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Abstract: In response to DNA damage lesions due to cellular stress, DNA damage response (DDR) pathways are 
activated to promote cell survival and genetic stability or unrepaired lesion-induced cell death. Current cancer 
treatments predominantly utilize DNA damaging agents, such as irradiation and chemotherapy drugs, to inhibit 
cancer cell proliferation and induce cell death through the activation of DDR. However, a portion of cancer patients 
is reported to develop therapeutic resistance to these DDR-inducing agents. One significant resistance mechanism 
in cancer cells is oncogenic kinase overexpression, which promotes cell survival by enhancing DNA damage repair 
pathways and evading cell cycle arrest. Among the oncogenic kinases, overexpression of receptor tyrosine kinases 
(RTKs) is reported in many of solid tumors, and numerous clinical trials targeting RTKs are currently in progress. 
As the emerging trend in cancer treatment combines DNA damaging agents and RTK inhibitors, it is important to 
understand the substrates of RTKs relative to the DDR pathways. In addition, alteration of RTK expression and their 
phosphorylated substrates can serve as biomarkers to stratify patients for combination therapies. In this review, 
we summarize the deleterious effects of RTKs on the DDR pathways and the emerging biomarkers for personalized 
therapy.
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Introduction

DNA damage stimuli can be divided into two 
classes, endogenous and environmental, 
based on the site of the stimulus’ origin [1]. 
Endogenous DNA damage generates chemical 
changes in DNA structure leading to mutagenic 
events such as deamination of bases resulting 
from hydrolytic and oxidative events inside the 
cell. Environmental DNA damage can result 
from either physical or chemical agents outside 
the cells [1]. The incidence of DNA damage 
occurs frequently in normal cells. It is estimat-
ed that the error rate of the DNA replication 
machinery is at least 10-8 in Escherichia coli 
and human [2, 3]. In addition to replication 
errors, DNA breaks mainly caused by reactive 
oxygen species (ROS) are estimated to be 105 
events per day [4, 5]. Thus, DNA damage 
response (DDR) is required to correct mistakes 

in DNA and is also responsible for eliminating 
cells with irreparable deleterious damage.

DNA damage and DDR are highly related to the 
formation and treatment of cancer. During car-
cinogenesis, the inefficiency and infidelity of the 
DDR pathway are the main causes of oncogenic 
events, such as DNA mutations, translocations, 
and epigenetic modifications, which correlate 
DDR to cancer risks [1, 6-9]. In cancer treat-
ment, both radiotherapy and chemotherapy uti-
lize DNA damaging agents that eliminate cancer 
cells by inducing DDR. Capitalizing on the defi-
ciency of DDR in cancerous cells, the treatment 
of cancer with DNA damaging agents is an 
effective means of inducing massive DNA 
lesions and programmed cell death in the cells 
unable to resolve the damage. However, resis-
tance to these types of treatment is reported in 
patients, and the crosstalk between DDR and 
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altered receptor tyrosine kinase (RTK) signaling 
pathways in solid tumors is thought to be an 
important contributor to the development of 
chemotherapy resistance [10-13]. Overexpre- 
ssion of RTKs also contributes to tumor pro-
gression through promotion of cell survival, 
metastasis and stimulation of angiogenesis 
[14]. While many inhibitors targeting RTKs are 
already in clinical trials or clinical use [14], it is 
important to understand how RTKs promote 
cell survival upon DNA damage to develop co- 
mbination therapies to enhance treatment 
efficacy.

DNA damage response

Once the DNA damage sensor protein machin-
ery detects DNA damage lesions, it recruits 
mediators and numerous transducer and effec-

ent substrates under different genotoxic stress 
to further elevate DDR response [17].

Cell cycle arrest

The cell cycle is subdivided into G1, S, G2, and 
M phase. In brief, cells increase in size and pre-
pare for DNA synthesis during G1 phase and 
undergo DNA replication during S phase. Then, 
cells continue to grow and prepare for mitosis 
in G2 phase before dividing in M phase. To 
ensure genomic stability, eukaryotic cells devel-
op cell cycle checkpoints that pause cell divi-
sion in response to environmental stress, DNA 
damage, and improper DNA replication [18]; 
this process is referred as cell cycle arrest. In 
mammalian cells, there are two major signaling 
pathways that control cell cycle arrest in 
response to DNA damaging stress: the ATM 

