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SUMMARY

Systems approaches have been used to describe molecular signatures driving immunity to 

influenza vaccination in humans. Whether such signatures are similar across multiple seasons and 

in diverse populations is unknown. We applied systems approaches to study immune responses in 

young, elderly, and diabetic subjects vaccinated with the seasonal influenza vaccine across five 

consecutive seasons. Signatures of innate immunity and plasmablasts correlated with and 

predicted influenza antibody titers at 1 month after vaccination with >80% accuracy across 

multiple seasons but were not associated with the longevity of the response. Baseline signatures of 

lymphocyte and monocyte inflammation were positively and negatively correlated, respectively, 

with antibody responses at 1 month. Finally, integrative analysis of microRNAs and transcriptomic 

profiling revealed potential regulators of vaccine immunity. These results identify shared vaccine-

induced signatures across multiple seasons and in diverse populations and might help guide the 

development of next-generation vaccines that provide persistent immunity against influenza.

INTRODUCTION

Seasonal influenza infection kills several hundred thousand people every year, with the 

majority of deaths occurring among the elderly (Pica and Palese, 2013; Simonsen et al., 

2005). Although vaccination is considered the most effective method for preventing 

influenza, it shows limited efficacy in the elderly (Sasaki et al., 2011). The vaccine 

recommended for this age group is the inactivated influenza vaccine that contains virus 

hemagglutinin (HA) proteins from three (trivalent, TIV) or four of the circulating influenza 

H1N1, H3N2, and B strains. The lower efficacy of the influenza vaccine in elderly compared 

to young adults has been associated with immunosenescence (Duraisingham et al., 2013), 

such as impaired generation of antibody-secreting cells (ASCs) (Sasaki et al., 2011) and 

memory CD8+ T cells (Wagar et al., 2011) and CD4+ T cells (Kang et al., 2004). However, 

the molecular mechanisms underlying the decreased vaccine efficacy remain unexplored.

Systems vaccinology is an emerging field that applies systems biology approaches and 

predictive modeling to vaccinology and provides a powerful tool for unraveling the 

molecular mechanisms of vaccine immunity (Pulendran, 2014; Pulendran et al., 2010). 
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Recently, systems vaccinology has been successfully used to study the immune response to 

the influenza vaccine in young adults (Bucasas et al., 2011; Cao et al., 2014; Franco et al., 

2013; Furman et al., 2013; Nakaya et al., 2011; Tsang et al., 2014) as well as to other 

vaccines such as the yellow fever (Gaucher et al., 2008; Querec et al., 2009) and 

meningococcus (Li et al., 2013) vaccines. These studies were able to identify gene 

signatures (Nakaya et al., 2011), as well as cellular compositions and gene modules (Furman 

et al., 2013), post-vaccination that are predictive of the later antibody response vaccination. 

In addition, such approaches provided important insights into the pathways driving immune 

responses to vaccination (Oh et al., 2014; Ravindran et al., 2014).

However, several fundamental issues in the field remain unaddressed. First, there is still no 

comprehensive analysis of the similarity of signatures to influenza vaccination across 

multiple seasons (Pica and Palese, 2013). This is a crucial issue because the virus strains in 

the vaccine can change from year to year and the impact of these variations on 

transcriptional signatures is unknown. Second, there is limited information about the gene 

regulatory networks and cellular responses that underlie the sub-optimal immunity observed 

in the elderly population. Third, because all previous studies have focused on signatures that 

predict the antibody response at 4 weeks after vaccination, the extent to which 

transcriptional signatures are associated with the longevity of the antibody response has not 

been examined. This analysis is important for understanding how innate immunity can 

generate long-lasting antibody responses to influenza vaccination. Finally, little is known 

about the role of microRNAs (miRNAs) in fine-tuning the transcriptional responses of 

immune cells after influenza vaccination.

To address these issues, we used systems vaccinology approaches to examine >400 young 

and elderly adults, including diabetics, vaccinated with seasonal TIV during five consecutive 

influenza seasons (2007–2011). These subjects included 212 individuals from our study and 

218 individuals from a previously published study (Franco et al. 2013). Our systems analysis 

identified universal signatures of immunity to vaccination spanning multiple years in diverse 

human populations including the young, elderly, and diabetic. Integrative analysis of 

microRNAs and transcriptomic profiling revealed potential regulators of vaccine immunity. 

These results can help guide the development of next-generation vaccines that provide 

persistent immunity against influenza.

RESULTS

Antibody Responses to Influenza Vaccination Correlate with Age but Not Gender, Race, or 
Diabetic Status

We vaccinated with TIV a total of 212 subjects across 5 influenza vaccine seasons from 

2007 to 2011, among whom 54 were elderly (>65 years old in 2010 and 2011 cohorts) 

(Figures S1A and S1B). The 2011 cohort also included 17 subjects diagnosed with type 2 

diabetes (T2D). Overall, there was a 65:35 ratio of females to males, and the majority of 

subjects were of European descent (Figure S1B). Blood samples were collected at baseline 

(day of vaccination) and at the time points indicated (Figure 1A). We performed microarray 

analyses on the peripheral blood mononuclear cells (PBMCs) as indicated (Figure 1A). For 

the 2008 and 2009 seasons, we included in our analyses published data from a previous 
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study by Franco et al. (2013) containing 218 additional subjects. For a subset of the 2010 

season cohort, fluorescence-activated cell sorting (FACS) measurements as well as miRNA 

profiling were also performed (Figure 1A). The entire dataset is publicly available online at 

Immport (Bhattacharya et al., 2014) (http://immport.niaid.nih.gov/).

