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Abstract

Objectives—Numerous studies have examined the association between body mass index (BMI) 

and mortality. The precise shape of their association, however, has not been established. We use 

nonparametric methods to determine the relationship between BMI and mortality.

Method—Data from the National Health Interview Survey-Linked Mortality Files 1986-2006 for 

adults aged 50 to 80 are analyzed using a Poisson approach to survival modeling within the 

generalized additive model (GAM) framework.

Results—The BMI-mortality association is more V shaped than U shaped, with the odds of 

dying rising steeply from the lowest risk point at BMIs of 23 to 26. The association varies 

considerably by time since interview and cause of death. For instance, the association has an 

inverted J shape for respiratory causes but is monotonically increasing for diabetes deaths.

Discussion—Our findings have implications for interpreting results from BMI-mortality studies 

and suggest caution in translating the findings into public health messages.
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Introduction

The sharp increase in the prevalence of overweight and obesity among U.S. adults in recent 

decades is a pressing public health issue. More than a third of American adults are 

overweight and another third are obese (Flegal, Carroll, Ogden, & Curtin, 2010; Hedley, 

Ogden, Johnson, Carroll, Curtin, & Flegal, 2004; NHLBI, Obesity Initiative Expert Panel, 

1998). 1 Given that this distribution implies over 150 million American adults with excess 

body weight, understanding how overweight and obesity are associated with increased 
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health risks and mortality is critical to public health policies and interventions. At the 

national level, the costs attributable to overweight and obesity are estimated at around US

$100 billion annually (Finkelstein, Fiebelkorn, & Wang, 2003). Most of this cost is due to 

obesity-related negative health outcomes, which range from elevated levels of biological risk 

indicators such as C-reactive protein to the manifestation of chronic conditions such as 

diabetes, heart disease, and osteoarthritis, as well as physical limitations, low self-assessed 

health, and poor health-related quality of life (Alley et al., 2010; Diehr et al., 2008; Marinou, 

Tousoulis, Antonopoulos, Stefanadi, & Stefanadis, 2010; McDade, Rutherford, Adair, & 

Kuzawa, 2009; Stommel & Schoenborn, 2010; Wee et al., 2008; Zajacova & Burgard, 2010).

Among the various measures used to assess the health implications of overweight and 

obesity, mortality has received perhaps the most attention. The literature clearly shows that 

relative to having moderate body weight, both very low and very high BMIs are associated 

with increased mortality (Allison, Zhu, Plankey, Faith, & Heo, 2002; Bender, Jockel, 

Trautner, Spraul, & Berger, 1999; Flegal, Graubard, Williamson, & Gail, 2007; Flegal et al., 

2005; Greenberg, 2001; Lee, Manson, & Hennekens, 1993; Zhu, Heo, Plankey, Faith, & 

Allison 2003). We lack consensus, however, about the shape of the BMI-mortality 

relationship for the majority of the adult population, which falls between normal and low 

obese body weight. Across numerous studies, which have examined samples of varied age, 

race/ethnicity, and sex compositions, the lowest risk BMI for mortality ranged from values 

below 22 to above 30 (for instance, see Flegal et al., 2005; Greenberg, 2006; Greenberg, 

Fontaine, & Allison, 2007; McGee, 2005; Mokdad, Marks, Stroup, & Gerberding, 2004).

One problem that complicates determination of the shape of the association between BMI 

and mortality is inherent in the modeling approach used in the previous studies. Standard 

survival analyses force one of two shapes on the association: researchers specify the BMI-

mortality association as a quadratic function or they categorize BMI, with cutpoints typically 

at the threshold values specified by the NHLBI guidelines. In the quadratic model 

specification, the shape of the association is strongly influenced by the tails of the BMI 

distribution whereas the bulk of the observations necessarily follow a parabolic shape, which 

may or may not correspond to the true association (Durrleman & Simon, 1989; Mehta & 

Chang, 2009). The categorical model specification forces a step function that assumes no 

variation in mortality within each BMI category. With this type of specification, additionally, 

the conclusions depend on the choice of the reference BMI category. Theoretically, model fit 

could be used to compare how well the models fit the data, but in practice authors do not 

assess model fit in their articles. In part, this is because it is challenging to assess the model 

fit of survival models with data collected using a complex sampling design.