Figure 1. DNA damage reagents and DNA damage response. DNA is vulner-
able to both exogenous and endogenous DNA damage reagents, including rep-
lication error, replication inhibition, ultraviolet (UV) light and cancer treatments 
such us irradiation therapy and chemotherapy. Exposure to these DNA damage 
reagents leads to DNA damage including DNA single-strand break (SSB), DNA 
interstrand cross-linking (ICL), DNA double-strand break (DSB) as well as single-
strand DNA lesion (ssDNA). The DNA damage lesions then trigger the signal 
cascade which results in DDR primarily through delayed cell cycle from G1 to S 
phase (G1/S arrest) or from G2 to M phase (G2/M arrest) and as well as trigger-
ing DNA damage repair pathways. After successfully repaired, the cell cycle ar-
rest is released and the cells will survive. However, the severe DNA damage ad-
ducts or DNA damage repair failure will eventually leads to apoptotic cell death.

tor proteins to ensure that 
the transcription and tran- 
slation processes are pau- 
sed by cell cycle arrest and 
to initiate DNA damage 
repair or apoptosis (Figure 
1 and Table 1) [1]. The main 
mediators in DDR pathways 
are members of the pho- 
sphatidylinositol 3-kinase-
like protein kinases family, 
including ataxia-telangiec-
tasia mutated (ATM), ATM 
and Rad 3-related (ATR), 
and DNA-dependent pro-
tein kinase (DNA-PK). When 
DNA damage lesions are 
recognized by a sensor pro-
tein, these mediators are 
recruited to the damage si- 
te and phosphorylate do- 
wnstream proteins that are 
involved in all aspects of 
DDR. In addition to these 
mediators, poly (ADP-rib- 
ose) polymerases (PARPs), 
a large enzyme family with 
multiple functions, also 
play important roles in DDR 
[15, 16]. PARP1 and PARP2 
are activated by DNA sin-
gle-strand break (SSB) and 
DNA double-strand breaks 
(DSB) and can poly(ADP-
ribos)ylate (PARylate) differ-
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Table 1. Sources of DNA damage and major repair pathways

Sources of damage 
Spontaneous 

reactions
AAs

X-ray
ROS
AAs
5-FU

UV
Aromatic groups

Hydrocarbons

Replication inhibitor 
UV
IR

Platin
ROS

Hypoxia

Replication errors

DNA damage types O6mG
Pyrimidine dimer

8-oxoG
AP site
Uracil

CPD
6,4-P.P.

DNA crosslink

DNA crosslink
dsDNA break

Base mismatch
Insertion
Deletion

Repair pathway Direct reverse BER
NER HR NHEJ

MMR
GG-NER TC-NER ATR ATM C-NHEJ A-NHEJ

Sensor/Initiator MGMT
AGT

OGG1
PARP

XPE
XPC

HR23B

RNA Pol  
I/II
CSA
CSB
PARP

ATRIP MRN
PARP

Ku70
Ku80

PARP MSH2
MSH3
MLH1

Transducer/Effector XRCC1
APE1/2

RPA
XPA
XPC
TFIIH
XPB
XPD
XPG
XPF

ERCC1

ATR
Chk1

ATM
Chk2

DNA-PK
WRN

Artemis
XRCC4

XLF

Fan1
PNKP
XRCC1

MRN
Rad51

BRCA 1/2
XRCC 2/3

P53
Rad52
Rad54

Elongation/Ligase PCNA
DNA Polβ

Lig III

PCNA
RFC

FEN1
Lig I

DNA Pol δ/ε

PCNA
Lig I

DNA Pol δ/ε

DNA Polβ
Lig IV

Lig III RFC
PCNA
EXO1

DNA Pol δ
Lig I/IV

Abbreviations: AAs, alkylating agents; ROS, reactive oxygen species; 5-FU, 5-Fluorouracil; IR, ioninzing radiation; O6mG, O6-methylguanine; 8-oxoG, 8-oxoguanine; CPD, cyclo-butane 
pyrimidine dimer; 6,4-P.P, 6-4 photoproduct.
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pathway, which is responsible for DSB through-
out the cell division cycle and the ATR pathway, 
which is responsible for both DSB as well as 
replication forks [18, 19].

DNA damage repair and therapeutic DNA 
damaging agents

In 1974, researchers had already realized that 
the integrity of DNA is vulnerable and that the 
repair mechanisms are crucial to maintain 
genomic stability. Dr. Francis Crick stated in 
The double helix: a personal view that “… one 
could hardly discuss mutation without consid-
ering repair at the same time” [20]. The DNA 
damage repair pathways are composed of base 
excision repair (BER), nucleotide excision repair 
(NER), mismatch repair (MMR), single-strand 
annealing (SSA), homologous recombination 
repair (HR) and non-homologous end joining 
repair (NHEJ) [1].