We evaluated the plasma antibody responses of all vaccinated individuals via 

hemagglutination-inhibition (HAI) antibody titer assays. The individual antibody response 

for each of the three influenza strains included in the vaccine was calculated as the fold 

change between the HAI titer at day 28 relative to the baseline titer. We then defined the 

magnitude of the HAI response as the maximum fold change among the three influenza 

strains (Figure 1B; Nakaya et al., 2011). Subjects were classified as “high responders” if (1) 

their HAI response had at least a 4-fold increase at 28 days (Sullivan et al., 2010) and (2) the 

day 28 antibody titer was 1:40 or more for at least one strain; subjects were classified as 

“low responders” otherwise. In the 2010 and 2011 seasons, in which elderly subjects were 

included, antibody responses showed a significant decrease with age (Figures 1B, 1C, and 

S1C), consistent with previous studies (Seidman et al., 2012). Vaccines from different 

seasons induced varying levels of HAI responses, and there was a significant decrease in the 

response with age (Figure 1C). Subjects vaccinated during the 2010 season, the year after 

the H1N1 2009 pandemic, generated the strongest HAI responses. There was no significant 

difference in antibody response based on gender (Figure S1D), diabetic status (Figure S1E), 

or race (data not shown). There was no significant difference in the response between males 

and females in any of the seasons examined (data not shown).

Gene Signatures of Antibody Responses across Multiple Seasons in the Young and the 
Elderly

In order to identify transcriptional pathways associated with the antibody response to 

vaccination, we performed gene set enrichment analysis (GSEA) (Subramanian et al., 2005) 

on genes correlated with the HAI response in each influenza season (Figure 2A). For this, 

we used a set of blood transcriptional modules (BTMs) previously identified by our group 

through large-scale network integration of publicly available human blood transcriptomes 

(Li et al., 2014). BTMs related to the induction of interferons as well as the activation of 

dendritic cells (Figures 2A and 2B) were enriched on days 1 and 3 after TIV vaccination, 

whereas modules related to T cells at these time points were negatively associated with the 

antibody response. These results were validated by analysis of both seasons of the Franco et 

al. (2013) dataset. On day 7, there was a robust enrichment of ASC and cell cycle-related 

modules, consistent with our original study (Nakaya et al., 2011).

Additionally, we compared transcriptional responses based on gender, age, race, or diabetic 

status. We first performed differential expression analysis between these groups (male versus 

female, type-2-diabetes-positive versus -negative, and European versus African and/or 

Asian) using fold change expression data from day 3 and day 7. There were very few 

differentially expressed genes based on gender (Figure S2A) or race (data not shown), 

indicating similar responses after vaccination. Comparison of gene expression between 

type-2-diabetes-positive and -negative subjects revealed a modest number of differentially 

expressed genes (Figure S2B), but GSEA on genes ranked by correlation with the day 28 
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HAI response in these two groups showed a high degree of overlap in the modules 

associated with a high antibody response (Figure S2C). Based on the similarity of these 

transcriptional responses, we decided not to segregate subjects based on gender, race, or 

diabetic status in subsequent analyses.

Given that we could identify pathways that consistently correlated with the magnitude of 

HAI response (Figure 2A), we sought to identify transcriptional signatures of 

immunogenicity across multiple influenza seasons. In our previous study, we have used 

DAMIP (discriminant analysis via mixed integer programming) (Brooks and Lee, 2010) to 

find sets of 3–5 discriminatory genes that could predict the antibody response of subjects 

from the 2007–2009 seasons (Nakaya et al., 2011). Here we applied DAMIP to a larger 

number of subjects across a greater number of influenza vaccine seasons (Figure S3), as 

described in the Experimental Procedures and Supplemental Experimental Procedures. Here 

DAMIP was able to correctly predict the HAI response in the blind testing group with 

67.6%–70.0% accuracy (Tables S1 and S2). Consistent with our previous work, the most 

frequently selected genes included a large number of ASC genes (Table S1).

Given the robustness of the module-level responses across different TIV seasons, we wanted 

to investigate whether module-level features were capable of accurately predicting vaccine-

induced immunity in a multi-year dataset and in the elderly. Therefore, we first generated 

BTM normalized enrichment scores for each subject using single-sample GSEA (ssGSEA) 

(Barbie et al., 2009) and then used these scores as inputs to an artificial neural network 

classifier (Dreiseitl and Ohno-Machado, 2002) (see Supplemental Experimental Procedures 

for details). In brief, the young subjects from all seasons were randomly divided into training 

and testing groups in an 85%/15% ratio. For each bootstrapping cycle, we split the young 

subjects (from all years) as 85% (young training set) and 15% (young testing set) and put all 

elderly aside (from both 2010 and 2011 years, the elderly testing set). Then, we used the 

young training set to select the features (in this case the BTMs) and to check their 

performance in the same young training set. Next, we checked the performance of these 

“predictive BTMs” in the young testing set and elderly testing set. This process was repeated 

for 100 trials in order to ensure that the performance was robust across many random 

divisions of the data. For each of the 100 times that this 85%/15% split in young subjects 

was done, we tested the prediction on the same elderly testing set. With this approach, we 

identified BTMs that predicted HAI responses in both the young and elderly groups with 

accuracies ranging between 79.0% and 80.2% and between 64.7% and 72.3%, respectively, 

using both day 3 and day 7 signatures (Figure 2C). Examination of the modules most 

frequently selected by the algorithm in the 100 randomized trials revealed pathways related 

to innate immune cell responses as well as leukocyte differentiation and antigen presentation 

on day 3 and B cell/immunoglobulin production and cell cycle pathways on day 7 (Table 

S3).