To our knowledge, only two studies have attempted to model the shape of the BMI-mortality 

association more flexibly, using a nonparametric approach (Gronniger, 2006; Mehta & 

Chang, 2009). Both found mortality risk to be relatively unchanging across a wide range of 

BMI values, increasing only among those with very low and very high body weights. These 

studies, however, were not survival analyses, but instead treated death as a dichotomous 

1These categories are based on the NHLBI guidelines that delineate normal weight as BMI from 18.5 to 25 kg/m2, overweight as BMI 
from 25 to 30, and obese as BMI above 30 (NHLBI, Obesity Initiative Expert Panel, 1998).
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variable (alive or dead) at the end of the follow-up period. Such an approach is problematic 

because the results are strongly driven by the length of the follow-up period. In the extreme, 

if the follow-up period is long enough, all respondents will simply be recorded as dead, with 

no differentiation by length of survival taken into account.

Ignoring the length of the follow-up period could strongly shape results, because deaths 

occurring in the early years of follow-up tend to be associated with low BMIs. This 

relationship may be spurious, a result of an underlying disease process that causes both 

weight loss and death. Previous studies have dealt with this problem by excluding deaths 

that occurred in early years of the follow-up period (Greenberg, 2006; Greenberg et al., 

2007; Manson et al., 1995). Such a correction, however, has meant deleting a large and 

nonrandom portion of the study sample, a problem for any analysis aiming to obtain 

unbiased and generalizable findings. Additionally, some authors have found that dropping 

deaths occurring in the early follow-up period is ineffective for dealing with confounding 

due to preexisting disease (Allison, Faith, Heo, Townsend-Butterworth, & Williamson 1999; 

Allison, Heo, Flanders, Faith, & Williamson, 1997). Ours is the first study that documents 

precisely how the BMI-mortality relationship changes across single years of the follow-up 

period.

The ultimate goal of BMI-mortality research is to understand the causal mechanisms that 

link excess body weight to disease processes. Some chronic conditions are strongly linked to 

excess body weight, including major causes of death such as cardiovascular disease (Gregg 

et al., 2005; McTigue & Kuller, 2008; Van Gaal, Mertens, & De Block, 2006) and diabetes 

(Ford, 1999; Kahn, Hull, & Utzschneider, 2006; Mokdad et al., 2003). Cancers represent 

another major group of causes of death, but have a weaker relationship to body weight 

(Calle, 2007; Calle & Kaaks, 2004; Flegal et al., 2007; Reeves et al., 2007), and for causes 

of death such as accidents and firearm deaths, there is likely little direct causal effect of 

BMI. Correspondingly, an analysis of the relationship between BMI and mortality that 

stratifies by different causes of death is crucial for understanding the causal effects of excess 

body weight on health among older adults.

The aim of this article is to determine the shape of the BMI-mortality association among 

older adults. We conduct a nonparametric survival analysis of all-cause mortality. We also 

address two issues crucial for making progress toward understanding causal associations: (a) 

we examine how the lag time between BMI measurement and death affects their association, 

and (b) we explore variation in the association across major causes of death. We employ 

generalized additive models (GAMs), a type of semiparametric regression model (Hastie & 

Tibshirani, 1990; Wood, 2006), to analyze a large, nationally representative data set with a 

long follow-up period. This approach allows the data to fully determine the functional shape 

of the BMI-mortality relationship in a survival framework. Finally, we assess variation in the 

association between BMI and mortality across different major causes of death, because the 

degree of variation may impact conclusions drawn from all-cause mortality analyses.
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Data and Method

Data

The analyses use the National Health Interview Survey (NHIS) data for the years 

1986-2004, linked to multiple cause-of-death (MCD) files from the National Death Index 

that include deaths through 2006. The NHIS is a large annual cross-sectional health survey 

conducted via face-to-face household interviews by the National Center for Health Statistics 

(NCHS) to obtain a sample representative of the civilian noninstitutionalized U.S. 

population. Every year, around 100,000 households are selected for interviews. The total 

household response rate was about 90% in the early 2000's; the rates were more than 95% in 

the earlier years (Massey, Moore, Parsons, & Tadros, 1989) and declined to 89% in 2000 

(Centers for Disease Control and Prevention, 2002). Additional information about the 

sampling design is available in Massey et al. (1989) for the 1985-1994 period and in 

Botman, Moore, Moriarity, and Parsons (2000) for the 1995-2004 period.2 Vital status for 

adults who participated in 1986-2000 NHIS was determined by a probabilistic match to the 

National Death Index (Lochner, Hummer, & Cox, 2007); the combined data set is referred to 

as the NHIS-MCD.