Repair of base alternation and small DNA 
damage adducts

Base alternation and small DNA damage 
adducts, covalent DNA-chemical binding struc-
tures, can be caused by low concentration of 
reactive oxygen species (ROS) as well as alkyla-
tion agents and DNA crosslinking agents. Small 
DNA damage adducts can be easily repaired in 
normal cells compared with DSBs, but the fail-
ure to repair these adducts’ fidelity may lead to 
oncogenic mutations. In cancer treatment, low 
doses of ionizing radiation (IR) and low linear 
energy transfer γ-radiation [21] can generate 
low concentrations of ROS whereas a large 
number of chemotherapeutic drugs are alkylat-
ing agents, including nitrogen mustards (mech-
lorethamine, cyclophosphamide, and ifosfami- 
de), nitrosourease (streptozocin, carmustine 
and lomustine), alkyl sulfonates (busulfan), tri-
azine (dacarbazine and temozolomide) and 
ehylenimines (thiotepa and altretamine) [22].

Base excision repair: BER is mainly responsible 
for small lesions caused by endogenous DNA 
damage, such as oxidation, hydroxylation, de- 
amination, or methylation, and is considered to 
be the most frequently used DNA damage 
repair pathway [1, 23]. Abnormal DNA bases 
are detected and excised by lesion-specific 
DNA glycosylases, such as OGG1 and MYH, cre-
ating apurinic, apyrimidinic, or abasic sites (AP 
sites) [1]. For AP sites limited to a single base, 

the short patch BER endonuclease APE1 gener-
ates a single nucleotide gap at the AP site and 
recruits DNA polymerase β as well as XRCC1-
DNA ligase to fill the gap. For extensive AP sites 
(2-10 bases), long patch BER with FEN1 endo-
nuclease and proliferating cell nuclear antigen 
(PCNA)-DNA polymerase δ/ε complex are used 
to repair the lesions [1]. Genetic variants of 
ADPART, XRCC1, APE1 proteins in BER are 
reported to increase the risk of squamous cell 
carcinoma [24, 25] and bladder cancer [26]. 
APE1 and XRCC1 polymorphisms have been 
reported to correlate with gastric cancer [27] 
and with risk of lung adenocarcinoma [28, 29], 
respectively. The nitrogen (N-) and oxygen (O-) 
alkylated DNA bases caused by alkylating 
agents as well as oxidative DNA bases induced 
by ROS are repaired by BER [30].

PARP participates in many DNA repair path-
ways including BER, NER, HR and NHEJ [31, 32] 
but predominantly functions in the BER path-
way. Although PARP is not essential in the BER 
pathway, the treatment of PARP inhibitor has 
successfully converted the base lesion into a 
SSB [33], which is a more severe type of DNA 
damage that can be developed into lethal DSB 
lesions during DNA replication [15, 34]. PARP 
inhibitors, for example, olaparib, can induce 
synthetic lethality in DSB repair-deficient can-
cer cells, such as BRCA-mutated cells, and 
benefit patients with BRCA1/2-mutated breast 
or ovarian cancer [15, 35-37].

Nucleotide excision repair: NER mainly tackles 
a variety of helix-distorting lesions that impede 
transcription and replication by interfering with 
base pairing [1, 23]. Global genome NER 
(GG-NER) repairs helix-distorting lesions and 
prevents mutagenesis. Transcription-coupled 
NER (TC-NER) repairs transcription-blocking 
lesions to prevent perturbed gene transcrip-
tion. The damage recognition steps are differ-
ent between these NER mechanisms: in 
GG-NER, the lesions are detected by XPC/
hHR23B and XPE protein complex, whereas the 
RNA polymerase/CSA/CSB/HMGN1 protein 
complex is responsible for lesion detection in 
TC-NER [1]. After lesion recognition, XPA pro-
teins are recruited and bind to DNA around 20 
base pair upstream of the DNA damage adduct. 
The DNA double helix around the DNA damage 
adduct is then unwound by a multi-protein com-
plex, TFIIH. Single-stranded DNA (ssDNA) res- 
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ulting from the unwinding process is stabilized 
by the RPA protein, and the DNA adduct exci-
sion steps are completed by the XPF-ERCC1 
and XPG proteins. NER repairs DNA lesions 
caused by various endogenous and environ-
mental DNA damaging agents, including UV 
irradiation [38], platin-based chemotherapy 
drugs, e.g., cisplatin and carboplatin [39], and 
carcinogens, such as benzopyrene [40]. 
Defects in NER result in diseases, such as xero-
derma pigmentosum (XP), Cockayne syndrome, 
and trichothiodystrophy [1]. Among the NER-
related diseases, XP patients, but not Cockayne 
syndrome or trichothiodystrophy patients, ex- 
hibit a higher incidence of skin cancer. For 
example, XP group A patients, a subpopulation 
of XP patients, are more prone to basal cell and 
squamous cell carcinoma, and melanoma [41, 
42]. 