Interestingly, we observed similar classification accuracy in both the young and elderly test 

sets when using the predictive signatures trained on the young dataset (Figure 2C). This 

suggests that although the elderly had lower antibody responses to vaccination, the 

molecular signatures that were predictive of high HAI response remained the same. One 

potential caveat to this was that in the analysis in Figure 2C we had defined young as <65 
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years and elderly as >65 years, a narrow chronological distinction that could hamper 

quantitative analysis of age-related effects. To address this issue, we performed additional 

analysis by removing the intermediate-age subjects (between 40 and 65 years) from our 

analysis (Figure 2D). Thus here we defined young as subjects younger than 40, and elderly 

as subjects older than 65. The results are similar to our original work (Figure 2C versus 

Figure 2D). In addition, as the 2010 cohort has a sharper distinction between the young and 

the elderly (Figure S1A), we performed GSEA on genes ranked by correlation with HAI 

response (similar to the analysis of Figure 2A) for young and elderly subjects in the 2010 

cohort (Figure S4). There were a number of consistently enriched modules in both the young 

and elderly, in particular those relating to the interferon response and activation of dendritic 

cells on day 1 and the plasmablast response on day 7. These results suggest that there were 

consistent transcriptional signatures associated with the day 28 antibody response in both 

groups. Together these results demonstrate that module-level features are able to 

successfully predict vaccine immunogenicity in TIV seasons in both young and elderly 

vaccinees.

Baseline Signatures Associated with Antibody Responses

We also examined whether there were pre-vaccination transcriptional signatures that were 

associated with antibody responses. Although there has been previous work aimed at 

identifying baseline cellular and molecular predictors of influenza vaccine response (Frasca 

et al., 2010; Furman et al., 2013; Tsang et al., 2014), these studies examined subjects within 

only a single influenza season, and the robustness of these signatures in predicting immunity 

to influenza vaccination across multiple seasons has not been determined. First, we 

performed GSEA (Subramanian et al., 2005) in each season by using genes ranked by 

correlation between baseline expression and the HAI response. However, this approach 

resulted in little overlap between seasons, with no module consistently enriched in more than 

three out of five seasons (Figure S5). This might have been due to a reduced signal-to-noise 

ratio and increased batch effects owing to the inability to use fold-change expression at 

baseline. Although we attempted to adjust for batch effects in the day 0 expression data 

across seasons by using the ComBat software (Johnson et al., 2007), these effects might 

have not been completely removed.

To increase the power of this analysis so as to detect the more subtle transcriptional 

signatures at baseline, we repeated the procedure with all five seasons combined. In 

addition, publicly available data from previously published influenza vaccine studies by 

Franco et al. (2013) and Furman et al. (2013) were included as independent validation sets 

(see Supplemental Experimental Procedures for details). This approach revealed several B-

cell- and T-cell-related modules whose expression pre-vaccination was positively correlated 

with an increased antibody response to vaccination in all studies (Figure 3A). In contrast, 

modules related to monocytes were negatively correlated with antibody responses (Figures 

3B–3G). Interestingly, contained within the monocyte-related modules were genes such as 

TLR4, TLR8, NOD2, and ASGR2, which encode proteins involved in innate sensing, and 

genes encoding IFN-γR, IL-13R, TIMP2, LYN, SYK, and other molecules involved in 

inflammation. This supports the concept that inflammatory responses at baseline might be 

detrimental to the induction of vaccine-induced antibody responses (Haq and McElhaney, 
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2014; Pawelec et al., 2014). Investigation of the correlation with antibody response at a gene 

level (Figures 3B–3G) highlights the strength of pathway-level analyses: although the 

module enrichment was consistent across datasets, the individual genes contributing to this 

enrichment varied from study to study.

Signatures Induced by Vaccination with TIV in Young and Elderly

We next investigated the influence of age on the vaccine-induced transcriptional signatures. 

To this end, we first identified differentially expressed genes after vaccination in the young 

versus elderly subjects from the 2010 season (Figure 4A) (in which there is a sharp 

chronological separation between the young and the elderly [Figure S1A]). By far the largest 

difference in overall expression between the two groups occurred on day 1, where the young 

exhibited a much greater number of both up- and downregulated genes. Weighted correlation 

network analysis (WGCNA) (Langfelder and Horvath, 2008) was used to find clusters of 

highly correlated genes among the TIV-regulated genes in young (clusters Y1–Y6) and 

elderly (clusters E1–E5) (Figure 4B). This method compares the correlation in expression 

patterns among genes across all young or elderly subjects and utilizes hierarchical clustering 

with dynamic tree cut to define modules of genes that are temporally co-expressed within 

each group. Genes in common to clusters Y4 and E3 were associated with antibody-

secreting cells (ASCs), whereas the overlap between clusters Y1 and E1 contained several 

interferon-related genes (Figure 4C). Although the genes shared by clusters from young and 

elderly vaccinated individuals had similar temporal expression profiles, the magnitude of the 

expression of interferon-related genes differed, being higher in young individuals (Figure 

4C).

We then performed GSEA using genes ranked by their correlation with age to identify 

modules with enriched expression in either young or elderly vaccinees (Figure 4D). It is 

important to note that in this analysis we used age as a quantitative variable, rather than 

arbitrarily splitting the cohorts into young versus elderly. In order to ensure the robustness of 

our results, we performed this analysis separately on the two trials containing elderly 

subjects (2010 and 2011) and identified modules that were consistently enriched in both 

seasons. Natural killer (NK) cell-related modules showed increased expression with age on 

both day 3 and day 7 after vaccination, and several monocyte modules showed increased 

expression with age on day 7. In contrast, many B cell modules showed decreased 

expression in older subjects on both day 3 and day 7. These results indicate that elderly 

subjects might be mounting a significant innate response, but that their adaptive B cell 

response is diminished. One of the modules showing increased expression in the elderly was 

BTM M61.0 (Figure 4E), which contains many killer cell immunoglobulin-like receptor 

(KIR) and lectin-like receptor (KLR) genes. These are inhibitory receptors that suppress the 

cytotoxic activity of NK cells when bound to MHC I molecules (KIRs) and cadherins and 

other ligands (KLRs) (Long et al., 2013).

