 could elicit antibodies capable
of neutralizing HIV-1 sensitized by a CD4-mimetic compound.
For these immunogens, no additional measures are required to
elicit the desired antibodies. Sensitization by CD4-mimetic com-
pounds may extend the prophylactic efficacy of any Env vaccine
formulation that is not 100% effective at preventing HIV-1 acqui-
sition. Future studies also should test the possibility that, even in
primates, immunization with Envs engineered to prefer the CD4-
bound conformation will elicit antibodies that neutralize sensi-
tized HIV-1 more efficiently.

The binding site for the CD4-mimetic compounds on the
gp120 glycoprotein is well conserved among group M HIV-1, ex-
cept for clade AE recombinant viruses (111). The prototypic CD4-
mimetic compounds have been extensively modified to achieve
more contacts with gp120, resulting in improvements in antiviral
potency and breadth (88–95). For example, nearly all clade B
HIV-1 and most clade C HIV-1 variants tested can be directly
inhibited by the recently developed CD4-mimetic compounds,
such as BNM-III-170 and BNM-IV-147 (95). Of particular note,
all of the HIV-1 strains that were sensitized to neutralization by
antibodies at subinhibitory concentrations of BNM-III-170 were
efficiently inhibited by higher concentrations of the compound.
Because the vaccine immunogens elicit antibodies that themselves
have little or no neutralizing activity against most primary HIV-1
strains, these antibodies primarily contribute to the potency and
not to the breadth of the CD4-mimetic compound.

The positive effects of BNM-III-170 on HIV-1 sensitization to
neutralizing antibodies were evident even at low concentrations of
the CD4-mimetic compound, hinting that sensitization can occur
at a low stoichiometry of the compound bound to the Env trimer.
Thus, our results are consistent with a model in which the sensi-
tization of HIV-1 to antibody neutralization occurs at a lower
stoichiometry of compound binding to the Env trimer compared
with that of direct antiviral inhibition. We observed multiple in-
stances where plasma or antibody inhibited HIV-1 infection only
in the presence of BNM-III-170, indicating that the CD4-mimetic
compound can increase the potency and breadth of vaccine-in-
duced antibodies, presumably by enhancing antibody binding to
the Env spike. Neutralization by antibodies that recognize on-
pathway Env conformations beyond the unliganded state, up to
and including the CD4-bound state, could hypothetically benefit
from exposure of the virus to the CD4-mimetic compound.

FIG 7 Stability of the BNM-III-170-sensitized state of HIV-1JR-FL. Recombinant,
luciferase-expressing HIV-1JR-FL was incubated with either BNM-III-170 or the
appropriate concentration of DMSO for 2 h at 37°C. Half of the virus preparation
was incubated with the indicated concentration of the 17b antibody, maintaining
the original concentration of DMSO and BNM-III-170. The other half of the virus
preparation was pelleted by centrifugation, resuspended in buffer without DMSO
or BNM-III-170, and then incubated with different concentrations of the 17b
antibody. The infection of Cf2Th-CD4/CCR5 cells by the viruses was determined
as described in Materials and Methods. The level of infection relative to that ob-
served in the absence of the 17b antibody is reported, with means and standard
deviations derived from triplicate samples.
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The demonstration that antibodies elicited in primates by several
different Env immunogens potently neutralize primary HIV-1 sensi-
tized by a CD4-mimetic compound has potential practical implica-
tions. Antibodies that neutralize the sensitized HIV-1 are consistently
elicited in vaccinated primates that generate a robust anti-gp120 re-
sponse; such antibodies arise relatively early in the course of vaccina-
tion. These observations suggest that combining a vaccine with a
CD4-mimetic compound, for example, used as a microbicide, might
achieve the requisite level of prophylactic efficacy. The stimulation of
antibody-dependent cell cytotoxicity (ADCC) against HIV-1-in-
fected cells by CD4-mimetic compounds (112) could provide an ad-
ditional level of protection in this setting. Challenge models employ-
ing SHIVs in monkeys can be used to investigate the relevance of the
observed HIV-1 sensitization to protection against mucosal exposure
to virus. Future efforts should be directed toward improving the cov-
erage of a greater range of HIV-1 variants by this combined prophy-
lactic approach.
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