Mismatch repair: MMR is designed to resolve 
mispaired or modified bases as well as inser-
tion or deletion loops. Heterodimers of the 
MSH2/MSH6 complex recognize mismatched 
pairs and single-base loops whereas the 
MSH2/MSH3 complex recognizes insertion/
deletion loops. This damage recognition com-
plex then recruits and interacts with MLH1/
PMS2 and EXO1 endonuclease to excise the 
newly synthesized strand after mismatch/loop. 
DNA is then resynthesized by PCNA, RPA, and 
DNA polymerase δ/ε complex [1]. Germline 
mutations in MLH1 and MSH2 have been 
shown to contribute to hereditary non-polypo-
sis colorectal cancer [43], and defects in MSH6 
are known to cause atypical hereditary non-
polyposis colorectal cancer. Germline variants 
in DNA polymerase ε are also associated with 
MMR-deficient colorectal cancer [44]. MMR 
deficiency testing can predict the prognosis of 
colorectal cancer and stratify patients for adju-
vant chemotherapy [45].

Repair of DNA double-strand breaks

DSBs are considered to be lethal DNA damage 
lesions that must be repaired before cell con-
tinues to grow and proliferate. Currently, radio-
therapy and most chemotherapies aim at creat-
ing irreparable DSBs in cancerous cells. In 
cancer treatments, radiotherapies, such as ion-
izing radiation, induce high concentrations of 
ROS [21]. Topoisomerase poisons, such as 
doxorubicin and daunorubicin, can cause DSBs 
[46].

Non-homologous end joining: NHEJ is impor-
tant for DSB repair in DNA damage repair as 
well as for V(D)J recombination in T and B cells 
[47]. NHEJ functions in DSB repair throughout 
the cell cycle, especially in G0/G1 phase, and is 
highly conserved from prokaryotes to eukary-
otes, demonstrating its mechanistic flexibility 
and tolerance for various structures of DNA 
ends [48-50]. NHEJ is a highly mutagenic repair 
pathway in that it ligates two ends at the DSB 
site together regardless of the homology of the 
DNA sequence [50]. NHEJ can be divided into 
two pathways, canonical NHEJ (C-NHEJ) and 
alternative NHEJ (A-NHEJ), according to the 
resection of DNA ends at the breakage site and 
the proteins involved [47]. For C-NHEJ, Ku pro-
teins bind to the broken ends of DSBs and 
recruit DAN-PK as well as 53BP1 and the Mre11 
complex to the damage site. The breakage sites 
are then processed by Artemis and are simply 
ligated in cis by the XRCC4/Ligase IV/XLF com-
plex [47]. The direct ligation process in C-NHEJ 
alters the DNA sequence at the damage site, 
resulting in more mutations as extra nucleo-
tides are excised before ligation. For A-NHEJ, 
the DNA breakage ends are recognized by 
PARP1, which recruits the Mre11 complex to 
the damage site before a few nucleotides are 
excised by CtIP-mediated end resection. The 
gap can then be filled and ligated by the XRCC1/
Ligase III/Ligase I complex [47].

Homologous recombination repair: HR repair is 
the predominant type of DSB repair that occurs 
in late S and G2 phases of the cell cycle [51]. 
The HR pathway utilizes a DNA template strand 
with significant sequence homology to the dam-
aged strand; therefore, this repair pathway is 
considered to be error-free and non-mutagenic 
[1]. The regulation and flexibility of the Mre11 
nuclease activities are important in controlling 
the repair pathway choice during DSB repair 
[52]. The HR pathway initiates binding of the 
Mre11-Rad50-Nbs1 protein complex (MRN) to 
the DSB site and the cyclin-dependent kinase 
(CDK)-dependent activation of the CtIP protein, 
which regulates Mre11-mediated end resection 
of DNA [52, 53]. After initial resection, the Exo1-
DNA2-Sgs1 complex is responsible for further 
DNA resection, and the ssDNA is protected by 
the RPA proteins [51]. The RPA proteins are 
then replaced by Rad51 in a BRCA1/BRCA2 
dependent strand invasion process, and the 
pairing of homologous sequence is completed 
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and extended with the help of Rad52, Rad54 
and WRN complex proteins [54]. The junctions 
at homologous pairing site are then resolved by 
the BLM/TOPIII/Mus81 complex [54].