Next, we examined whether or not any of the age-related transcriptional differences were 

also associated with impaired antibody responses. By plotting the age-based enrichment 

score of each module against its antibody response-based enrichment score on day 7, we 

were able to identify five modules whose expression varied with age and were associated 
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with either a high or low antibody response (Figure 4F). Two B cell modules, M47.0 and 

M69, showed increased expression in younger subjects and in subjects with high antibody 

responses, whereas three monocyte- and myeloid-cell-related modules, S4, M4.3, and 

M11.0, were enriched in the elderly and were also associated with a decreased antibody 

response in the 2010 and 2011 seasons. Interestingly, two of these modules, M11.0 and 

M4.3, showed association with an increased antibody response in the 2007 and 2008 seasons 

(Figure 2A), indicating that this association is not consistent across all five seasons on day 7. 

These results demonstrate that TIV induces distinct but overlapping transcriptional 

responses in the young versus elderly. The early innate response at day 1, comprised of 

antiviral and type IFN-related genes, seems to be impaired in the elderly. In contrast, several 

transcriptional modules related to NK cells and monocytes appear to have enhanced 

expression at baseline and after vaccination, in the elderly relative to the young.

Cellular Responses Induced by Vaccination with TIV in the Young and Elderly

The aforementioned transcriptional signatures of NK cells and monocytes in the elderly 

subjects could have been caused by de novo transcriptional induction of genes expressed in 

these cell types or by changing representations of these cell types within the PBMC 

compartment. In order to distinguish between these two possibilities, we performed FACS 

analysis on PBMCs in a subset of subjects from the 2010 cohort. Our analysis showed that 

proportions of total NK cells in elderly subjects were higher than those of young subjects at 

baseline as well as at all the time points studied (days 0–14). Of note, vaccination induced an 

increase in the percentage of NK cells in the elderly subjects; in contrast, in the young there 

was a reduction in the percentage of NK cells on day 1 after vaccination (Figure 5A). 

Similar trends were observed in the absolute numbers of NK cells (data not shown). To 

examine this trend in the 2011 cohort, where FACS data were unavailable, we used a 

deconvolution method (Abbas et al., 2009; Gaujoux and Seoighe, 2013; Shen-Orr and 

Gaujoux, 2013) to estimate cell frequencies based on gene expression of a mixed cell 

population. This approach revealed increased estimated NK cell frequencies in the elderly 

on day 3 after vaccination when compared to young, agreeing with the 2010 FACS data 

(data not shown). These results confirm our findings at a molecular level (Figure 4D) and 

show that the increase in NK-cell-related expression in the elderly is due in part to enhanced 

representation of this cell population after vaccination.

We also explored the distribution of the NK compartment into three subpopulations: CD56++ 

NK (CD56bright), CD56++CD16+ NK, and CD56dimCD16++ NK (Figure 5B). These NK cell 

subsets have distinct functions: CD56dimCD16++ cells, the most abundant population of NK 

cells in the blood, have significantly higher cytotoxic activity, whereas CD56++ cells are 

characterized by increased cytokine production and can exhibit immunoregulatory properties 

under certain conditions (Poli et al., 2009). We observed a higher frequency of 

CD56dimCD16++ cells coincident with a lower frequency of CD56++ cells in the elderly at 

baseline, consistent with previous studies (Figure 5C; Solana et al., 2014). The distribution 

of these subpopulations was relatively stable during the response, with CD56dimCD16++ 

cells showing a small but significant increase in the elderly on day 1 after vaccination and 

CD56++ cells increasing in the young on day 7. Additionally, we examined the activation of 

these subsets through immunostaining for CD69, a marker associated with increased 
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cytotoxicity and IFN-γ production (Figure 5D; Clausen et al., 2003; Gorski et al., 2006). 

Elderly subjects showed increasing activation after vaccination in all three subsets, with 

highest expression on day 3. In contrast, the young exhibited activation of the 

CD56dimCD16++ subset as measured by CD69 expression only on day 1 and at a lower level 

than in the elderly.

In addition to NK cells, we also observed higher proportions of monocytes among the 

elderly at baseline and during the entire duration of the study compared to young subjects 

(Figure S6A). In both groups, the percentage of total monocytes in PBMCs increased 

substantially on day 1 after vaccination, then returned to or below baseline levels. We further 

examined the distribution of monocytes into three subsets: “classical” (CD14+CD16−), 

“intermediate” (CD14+CD16+), and “non-classical” (CD14dimCD16++) (Figure S6B). The 

distribution of monocyte subsets was similar in both groups, with the elderly having a slight 

increase in intermediate monocytes compared to young (Figure S6C). The activation of these 

subsets was also analyzed by immunostaining for CCR5, a receptor for a number of 

inflammatory cytokines, and CD86, a costimulatory molecule involved in T cell activation 

(Figure S6D). In both the young and elderly, CCR5 expression peaked in classical and 

intermediate monocytes on day 1 after vaccination, corresponding with the inflammation 

associated with the innate immune response. Elderly subjects showed increased CCR5 

expression in classical and intermediate monocytes compared to the young, whereas young 

subjects had higher CD86 expression in these subsets. These results are consistent with the 

transcriptional changes observed (Figure 4) and support the concept that persistent and 

excessive inflammatory responses might be detrimental to the induction of vaccine-induced 

antibody responses (Frasca et al., 2014; Haq and McElhaney, 2014; Pawelec et al., 2014).

Molecular Signatures Associated with the Persistence of Antibody Responses

A desirable feature of a good vaccine is the ability to induce long-lasting protection from 

infection. To investigate how effectively the influenza vaccine generates a long-lived 

response and identify the mechanisms responsible for this response, we measured antibody 

titers in a subset of subjects at 180 days (D180) after vaccination. The antibody responses 

peaked at day 28 (D28), with a significant decline in most subjects by D180 (Figure 6A). By 

applying the same criteria for seroconversion used for the D28 high- versus low-responder 

classification to the D180 antibody responses, we saw that just over half of D28 high 

responders maintained their responder status on day 180 (“persistent” responders), whereas 

the remainder no longer met the criteria for seroconversion on day 180 (“temporary” 

responders). Because the D180 antibody titer shows significant dependence on the original 

antibody response generated on day 28 (Figure 6B), examining the molecular profile 

associated with the D180 response would identify many of the mechanisms responsible for 

generating the D28 response. In order to study the relative persistence of the response, we 

calculated residuals from a linear fit between the D28 and D180 responses, thereby 

removing the effect of the D28 response on the D180 response. We observed that subjects 

with a higher D28 titer had a greater decrease in HAI response between D28 and D180, 

indicating increased difficulty to maintain higher levels of antibodies. The linear fit therefore 

represents the expected D180 response given a particular initial D28 response, and the 

residual can be considered an “adjusted” D180 response taking into account the original D28 
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response. Subjects with positive residuals have a more persistent response, whereas a 

negative residual represents a waning response. As expected, correlation analysis of 

plasmablast module BTM S3 shows a positive association with the D180 antibody response 

due to the effect of D28 antibody responses, generated through plasmablast expansion 