Sample

The analyses are based on non-Hispanic White men and women who were 50 to 80 years 

old at the time of the interview and whose BMI was between 15 and 45 points. We restricted 

the sample to non-Hispanic White adults because both BMI distribution and survival differ 

substantially across race and ethnic groups (Flegal et al., 2010; Hummer, Rogers, Nam, & 

LeClere, 1999).3 The race/ethnic-stratified models that would be needed to appropriately 

deal with this variation were not feasible here due to the space limitations. The upper age 

boundary was set to 80 because of indications that the matching of death information was 

less successful among older respondents (Masters, Brown and Hayward, unpublished 

analyses). The lower age boundary defined a sample with an appreciable mortality hazard by 

excluding young adults. The BMI range was chosen to exclude the small percentage of 

individuals (0.4%) with extreme values of body mass index. The high mortality rate for very 

under and overweight adults has been described extensively and data sparseness at the 

boundaries of the distribution may present estimation problems. Auxiliary analyses that 

included this group (available on request) were substantively equivalent to the results shown 

here.

Variables

Body mass index (BMI) was calculated from self-reported height and weight using the 

standard formula BMI = 703*(weight in pounds/squared height in inches). About 3.2% of 

respondents were missing BMI information and were excluded from analyses. The 

2The data and accompanying documentation for all survey years are available on the NCHS website: http://www.cdc.gov/nchs/about/
major/nhis/quest_data_related_doc.htm
3We have estimated parallel models for non-Hispanic Black adults. Our findings, available on request, corroborated the literature: 
among Black adults, mortality did not increase as steeply with body weight as it did for White adults. The causes of this race 
difference are under continuing discussion.
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missingness occurred if they did not provide their height or weight, or if their height or 

weight were top coded or bottom coded and thus their BMI was not calculated.

The NHIS-MCD linked mortality data file included the underlying cause of death and select 

contributing causes coded using the ICD-10 classification. We categorized causes of death 

into four groups, which represent the leading causes of death in the United States (Jemal et 

al., 2008): cardiovascular disease, respiratory including lung cancer, cancer excluding lung 

cancer, diabetes, and other causes. Lung cancer was included among lower respiratory 

diseases such as COPD or emphysema because all these diseases are strongly affected by 

smoking. As sensitivity analyses, we also estimated models where lung cancer was included 

with cancers rather than respiratory conditions. The reclassification did not substantively 

affect the findings (available on request). The “other causes” category is very heterogeneous 

and the findings do not have a meaningful interpretation. Hence, it was omitted from the 

cause-specific analysis. Duration of follow-up to censoring or death was measured in years 

and ranged from 0 to 20. All models controlled for age in single years and marital status 

(dichotomized, with married as reference). Analyses were stratified by sex because of 

differences between men and women in how their BMI was related to mortality (Calle, 

Thun, Petrelli, Rodriquez, & Heath, 1999). There were no missing values on these three 

variables. Additional variables were used in auxiliary sensitivity analyses. We adjusted for 

region of residence and education; these predictors did not substantively change the findings. 

We have also estimated models where baseline health and disabilities were controlled for, 

using self-rated health and “bed disability days,” the two variables that were available across 

all study years in the data set. As might be expected, when controlling for these health 

factors, the BMI-mortality association attenuated substantially. The general shape of the 

curve, however, including the position of the nadir, remained substantively the same. Results 

of all sensitivity analyses are available on request.

Analysis

To lay the groundwork for the main analyses, we compared three models of mortality hazard 

as a function of parametrically specified BMI: Cox proportional hazard models, Poisson 

models with the log of duration as offset, and Poisson models estimated on a person-year 

data structure (Carstensen, 2005). This initial analytic step had two motivations. First, we 

showed that the results from these three different approaches to survival models (Cox 

proportional hazard and the two Poisson specifications) produced similar findings. This 

comparison was necessary because generalized additive models (GAMs) cannot be 

estimated within the proportional hazard survival structure, necessitating the Poisson 

models. We required two Poisson model specifications, one using person-level data with log 

duration since interview as an offset and the second using person-year data, because the 

former was more parsimonious but the latter allowed us to model the time to death as an 

independent predictor. Detailed mathematical and empirical comparison of Cox and Poisson 

models can be found elsewhere (Barros & Hirakata, 2003; Callas, Pastides, & Hosmer, 