Cancer cells are highly proliferative and divide 
more frequently than cells in normal tissue. 
Genomic integrity in S and G2 phase is required 
before cells divide; therefore, inhibiting HR and 
initiating DSB in HR-deficient cells are both effi-
cient ways to inhibit cancer cell proliferation by 
trapping cells in the G2/M cell cycle check-
point. Chemicals that serve as HR inhibitors are 
often involved in regulating protein expression, 
nuclear localization, and recruitment of HR pro-
teins. For example, inhibitors of histone deacet-
ylation and HSP90 can block HR by diminishing 
the expression of BRCA2 [55] and Rad51 [56]. 
There are also cancer cells that have HR-defi- 
ciency. For example, BRCA1/2 germline muta-
tions are reported in many patients with solid 
tumors, especially in hereditary breast and 
ovarian cancer patients [57, 58]. The deficiency 
of HR leads to sensitization of patients to DNA 
damaging agents such as cisplatin and PARP1 
inhibitors [59-63].

the repeated sequence closer to the site of the 
DNA break and could be mutagenic. However, 
the detailed mechanism and regulation of SSA 
is still unclear. Therefore, the importance of 
SSA in cancer formation and progression can-
not be clearly addressed at this point in time.

RTK signaling

RTKs are highly conserved in protein structure, 
activation mechanisms, and downstream regu-
lations from C. elegans to humans [66]. In 
human, there are 20 RTK subfamilies com-
posed of 58 known RTKs [67], which activate 
both the canonical and non-canonical signaling 
pathways [67]. In the canonical signaling cas-
cade, RTKs are localized at the cell surface 
membrane where they are activated by ligands 
from outside of the cell. Subsequently, they 
recruit downstream substrate proteins to the 
membrane, and the substrate proteins are 
phosphorylated to recruit more proteins to 
transduce the signaling cascade in the cell. In 
non-canonical RTK signaling pathways, the 
RTKs are internalized into the cells after activa-
tion and translocate from cell surface into the 

Figure 2. RTKs mediate DDR through canonical AKT and RAS pathways. In gen-
eral, RTKs can activate both AKT and RAS pathways. Crosstalk between these 
two pathways can occur through AKT-RAF and ERK-GAB interactions. The down-
stream effects of the AKT pathway include inhibition of apoptosis through BAD 
and p27, inhibition of cell cycle progression through Chk1, downregulation of 
DNA damage repair through BRCA1, and indirect upregulation of DNA damage 
repair through ATM, ATR and DNAPK. Meanwhile, RAS itself can activate cell 
cycle arrest through ATR and Chk1 while promote DNA damage repair through 
expression of DNA ligase III, PARP1 and XRCC1. Also, the downstream of RAS 
pathway can activate ATM to promote DDR.

Single-strand annealing: 
SSA is an error prone repair 
mechanism that is initiated 
when DSBs occur between 
two repeated intra-strand 
DNA sequences. The ERC- 
C1/XPF complex is respon-
sible for the DNA excision 
step in SSA [64]. After exci-
sion of the 5’-ends and 
exposing regions of homol-
ogy, the homologous stra- 
nds of DNA must be paired 
through SSA, as in HR. 
Unlike HR, the RAD52 and 
RAD59 proteins play a pre-
dominant role in the SSA 
DNA binding step instead 
of RAD51 [65]. SSA is re- 
duced in G1-arrested cells, 
but it is not clear whether 
the SSA pathway is cell 
cycle dependent because it 
is not under control of ATM, 
ATR, or DNA-PK [64]. Alth- 
ough SSA utilizes homolo-
gous pairing of repeated 
DNA sequence, it excises 
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cytosol and nucleus where they phosphorylate 
their substrates [67].

Canonical RTK signaling cascade

For the canonical signaling cascade, receptors 
are initially activated through conformational 
changes induced by ligand binding, and their 
kinase activity is further elevated through 
receptor oligomerization [68]. These trans 
auto-phosphorylated tyrosine sites then serve 
as docking sites for downstream cytosolic 
adaptor proteins containing phosphotyrosine-
binding and Src homology-2 (SH2) domains 
[69]. Different adaptor proteins trigger different 
signaling pathways, including the RAS and PI3K 
protein-mediated pathways. In the RAS-medi- 
ated pathway, Grb-2 protein serves as an adap-
tor protein that binds to and is activated by 
phospho-RTK before recruiting and activating 
the RAS protein. The activated RAS protein 
then triggers the signaling cascade comprised 
of RAF, MEK and ERK proteins to enhance cell 
proliferation and transformation through regu-
lating transcription factors and cell cycle regu-
latory proteins, such as AP1 and cyclin D1 [70, 
71]. In the PI3K-mediated pathway, the p85 
regulatory subunit of PI3K serves as an adaptor 
protein to the activated RTK, and the p110 cat-
alytic subunit of PI3K further phosphorylates 
downstream proteins, such as protein kinase C 
(PKC) and AKT [72, 73]. The activated PKC sig-