(Figure 6C). However, when we performed correlation between the plasmablast module 

activity and the D180/D28 residual, we no longer saw an association with the plasmablast 

expression (Figure 6D). This result suggests that factors other than the expansion of 

plasmablasts are responsible for maintaining a persistent antibody response.

To identify the pathways associated with a persistent or waning response, we performed 

GSEA on genes correlated with the D180 versus D28 residual. Among the BTMs most 

enriched in subjects with a persistent response on both days 3 and 7 were several modules 

associated with cell movement and adhesion, such as BTM 51 (Figure 6E). In fact, one of 

the genes in module M51 that was highly correlated with the response persistence was P-

selectin (SELP), which plays an important role in the adhesion and extravasation of 

leukocytes out of the blood circulation and into organs or tissues (Wang et al., 2007). In 

addition, the day 7 expression of a number of T-cell-related modules was negatively 

associated with the D180/D28 residual, indicating that increased T cell responses might 

potentially result in more transient antibody responses (Figure 6F). The plasmablast 

signature at day 7, which was predictive of the HAI titers at day 28, did not correlate with 

the D180/D28 residual (Figure 6D).

Post-transcriptional Gene Regulation of the Immune Response to Vaccination

MicroRNAs (miRNAs) have been identified as key regulators of gene expression at a post-

transcriptional level (Filipowicz et al., 2008). Although there is some knowledge about 

miRNA regulation of immune pathways (Lodish et al., 2008), their role in responses to 

vaccination remains unaddressed. To assess whether or not miRNAs contribute to the 

differences in response we saw between young and elderly vaccinees, we measured the 

miRNA expression profiles of 672 human miRNAs on days 1, 3, and 7 after vaccination 

from a subset of subjects in the 2010 cohort (Figure 7A). We saw a significant difference in 

the miRNA profiles between these two groups. Whereas a majority of the differentially 

expressed miRNA in the elderly were upregulated after vaccination, particularly on days 1 

and 7, the young exhibited predominantly downregulation of miRNA. We also identified 

miRNA whose expression correlated with the day 28 antibody response (Figure 7B). We 

again saw differences between the young and elderly subjects, with the elderly having a 

larger number of miRNA negatively correlating with the antibody response when compared 

with the young. These results suggest that miRNA might indeed be important regulators of 

the immune response to influenza vaccination. miRNA expression reduces the translation of 

its target genes through mRNA degradation or silencing via the RNA-induced silencing 

complex, so the increase in miRNA expression in the elderly after vaccination suggests a 

possible mechanism for the impaired responses in this population that merits further 

exploration.

To identify the miRNA that regulate particular immune pathways during vaccine response, 

we implemented a strategy to integrate the mRNA and miRNA omics-level measurements 
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(Figure 7C). Because miRNA often have multiple related target genes, we first generated 

normalized enrichment scores for 252 BTMs on a per subject basis by performing ssGSEA 

on the transcriptomic data. We then performed correlation analysis between all miRNA-

BTM pairs, revealing groups of modules that appear to be regulated together by several 

miRNA (Figure 7D) on day 1 after vaccination.

Finally, we used the TargetScan miRNA database (Garcia et al., 2011) to identify the genes 

in a given module predicted to be targets of negatively correlating miRNAs. Of particular 

interest was the regulation of module M75-antiviral interferon signature (Figure 7E) on day 

1 after vaccination, because the interferon pathway plays a key role during the innate 

immune response. This miRNA-mRNA network suggests potential novel regulators of the 

interferon response after vaccination, such as miR-424. This miRNA was predicted to target 

OAS3, a 2′–5′-oligoadenylate synthase involved in viral RNA degradation (Samuel, 2001), 

as well as CXCL10, an important chemokine induced by IFN-γ that serves as a 

chemoattractant for lymphocytes (Dufour et al., 2002).

DISCUSSION

In this paper we were able to identify shared and consistent molecular signatures of 

immunogenicity to TIV, across five influenza vaccine seasons. At day 1 after vaccination, 

the pathways positively associated with the later antibody response revealed a strong innate 

response marked by expression of interferons and activation of dendritic cells. This response 

was also observed on day 3, with enrichment of TLR signaling and antigen presentation. By 

day 7, there was a strong signature from the expansion of plasmablasts. Using the same 

modules in a single sample approach as inputs to an artificial neural network classifier 

allowed us to successfully predict antibody responses to vaccination across all seasons 

included in our study. Using pathway-level features as predictors of immune response is a 

promising approach to not only reduce the variability in gene expression across influenza 

seasons but also to provide improved biological context to the predictive signatures.

In addition, we were able to establish baseline signatures related to B and T cell expression 

that were associated with an increased antibody response at day 28 after vaccination. These 

signatures were validated in two independent datasets, confirming that they are not specific 

to strain or study and are consistent with previous findings that showed that the frequency of 

B cell and T cell subsets at baseline was predictive of day 28 antibody responses (Tsang et 

al., 2014). Therefore, the increased statistical power of our dataset allowed us to identify 

relatively weak baseline transcriptional differences that were detectable only using flow 

cytometry in previous studies.