1998; Frome, 1983). Second, we showed that our findings matched those from the existing 

literature, which typically has used Cox proportional hazard models.
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The GAM used in the main analyses is an extension of the generalized linear model in that 

one or more predictors are specified using a smooth function f(x) (Hastie & Tibshirani, 

1986). The general structure of the GAM is η= β0 + f1(x1) + … + fk(xk), where a smooth 

monotonic link function g(μ) transforms the expected value of y, μ to η. The y can follow 

any distribution from the exponential family; in our analyses, the outcome is Poisson-

distributed with the link function g (μ) = log (μ)

The key advantage of GAMs over parametric GLMs is their flexibility in determining the 

f(x) functions from the data, which avoids the need for a priori assumptions about the shape 

of a predictor's effects (Beck & Jackman, 1998; Hastie & Tibshirani, 1990; Stone, 1985), 

such as the stepwise linear or quadratic functional forms typically used to specify the 

association between BMI and mortality risk. The f(x) functions can be constructed using 

various spline smoothing functions; the thin plate regression spline smoother is used here 

(Wood, 2003). This smoother is efficient to compute and the position of the knots is 

estimated directly from the data. The smoothness of f(x) is calculated with the aim of 

optimal balance between the fit to the data versus a penalty for excessive “wiggliness” of the 

functions.

The GAMs are estimated using penalized maximum likelihood, typically iteratively 

reweighted least squares (Andersen, 2009; Wood, 2006). After the basis for the function f(x) 

is chosen, the GAM reduces to a GLM, which makes it possible to conduct standard model 

building and diagnostic procedures. Model fit is estimated using either generalized cross-

validation (GCV) based on the prediction mean square error, unbiased risk estimator 

(UBRE), or Akaike's information criterion (AIC). Confidence intervals for parameter 

estimates are calculated using the posterior distribution of the model coefficients. Different 

models can be compared using an approximation to the likelihood ratio test for nested 

models.

Finally, GAMs can accommodate the “interaction” of two or more predictors, in a way that 

is conceptually comparable to interactions in GLMs. The joint smooth function of the 

predictors was specified using tensor product smooths, optimal for variables measured on 

different scales—here, years since interview and BMI. We used this “interaction” to 

determine the BMI-mortality association across different values of time since interview. We 

have also conducted a sensitivity analysis with a BMI by age interaction. The results 

corroborated the literature in finding that the optimal BMI for longevity becomes higher 

with age of respondents (results not shown due to space constraints but are available on 

request).

Cause-specific mortality and BMI associations were estimated within a framework of 

competing risks. Death from a specific cause of death was treated as an event, whereas 

deaths from all other causes were treated as censoring because they removed the individual 

from the risk of dying from the specific cause. Results are presented graphically as line 

graphs with 95% confidence intervals, showing the estimated functional form for the effect 

of BMI on mortality. Findings from the interaction models that estimate the joint effect of 

BMI and time to death are shown in three-dimensional plots. The mgcv library (Wood, 

2006) in R version 2.9.2 was used to estimate the models.
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Results

Table 1 presents characteristics of the analysis sample. The mean age at interview was 62.7 

years for men and 63.8 years for women. At the time of interview, men's mean BMI was 

26.6 and women's BMI was 25.7—in the low overweight range for both groups. Considering 

the conventional categories of BMI, women and men were similarly likely to be obese 

(about 18% of each group), but more men were overweight (47.8% vs. 31.5% among 

women) and more women were in the normal-weight range (47.5% vs. 33.4% among men). 

On average, the respondents contributed about 10 years of follow-up. During the follow-up 

time, 34% of the male respondents died, at average age of 75 years, as did 27% of the 

female respondents, at an average age of 78 years. The modal cause of death was 

cardiovascular disease for both sexes.