tor (IGF-1)-induced IGF-1 receptor (IGF-1R) 
activation can also transactivate EGFR by pro-
moting protease dependent-release of EGFR 
ligand. Transactivated EGFR accounts for the 
majority of RAS signaling induced by IGF [77]. 
RAS stimulates PI3K activity whereas AKT 
inhibits RAF activity. Both RAS-mediated and 
AKT-mediated signaling pathways can regulate 
common downstream proteins, such as mTOR 
[78]. Although the RTK signal redundancy and 
crosstalk suggest that downstream signaling 
proteins may be better targets than RTK itself, 
inhibitors blocking these downstream signaling 
proteins can affect both normal and cancer 
cells. To minimize the cytotoxicity effect on nor-
mal cells, targeting cancer cell-specific mutat-
ed protein and cancer cell-addicted RTK may 
be more practical. 

Non-canonical RTK signaling pathway

In canonical RTK signaling, the activated recep-
tors are internalized and are either recycled to 
the cell surface or subjected to lysosomal deg-
radation. Although the majority of internalized 
RTKs are recycled [79], not all of the other inter-
nalized RTKs are degraded. A small portion of 
internalized RTKs, for example, about two per-
cent of internalized EGFR, can phosphorylate 
non-canonical cytosolic and nuclear substrates 
and can trigger non-canonical RTK signaling 
pathways [67, 80]. The first nuclear localized 

naling pathways promote 
proliferation, survival and 
metastasis of potential of 
cancer cells [74, 75]; acti-
vated AKT signaling path-
ways also promote cell pro-
liferation and survival [76]. 
Canonical RTK signaling is 
featured by its signaling re- 
dundancy among RTKs and 
the signaling crosstalk am- 
ong the downstream path-
ways. Although RTKs can re- 
gulate common downstre- 
am proteins, these signal-
ing pathways also feature 
signaling crosstalk among 
different parallel pathways. 
One RTK can transactivate 
other RTKs to regulate sig-
naling cascade. For exam-
ple, insulin-like growth fac-

Figure 3. Some RTKs regulate DDR through specific canonical pathways. The 
chemical-induced EGFR activation will activate AKT pathway to upregulate the 
expression of cyclin A, B, E and CDK 1, 2 to promote cell cycle. On the other 
hand, the radiation-induced EGFR activation will activate RAS pathways to in-
crease expression of XRCC1 and ERCC1 in cancer cells. MET can downregulate 
the expression of AIF specifically through the FAK pathway. Ron promotes PCNA 
Y211 phosphorylation through c-ABL mediated pathway.
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RTK was discovered in 1984 [81], and the non-
canonical functions of nuclear localized RTKs 
were characterized by 1994 [82]. To date, more 
than 14 RTK subfamilies have been reported to 
play an important role in promoting cell prolif-
eration, survival, DNA repair and drug resis-
tance through non-canonical nuclear signaling 
pathways [67]. For instance, activated EGFR 
and HER2 are internalized into the cell and 
translocates into nucleus through retrograde 
trafficking mechanisms to endoplasmic reticu-
lum (ER) before translocate from ER to nucleus 
through membrane-bound trafficking mecha-
nism known as integral trafficking from the (ER) 
to the nuclear envelope transport (INTERNET) 
pathway [67, 83-85]. Nuclear EGFR then serves 
as a transcription co-activator to promote pro-
liferation, inflammation, survival, and drug 
resistance by interacting with transcription fac-
tors, e.g., E2F1, STAT3/5, and RHA, enhancing 
the expression of proteins such as cyclin D1, 
iNOS, c-Myc, B-Myb and BCRP [86-91]. Nuclear 

orted to translocate into the nucleus and their 
nuclear substrates includes DDR related, RTKs 
have been implicated in DDR regulation as the 
canonical RTK downstream proteins have been 
shown to correlate with DDR regulation (Figure 
2). RAS constitutive activation and/or mutation 
are observed frequently in human cancers, and 
the K-RAS encoding gene is particularly vulner-
able to chemical carcinogens [97, 98]. Onco- 
genic activation of K-RAS leads to an accumu-
lation of replication stress by orchestrating 
wild-type H- and N-RAS signaling, and triggers 
the ATR/Chk1 pathways to evade G2 cell-cycle 
arrest [99]. Oncogenic K-RAS also promotes 
A-NHEJ by upregulating the expression of DNA 
ligase III, PARP1, and XRCC1 in leukemia can-
cer model [100]. The AKT-mediated signaling 
pathway also regulates DDR. It has been report-
ed that when cells are pretreated with Chk1 
inhibitor, inactivation of AKT/PKB pathway can 
restore radiation-induced Chk1 activation at 
late G2 cell cycle arrest [101]. Other than Chk1, 

EGFR also functions as sig-
naling transduction kinase 
to promote proliferation, 
DNA repair, and cell surviv-
al by phosphorylating PC- 
NA, Histone H4, ATM, and 
DNA-PK [10, 80, 92-95]. On 
the other hand, fibroblast 
growth factor receptor (FG- 
FR) is reported to transport 
to ER via a retrograde path-
way and then translocate 
from ER into the nucleus in 
a membrane-vesicle inde-
pendent mechanism which 
is a part of integrative nuc- 
lear FGFR-1 signaling (INFS) 
[67]. Nuclear FGFR then 
serves as transcription reg-
ulator by interacting with 
CREB-binding protein and 
STAT5 [96].