Our analysis of responses in young and elderly subjects revealed important aspects about the 

relationship between immunosenescence and vaccine response. We observed that although 

the elderly exhibit diminished B cell responses after vaccination, they also have enhanced 

NK cell and monocyte numbers compared to young. Furthermore, the elderly displayed 

increased frequency and activation of cytotoxic NK cells, as well as increased CCR5 but 

diminished CD86 on proinflammatory monocytes. Previous studies have shown that 

although the NK cell population increases with age, there are concurrent changes in the 
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receptors of these cells, including decreases in the activating receptors NKp30 and NKp46 

(Almeida-Oliveira et al., 2011). NKp30 is involved in crosstalk with dendritic cells (Walzer 

et al., 2005), and NKp46 has been shown to bind to influenza hemagglutinin to allow NK-

cell-mediated recognition of influenza-virus-infected cells (Mandelboim et al., 2001), 

suggesting potential mechanisms by which NK cells might regulate adaptive immunity. 

Most importantly, monocytes were also increased in the elderly before vaccination, and our 

baseline analysis revealed a negative association between day 0 monocyte expression and 

magnitude of antibody response. This indicates a potential connection between the baseline 

state of the immune system in the elderly and reduced responsiveness to vaccination. 

Together these results suggest potential mechanisms by which changes to the innate 

response in the elderly might result in diminished antibody responses to vaccination.

In addition, we also investigated the signatures associated with the longevity of antibody 

responses. Although the goal of all vaccines is to induce lasting immunity, waning immunity 

to vaccination is a major issue in vaccinology (Pichichero, 2009). Indeed, we observed a 

significant drop in antibody titers in a majority of subjects within 6 months of vaccination. 

By comparing the relative persistence of the day 180 antibody responses with BTM-

normalized enrichment scores, we saw that the expansion of plasmablasts, which plays an 

important role in the development of the day 28 antibody response, had little effect on 

response longevity. Instead, we observed a potential role for cell movement and adhesion in 

maintaining a persistent antibody response. This transcriptional signature might be an 

indicator of migration of plasmablasts into the bone marrow, a crucial step in the generation 

of long-lived plasma cells (Radbruch et al., 2006). This analysis demonstrates the role that 

initial immune processes, as early as 3 days after vaccination, can have in shaping the 

antibody response as much as 6 months later.

Finally, we sought to explore how the previously examined transcriptional responses to 

vaccination might be regulated, in particular through the expression of miRNAs. miRNAs 

have been shown to play an important role in modulating the signaling pathways of the 

immune system (Lodish et al., 2008), but their role in vaccine response has not been studied. 

By integrating transcriptomic and miRNA expression data, we were able to identify several 

potential miRNA regulators of the interferon response after vaccination, such as miR-424. 

Previous studies have shown that absence of regulation of interferon signaling by miRNA 

can result in impaired CD8 T cell responses (Gracias et al., 2013). These results demonstrate 

how the balance between positive and negative signals controlling the innate response is 

necessary for a successful adaptive response and underscore the importance of 

understanding the way in which miRNAs help achieve this balance.

In summary, this longitudinal study across five influenza seasons provided the opportunity to 

identify conserved molecular elements present in immune response to TIV vaccination. Our 

pathway-level analyses revealed previously unknown mechanisms that contribute to 

impaired responses to influenza vaccination in the elderly. These systems approaches can 

help delineate the molecular responses to vaccination in other immunocompromised 

populations, such as infants and HIV-positive individuals. They might also offer insights into 

the pathways by which adjuvants improve vaccine response. By integrating this knowledge, 

we will be able to provide a more complete picture of how the immune system responds to 
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vaccination and help guide the development of the next generation of vaccines that provide 

long-lasting immunogenicity and better protection of at-risk populations.

EXPERIMENTAL PROCEDURES

Human Subjects and Specimen Collection

A total of 212 subjects were vaccinated with TIV during the 2007–2011 influenza seasons. 

Written informed consent was obtained from each subject with institutional review and 

approval from the Emory University Institutional Review Board. Blood samples were 

collected at baseline and on days 3, 7, 28, and 180 days after vaccination. Peripheral blood 

mononuclear cells (PBMCs) were isolated from fresh blood and stored in liquid nitrogen 

(−210°C). Detailed vaccination and sample collection procedures can be found in the 

Supplemental Experimental Procedures. In general, the health of all subjects was under 

control with no severe symptoms. Presence of relevant co-morbidities was recorded and T2D 

patients did not have cancer, or major infectious or autoimmune diseases, for at least 12 

months prior to enrollment. Diabetic individuals were 20 years or older and with an 

established diagnosis of T2D for more than 6 months. Individuals had to be free of influenza 

and of any symptoms associated with respiratory infections at the time of enrollment. All 

T2D patients were under metformin treatment. Pregnancy and documented current substance 

and/or alcohol abuse were also exclusion criteria, as well as use of medicines known to alter 

the immune response, such as high-dose corticosteroids, within 6 months prior to 

enrollment. As “co-morbidities,” a few patients had hypertension, hyperlipidemia, pain 

(joint, back), or hypothyroidism.

RNA Isolation and Microarray Analysis

Total RNA from PBMCs (~1.5 × 106 cells) was purified using Trizol (Invitrogen, Life 

Technologies Corporation) according to the manufacturer’s instructions. Samples were 

checked for purity and hybridized on Human U133 Plus 2.0 Arrays (Affymetrix). 

Microarray intensity data were normalized by RMA (Irizarry et al., 2003) for each cohort 

separately. Pathway analyses were performed using GSEA (Subramanian et al., 2005). In 

this 5-year analysis, we utilized a multi-step DAMIP strategy as described in the 

Supplemental Experimental Procedures (Figure S3). Classification rules or signatures 

associated with three to five discriminatory genes were identified. We reported the 

classification rules in which the predictive accuracies of HAI response in all other seasons 

are at least 70%. This resulted in a total of 175 predictive rules, with accuracy ranging 

between 80.0% and 87.3% (Table S1, Figure S3). For each of these rules, a second layer of 

blind prediction was then performed on the remaining blind test set (15% of subjects from 

each season) (Table S2). Detailed description of analyses can be found in the Supplemental 

Experimental Procedures.