Table 2 shows results from a parametric Cox proportional hazard and two Poisson models of 

all-cause mortality for men and women, using a quadratic specification for BMI. The first 

Poisson model was estimated on a person-level data set with log duration as offset. The 

second Poisson model was estimated on a person-year data set. As discussed above, these 

models were estimated to provide a baseline for comparison with the existing published 

literature, and to demonstrate empirically that these three modeling approaches yield very 

comparable findings. The comparability is important because almost all existing literature 

has used Cox models, whereas we needed to switch to the Poisson approach for the 

nonparametric modeling. In all models and for both sexes, BMI was a significant predictor 

of the hazard of mortality, even net of important sociodemographic predictors like age, 

education, and marital status. A simple calculation shows that the lowest point of the BMI-

mortality curve occurred at BMI of 28.1 for men and 27.2 for women.4 These values 

correspond to published findings, with lowest mortality risk for older men and women in the 

overweight range.

Figure 1 offers a visual comparison of the parametric Poisson model results shown in Table 

2 against results from comparable GAM models. The GAM results share similarities with 

the results obtained from parametric models with a quadratic specification in that the risk of 

mortality increases steadily toward both the lower and higher BMI levels. There are two 

important differences, though. In the parametric (quadratic) models, the lowest mortality 

occurs among adults in the mid-overweight range. The GAM results show the nadirs of the 

mortality curve at lower BMIs. The difference is particularly pronounced for women, among 

whom the nadir of the mortality risk curve occurs at BMI of about 27 in the parametric 

models but below 25 in the GAM models. The second difference is that the mortality 

increases more sharply among adults with BMIs below and above the optimal weight. In this 

respect, the functional form for BMI is closer to a V shape than a U shape, especially among 

men.

Duration of follow-up time has been shown as an important mediating factor in the BMI-

mortality relationship in past research. Figure 2 displays results from “interaction” models 

4The coefficients associated with BMI (centered around 25) and BMI squared determine the parabolic shape of the BMI function. To 
find its vertex, we take the derivative of the function βmBMI2 + βnBMI with respect to BMI and set to zero.
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that demonstrate how the association between BMI and all-cause mortality varies by time 

since interview for men (Panel A) and women (Panel B). The results are similar for men and 

women: shortly after the interview, low BMI is associated with a particularly high risk of 

dying. Over time, this association changes: low BMIs are gradually less strongly associated 

with mortality, whereas individuals who reported high BMIs at the interview have 

increasingly higher chances of dying. These patterns are likely due to reverse causality 

processes, whereby serious disease like cancer causes weight loss—hence, individuals who 

report low BMIs at interviews may be those who have low weight because they are seriously 

ill and are therefore likely to die shortly after the interview.

Finally, Figure 3A for men and Figure 3B for women show the association of BMI with 

cause-specific mortality, focusing on cardiovascular, respiratory, cancer, and diabetes deaths. 

These results demonstrate substantial variation among the four groups in the functional form 

of the BMI-mortality association. For cardiovascular deaths, the association is U or V 

shaped for men and women, with the risk of dying increasing steadily from high-normal 

BMI to even higher BMIs. The nadir of the mortality curve is around 25 for men and 22-23 

for women, considerably less than for all-cause mortality. The relationship between BMI and 

cancer is flatter compared to the association with other causes. For respiratory deaths, 

mortality is particularly high at underweight and normal BMIs and relatively low throughout 

the overweight and low-obese range. This pattern is likely due to smoking, whereby smokers 

tend to have lower body weights (Flegal, Troiano, Pamuk, Kuczmarski, & Campbell, 1995) 

and suffer increased mortality from respiratory illnesses such as lung cancer or emphysema. 

Finally, diabetes mortality shows a clear, strong, monotonically increasing risk from very 

low to high BMIs for both men and women. The similarity between men and women in how 

each cause is affected by BMI points to biological underpinnings of the relationship.

Discussion

Despite the wealth of research addressing the effects of body weight on mortality, the shape 

of the association has not been established beyond the general curvilinear pattern, in which 

high and low BMIs are associated with an increased mortality risk. We suggest that 

parametric models used in almost all previous studies impose an priori form for the BMI-

mortality relationship, potentially biasing results. Nonparametric models, by contrast, are 

better suited to exploring the association because they have the flexibility to allow the data to 

reveal the actual shape of the association. In this article, we used nonparametric generalized 

additive models to examine the shape of the BMI-mortality association for all-cause and 

cause-specific mortality in non-Hispanic White male and female older adults. In a broad 

sense, our study corroborates the extensive literature, in that we also found higher mortality 

risk among adults with both high and low BMIs. However, our investigation revealed several 

new findings.