Regulation of RTK signal-
ing on DDR and therapeu-
tic resistance

Mutations in the RTKs as 
well as dysregulation of its 
downstream signaling pro-
teins can impair normal 
DDR. Some RTKs are rep- 

Figure 4. EGFR also mediates DDR through non-canonical signaling pathways. 
EGFR interacts with BRCA1 and DNAPK to promote their translocation into the 
nucleus. EGFR can also phosphorylate histone, ATM and PCNA to promote his-
tone methylation, foci formation, and proliferation whereas EGFR-mediated 
PCNA phosphorylation inhibits MutL activity.
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AKT is known to inhibit TopBP1 and BRCA1 
even though it also positively regulates ATM, 
ATR, and DNA-PK (reviewed in [102]). In addi-
tion to the RAS and AKT pathways, some RTKs 
can also regulate DDR through other pathways 
as discussed in the following sections.

Regulation of DDR by the ErbB family

The ErbB family is composed of four receptors, 
ErbB1 (epidermal growth factor receptor, 
EGFR), ErbB2 (HER2), ErbB3 (HER3), and ErbB4 
(HER4). Among them, EGFR and HER2 have 
been shown to regulate DDR and contribute to 
therapeutic resistance through both canonical 
and non-canonical signaling pathways. Using 
EGFR siRNAs and EGFR small molecule inhibi-
tors, Wei et al. demonstrated that EGFR-
mediated AKT/ERK pathway upregulates cell 
cycle regulatory proteins, including cyclin A, B, 
E, and CDK 1/2, in carcinogenic metal-induced 
proliferation of triple-negative breast cancer 
cells (Figure 3) [103]. The RAS/MEK/ERK path-
way promotes EGFR-mediated radioprotection 
[104] by affecting gene transcription of the DNA 
repair proteins. The expression levels of the 
base repair DNA ligase XRCC1 and the DNA 
adduct excision protein ERCC1 upregulated 
under radiation treatment can be attenuated 
by EGFR inhibitor [105, 106]. By utilizing small 
molecule inhibitors, radiation-induced and EG- 
FR-mediated XRCC1 upregulation was shown to 
depend on the RAS/MEK/ERK pathway where-
as normal XRCC1 expression is affected by 
EGFR-mediated PI3K/AKT pathway (Figure 3) 
[107].

Nuclear EGFR also plays an important role in 
DNA damage repair, including MMR, NHEJ and 
HR (Figure 4). For instance, nuclear EGFR can 
phosphorylate histone H2B and histone H4. 
Specifically, EGFR phosphorylates histone H4 
at Y-72 to regulate histone H4 methylation [93]. 
EGF, as well as arsenic, can stimulate nuclear 
EGFR-mediated phosphorylation and stabiliza-
tion PCNA via Y211. Phosphorylated PCNA 
Y211, which has been shown to correlate with 
poor patient survival, promotes cell prolifera-
tion as well as inhibits the endonuclease activ-
ity of MutLα, which leads to inhibition of MMR 
[10, 80, 108]. Yu et al. demonstrated that 
PCNA-derived peptide blocks the EGFR-PCNA 
complex and suppresses the growth of breast 
cancer cells [109]. Nuclear EGFR plays a role in 