Flow Cytometry Analysis

2–3 × 106 PBMCs were thawed and stained with live/dead marker (Alexa Fluor 430, Life 

Technologies) to exclude dead cells. Cells were then stained with an appropriate antibody 

cocktail. Cells were washed, fixed, and analyzed on the LSRII flow cytometer (BD). All 

flow cytometry analysis was done with FlowJo (Treestar). Blood NK cells were defined 
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within the live singlets gate CD3−CD4−CD19−CD14− cells as the CD56++ NK, 

CD56++CD16+ NK, and CD56dimCD16++ NK. The CD56++CD16+ subset is considered an 

intermediate population in transition from the CD56++ to the CD56dimCD16++ subset 

(Béziat et al., 2011). Monocytes were defined within the live singlet CD3−CD19−PBMC as 

the CD14+CD16−, CD14+CD16+, and CD14dimCD16++ monocytes. The detailed staining 

procedures and list of antibodies are presented in the Supplemental Experimental 

Procedures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Systems analysis of vaccine immunity to influenza across seasons and 

populations

• Signatures of innate immunity and plasmablasts predicted influenza antibody 

titers

• Certain vaccine-induced signatures were shared among all analyzed populations

• Defined baseline signatures of immunogenicity that might help guide vaccine 

design
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Figure 1. Experimental Approach and Humoral Immunity to Influenza Vaccination in Young 
and Elderly
(A) Experimental approach used to study five consecutive influenza vaccination seasons. 

Microarray experiments and HAI assays were used to obtain the gene expression profiles 

and antibody responses of 413 TIV vaccinees. Flow cytometry and miRNA expression data 

were obtained for vaccinees from 2010 season. For 2008 and 2009 seasons, publicly 

available data (Franco et al., 2013) were included.

(B) HAI responses by season. The maximum HAI response (highest day 28-day 0 fold-

induction among all three strains) is shown for all 212 subjects separated by flu season, 

along with box plots indicating the first and third quartiles and median. For 2010 and 2011, 

subjects are also separated into young (<65 years old) and elderly (65 or older). p values 

represent results of independent two-sample t test between responses of young and elderly.

(C) Correlation of HAI responses with age in the 2010 season and 2011 season. R and p 

represent the Pearson correlation coefficient and associated p value, respectively.

See also Figure S1.
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Figure 2. Signatures Associated with the Antibody Response Induced by TIV
(A) Heat map of blood transcription modules (BTMs, rows) and TIV seasons (columns) 

whose activity at days 1, 3, or 7 after vaccination is associated with HAI response at day 28 

after vaccination. Gene set enrichment analysis (GSEA, nominal p < 0.05; 1,000 

permutations) was used to identify positive (red), negative (blue), or no (gray) enrichment of 

BTMs (gene sets) within pre-ranked gene lists, where genes were ranked according to their 

correlation between expression and HAI response. Seasons labeled in blue are from Franco 

et al. (2013) dataset. Modules shown are those consistently enriched in at least 70% of 

seasons on a given day. Abbreviation is as follows: NES, normalized enrichment score.

(B) Genes in BTM M165; each “edge” (gray line) represents a coexpression relationship, as 

described in Li et al. (2014); colors represent the mean correlation for seven TIV seasons 
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between baseline-normalized gene expression at day 3 and HAI response at day 28 after 

vaccination.

(C and D) Identification of BTMs that predict antibody responses via neural network nalysis. 

Single sample GSEA (Barbie et al., 2009) enrichment scores were generated for each BTM 

on day 3 and day 7 after vaccination in 85% of the young subjects (training set) and used as 

inputs to an artificial neural network classifier to predict the day 28 antibody responses, in 

the remaining 15% of the young (young test set) or the elderly (elderly test set) subjects (see 

Supplemental Experimental Procedures for details). The mean accuracies and standard 

deviations out of 100 randomized trials are shown, along with the frequency with which 

each module was selected by the algorithm as an input to the classifier. In (C) “young” is 

<65 years and “elderly” >65 years and in (D) “young” is <40 years and “elderly >65 years.

See also Figures S2–S4.
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Figure 3. Baseline Signatures Are Associated with the Antibody Response
(A) Heat map of BTMs (rows) and TIV studies (columns) whose activity before vaccination 

is associated with HAI response at day 28 after vaccination. GSEA (nominal p < 0.05; 1,000 

permutations) was used to identify positive (red) or negative (blue) enrichment of BTMs 

(gene sets) within pre-ranked gene lists, where genes were ranked according to their 

correlation between expression and HAI response. Circle size is proportional to the 

normalized enrichment score (NES). Numbers in parentheses next to each study represent 

number of subjects in the study. Modules shown are those consistently enriched in at least 

three out of four studies.

(B–G) Heat maps of genes within BTMs from (A); colors represent the mean correlation in 

each study between baseline gene expression and HAI response at day 28 after vaccination.

See also Figure S5.
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Figure 4. Molecular Signatures Induced by Vaccination with TIV in Young Adults and in Elderly
(A) Number of genes differentially expressed (log2 fold-change > 0.2 and t test p value < 

0.01) in young (<65 years) (left) and elderly (≥65 years) (right) vaccinees on days 1, 3, 7, 

and 14 after vaccination (2010 season).

(B) Heat map of highly correlated gene modules within the differentially expressed genes in 

(A) for young (rows, modules Y1–Y6) and elderly (columns, modules E1–E5), generated by 

weighted correlation network analysis (Langfelder and Horvath, 2008). The number of 

genes in each module is shown in parentheses and the number of genes in common between 

two modules is shown inside the squares. Colors represent the Fisher’s exact test p value of 

the overlap between clusters. The 61 genes in common between Y4 and E3 are associated 

with ASCs.