First, the association between BMI and all-cause mortality appears to be more of a V shape, 

rather than the U shape widely reported in the literature. The U shape demonstrated 

repeatedly in prior studies is a necessary result of the quadratic specification for BMI 

typically used. To the degree these new results are supported in other studies, our findings 

imply that the BMI-mortality association may more effectively studied using splines than a 
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quadratic form. The placement of the knot for the spline function could be determined using 

a nonparametric exploratory analysis like those presented here. Our findings suggest that the 

lowest mortality is associated with BMIs just above 25 for men and slightly below 25 for 

women.

Our findings counter those of the previous two studies that used nonparametric models to 

estimate the BMI-mortality association (Durrleman & Simon, 1989; Mehta & Chang, 2009). 

These studies found that mortality risk was similar across a wide range of body weights. The 

difference between their findings and ours may arise because these two previous articles did 

not conduct a survival analyses, but treated death as a binary outcome.

Second, we showed how the duration of follow-up before death affects the observed BMI-

mortality association. For deaths that occur after only a short follow-up period, low BMI 

represents higher risk than high BMI. A reversal occurs as follow-up time extends, whereby 

high BMI becomes more strongly associated with mortality than low BMI. The finding itself 

is not new (Allison et al., 1999; Greenberg, 2001) but this is the first study to provide a clear 

picture of the process over the course of 20 years of follow-up.

Finally, the study highlighted the substantial differences in the BMI-mortality association for 

different causes of death. Cardiovascular death risk shows a V-shaped association with BMI, 

and there is a similar but weaker pattern for cancer deaths. However, the risk for respiratory 

deaths is clearly highest at low BMI, whereas the risk for a diabetes-related death moves in 

the opposite direction, increasing steadily with body weight. These cause-specific results are 

important for various reasons. First, they suggest that period changes in the composition of 

causes of death may shift the observed relationship between BMI and overall mortality. For 

instance, diabetes has a strong positive association with BMI. As a greater proportion of 

deaths occurs due to diabetes because of an increased prevalence of the disease in the 

population, then the relationship between BMI and all-cause mortality may become more 

like that for diabetes and the nadir of the BMI-mortality curve may shift to lower body 

weights. Second, the findings imply that recommendations about optimal body weight for 

health and longevity should accommodate substantial variability in the association of body 

weight with different health and mortality outcomes. And third, they elucidate the potential 

connections between the mortality literature and clinical and biomedical studies that focus 

on the mechanisms through which excess adiposity affects the physiology of the human 

organism and causes disease. By disaggregating all-cause mortality into specific causes of 

death, we can isolate the BMI effects for specific diseases of groups of diseases, which can 

then be connected to the literature on the prevalence of those diseases by BMI.

The goal of this study was to more carefully analyze the shape of the BMI-mortality 

association. There are limitations in our data and analyses that make these finding only a 

first step toward optimal modeling of their association. For instance, smoking information 

would be helpful in understanding the pattern observed for respiratory deaths, but it is not 

available in the core NHIS data. The measurement of BMI used here is limited by its self-

reported nature and because it is only measured a single time at the NHIS interview. Ideally, 

we would want to observe how BMI changes over time for individuals to better understand 

the effect of changes in body weight on subsequent mortality.
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The results of our study have several important implications, despite these limitations. First, 

it may be erroneous to draw implications about “optimal” body weights from standard 

parametric survival models. In particular, researchers should explore the shape of the 

association between body weight and various outcomes before imposing an inflexible 

analytic form on the relationship, because doing so may lead to biased findings. And second, 

given the variability in the BMI-mortality relationship for different causes of death, public 

health researchers should use caution when using the mortality results to make 

recommendations about optimal BMI for general health.
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Figure 1. 
Comparison of results from GAM and GLM Poisson models of all-cause mortality as a 

function of BMI. In the first row (Panel A for men and Panel B for women), the shape of the 

BMI mortality association is freely estimated from the data. In the second row (Panel C for 

men and Panel D for women), the functional form for BMI is specified to be quadratic, in 

accordance with previous literature
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Figure 2. The association between BMI and all-cause mortality across the duration of follow-up 
time, for men (Panel A) and women (Panel B)
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Figure 3A. The association between BMI and cause-specific mortality for selected causes of 
death, for men
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Figure 3B. The association between BMI and cause-specific mortality for selected causes of 
death, for women
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