HR in many aspects. EGFR phosphorylates ATM 
at Y370; depletion of EGFR abolishes ATM-
mediated foci formation and HR; the ATM-EGFR 
interaction can be blocked by gefitinib, an EGFR 
inhibitor [92]. EGFR also interacts with BRCA1 
to facilitate HR; the EGFR-BRCA1 interaction as 
well as BRCA1 nuclear translocation can be 
blocked by the EGFR inhibitor, lapatinib [110]. 
These interactions provide molecular basis for 
the combination therapy of EGFR inhibitor with 
PARP inhibitor, which induces synthetic lethality 
in tumor cells, as demonstrated in breast and 
ovarian cancers [110-112]. Radiation also en- 
hances EGFR nuclear translocation [95, 113]. 
Nuclear accumulation of EGFR contributes to 
radio-protection and interferes with DNA repair 
through interacting and regulating activity of 
DNAPK [114-117]. Treatment of EGFR monoclo-
nal antibody, cetuximab (C225), promotes the 
interaction between EGFR, DNAPK, and Ku pro-
teins, which results in a redistribution of DNAPK 
from the nucleus to cytosol, a critical step in 
the radiosensitizing role of EGFR blockade 
[118-120]. EGFR blockade also inhibits cell 
growth via p27 and maintains cells in G1 phase, 
which has been shown to also contribute to the 
radiosensitizing effect of EGFR [121, 122]. In 
addition to EGFR, HER2 also regulates cell cycle 
regulation by binding to and colocalizing with 
cyclin B-bound CDC2 protein. Phosphorylation 
of CDC2 by HER2 at Y15 then delays entry of 
cells into M phase and contributes taxol resis-
tance in HER2-overexpressing cancer cells 
[123]. Inhibition of HER3 also sensitizes cancer 
cells to radiation therapy by blocking AKT phos-
phorylation [124], and dual inhibition of EGFR 
and HER3 can overcome cross-resistance to 
EGFR inhibition and radiation [125, 126].

MET family regulated DDR

Two RTKs in the MET family, MET (also known 
as hepatocyte growth factor (HGF) receptor) 
and Ron (also known as macrophage stimulat-
ing 1 (MST1) receptor) also regulate DDR. In 
lung adenocarcinoma, HGF-induced MET acti-
vation inhibits apoptosis through the canonical 
pathway. Chen et al. demonstrated that the 
FAK-/- mouse embryonic fibroblast cells express 
higher levels of apoptosis-inducing factor (AIF), 
which correlates with better therapeutic 
response to cisplatin treatment. Moreover, AIF 
expression and cisplatin sensitivity were in- 
creased in cells when binding of MET to FAK 
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was impeded or when MET inactivated [127], 
suggesting that this FAK-regulated AIF expres-
sion is downstream of MET signaling in lung 
adenocarcinoma cells. MET is also reported to 
directly phosphorylate PARP1 at Y907 site 
[128]. Phosphorylated PARP1 is more resistant 
to the PARP inhibitor, veliparib, and the combi-
nation of MET inhibitor and veliparib increased 
breast cancer cell killing effect. Contrary to 
MET, Ron phosphorylates PCNA at Y211 
through the canonical signaling pathway by 
activating Ron downstream kinase, c-Abl, an 
adaptor protein containing SH2 domain [129]. 
These findings suggested a functional redun-
dancy between Ron receptor and nuclear EGFR 
on PCNA Y211 regulation.

Future prospect

Although both radio- and chemotherapies have 
demonstrated significant efficacy in cancer 
treatment, there are still some patients who 
have poor response to these treatment meth-
ods. Therefore, it is important to address the 
biological basis of resistance to cancer treat-
ment and to improve the efficacy of radio- or 
chemotherapies, such as through combination 
with targeted therapies. In this aspect, there is 
an urgent and unmet need to develop biomark-
ers for personalized medicine [130]. As DNA 
damage adducts and repair capabilities have 
proven success in predicting cancer risk and 
therapeutic response, stratifying patients acc- 
ording to the DDR status has emerged as a 
treatment modality for cancer [45, 131]. While 
mutations in DDR proteins can serve as predic-
tive markers in cancer treatment [132], DDR 
proteins are also epigenetically regulated. 
Thus, the regulatory modifications of DDR pro-
teins as well as mutations and malfunctions of 
other molecular players involved in DDR are 
also important factors to consider when strati-
fying patients for treatment.

Among the potential biomarkers, RTK-related 
DDR protein phosphorylation is an ideal marker 
in cancer treatment because RTKs are involved 
in DDR regulation whereas most of cancer cells 
develop oncogenic addiction to upregulated 
RTK signaling pathways. Targeting RTKs, thus, 
may overcome RTK-mediated therapeutic resis-
tance discussed above. For example, patients 
with pY211-PCNA and pY370-ATM may benefit 
from treatments combining EGFR inhibitor with 

current chemo- or radio- therapies; patients 
with pY907-PARP1 may benefit from treatment 
combining MET inhibitor with PARP1 inhibitor. 
Since oncogenic addiction is important to dis-
tinguish the killing effect of RTK inhibitors 
between normal cells and cancer cells [133], in 
theory, combining DNA damaging agents with 
RTK inhibitors can selectively increase geno-
toxic effects in cancer cells. As the molecular 
mechanisms underlying RTK-mediated DDR 
are not yet fully understood, more investiga-
tions are needed to further characterize the 
therapeutic potential of personalized combina-
tion therapy targeting this regulatory pathway. 
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