(C) Temporal expression patterns of 197 interferon-related genes in common between 

modules Y1 and E1 from (B). Black line represents the mean fold change of all genes.

(D) BTMs (rows) whose activity at days 3 or 7 after vaccination (columns) is associated 

with the age of vaccinees from 2010 and 2011 seasons. GSEA (nominal p < 0.05; 1,000 

permutations) was used to identify positive (red) or negative (blue) enrichment of BTMs 

(gene sets) within pre-ranked gene lists, where genes were ranked according to their 

correlation between expression and increasing age. The intensity of the color and the size of 

the circles represent the normalized enrichment score (NES) of GSEA. In this analysis we 

used age as a quantitative variable, rather than arbitrarily splitting the cohorts young versus 

elderly. Modules shown are those consistently enriched in both seasons.

(E) Genes in BTM M61.0; each “edge” (gray line) represents a coexpression relationship, as 

described in Li et al. (2014); colors represent the correlation for 2010 season between 

baseline-normalized gene expression at day 3 after vaccination and the age of vaccinees.

(F) BTMs whose activity at day 7 after vaccination is correlated with the age of vaccinees (x 

axis) and/or is correlated with HAI response (y axis) in both 2010 and 2011 seasons. Values 

represent the mean of the NES obtained independently for each season. NES receives a 
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value of zero if the BTM is not significantly associated with age or HAI response (nominal p 

< 0.05; 1,000 permutations) in either season.

See also Figures S6 and S7.
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Figure 5. Flow Cytometry Analysis of NK Cells in Young and Elderly after TIV Vaccination
(A) Changes in total NK cell population after vaccination represented as percent within all 

PBMCs for young and elderly. Mean ± SEM.

(B) Blood NK cells were defined within the CD3−CD4−CD19−CD14− PBMCs. Dot blot 

represents three distinct NK cell populations defined by CD56 and CD16 markers: CD56++ 

NK, CD56++CD16+ NK, and CD56dimCD16++ NK.

(C) Kinetics of magnitudes of CD56++ NK, CD56++CD16+ NK, and CD56dimCD16++ NK 

cell subsets in young (left) and elderly (right) after vaccination. Mean ± SEM.

Areas under curve (AUC) in (A) and (C) were calculated to compare magnitudes of total NK 

cells and NK cells subsets between young and elderly cohorts throughout the study duration 

(days 0–14) and compared by t test. Changes of each of the NK subset on the indicated time 

points after vaccination were compared to the day 0 (baseline) time point by t test.

(D) Activation of each of the NK cell subsets were assessed by CD69 staining and compared 

with day 0 (baseline) by t test. Data are represented as the geometric mean fluorescence 

intensity (MFI) for young (left) and elderly (right) at each time point, mean ± SEM.

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Figure 6. Signatures Associated with the Persistence of TIV-Induced Antibody Response
(A) HAI response (fold change of HAI titer relative to baseline) through 180 days for 

temporary (n = 28) and persistent (n = 34) responders. Temporary responders met the FDA 

criteria for seroconversion (minimum 1:40 titer and 4-fold increase after vaccination) on day 

28 but not on day 180, whereas persistent responders met the criteria on both days.

(B) Comparison between day 28 and day 180 HAI responses. Each symbol represents a 

single vaccinee and the color represents the season that they were vaccinated (n = 62). Black 

lines represent the regression line (Pearson) for all vaccinees combined. Day 180/day 28 

residual is computed as the (vertical) distance from each sample to the regression line.

(C) Comparison between “S3 Plasma” BTM activity and the HAI responses at day 28 after 

vaccination. Each symbol represents a single vaccinee and the color represents the season 

that they were vaccinated (n = 62). Black lines represent the regression line (Pearson) for all 

vaccinees combined.

(D) Comparison between “S3 Plasma” BTM activity and the HAI D180/D28 residual. Each 

symbol represents a single vaccinee and the color represents the season that they were 

vaccinated (n = 62). Black lines represent the regression line (Pearson) for all vaccinees 

combined.

(E) Genes in BTM M51.0; each “edge” (gray line) represents a coexpression relationship, as 

described in Li et al. (2014); colors represent the correlation between baseline-normalized 

gene expression at day 3 after vaccination and the D180/D28 residual.

(F) BTMs (bars) whose activity at day 7 after vaccination is significantly associated with the 

HAI D180/D28 residual (GSEA; nominal p < 0.05; 1,000 permutations). Vaccinees from 

2007 to 2010 seasons were combined. BTMs related to T cell functions (pink bars) or 

monocyte functions (purple bars) are shown.
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Figure 7. MicroRNA Expression Profiling of Young and Elderly TIV Vaccinees
(A) Heat map of miRNAs (rows) up- (red) or downregulated (blue) at days 1, 3, and 7 after 

vaccination in young and elderly (columns); paired t test (p < 0.05); total number of 

differentially expressed miRNAs are shown at the bottom.

(B) MicroRNAs whose expression is positively or negatively correlated with HAI response 

in young and elderly; Pearson correlation (p < 0.05).

(C) Identification of networks potentially regulated by miRNAs. Activity of BTMs was 

determined by single-sample GSEA (Barbie et al., 2009) and correlated with the expression 

of miRNAs. TargetScan database (Garcia et al., 2011) was used to identify the potential 

target genes of miRNAs.

(D) Heat map of BTMs (rows) whose activity at day 1 after vaccination correlated with the 

baseline-normalized expression of miRNAs (columns) at the same time point. Positive and 

negative correlations are shown in red and blue, respectively.

(E) Genes in BTM M75; each gray line represents a coexpression relationship, as described 

in Li et al. (2014); each brown line connects a miRNA and its potential target gene; each 

blue line represents a negative correlation (Pearson, p < 0.15) between the expression of 

miRNA and the expression of the potential target gene; colors represent the mean correlation 

between baseline-normalized gene expression at day 1 and HAI response at day 28 after 

vaccination in the 2010 TIV season.
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