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Abstract

Genome-wide association studies (GWAS) have successfully identified many common genetic 

variants associated with complex diseases over the past decade. The “gold standard” method for 

validating the top single nucleotide polymorphisms (SNPs) identified in GWAS is to 

independently replicate the findings in similar or diverse large-scale external cohorts. However, for 

rare diseases, it can be difficult to find an external validation cohort within a reasonable timeframe. 

In such situations, resampling methods, such as the two-step iterative resampling (TSIR) approach 

have been used to identify SNPs associated with the outcome of interest. However, the TSIR 

approach involves choosing several parameters in each step, which can influence the performance 

of the approach. In this paper, we undertook extensive simulation studies to assess the effect of 

choice of different parameters on the type I error and power for both binary and continuous 

phenotypes and also compared the TSIR approach with the traditional one-stage (OS) and two-

stage (TS) GWAS analysis. We illustrate the usefulness of the TSIR approach by applying it to a 

GWAS of childhood cancer survivors. Our results indicate that the TSIR approach with an at least 

70:30 split and a cut-off of discovering and replicating SNPs at least 20 times in 100 replications 

provides conservative type I error control and has near “optimal” power for internally validated 

SNPs. Its performance is comparable to the TS GWAS for which an external validation cohort is 

available with only slight reduction in power in some situations. It has almost the same power as 

OS GWAS with conservative type I error which leads to fewer false positive findings. TSIR is a 
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powerful and efficient method for identifying and internally validating SNPs for GWAS when 

independent cohorts for external validation may not be available.
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Introduction

Under the common disease common variants (CDCV) hypothesis, genome-wide association 

studies (GWAS) have successfully identified associations between common genetic variants, 

such as single nucleotide polymorphisms (SNPs) with complex diseases1–3. A two-stage4 or 

multiple-stage design5–6 has been commonly applied to design GWAS to detect SNPs 

associated with complex diseases. For the two-stage design, the whole cohort is divided into 

discovery and replication/validation cohorts. In Stage I, the top signals/SNPs are identified 

in the discovery cohort using well-defined a priori criterion that are then replicated/validated 

in Stage II using an “independent” replication cohort, i.e. independent of the discovery 

cohort. For multiple-stage designs with more than two stages, after the first stage, stages II 

and beyond are usually employed to validate the top most significant markers for 

downstream analyses.

In GWAS involving rare diseases or outcomes in pediatric cancers we often aim to identify 

biologic markers that can predict treatment outcomes, help explain treatment-related 

toxicities, or help us understand the effects of treatment modalities on different subtypes of 

disease. Because these diseases are rare, some with prevalence rates of 1 per million, e.g. 

retinoblastoma and Ewing’s Sarcoma7,8, it may not be possible to find an external cohort to 

validate the top SNPs within a reasonable timeframe. Even when disease outcomes are not 

rare, it can also be hard to find a suitable external validation cohort. An example is the 

evaluation of genetic predictors of clinically ascertained outcomes in the SJLIFE cohort9, a 

study among childhood cancer survivors treated at St. Jude Children’s Research Hospital 

(SJCRH), who have survived 10 or more years from diagnosis and are at least 18 years of 

age. Because this study includes the largest cohort of childhood cancer survivors with 

prospective medical/clinical evaluation of health outcomes, it is extremely hard to find 

another cohort that has similarly ascertained health phenotypes10. In such situations, it is 

imperative that an innovative and robust internal validation approach is undertaken to 

validate the top SNPs identified through GWAS10,11.

The current research was motivated by a study within the SJLIFE cohort designed to identify 

the SNPs associated with the obesity phenotype (evaluated as a binary outcome measure) in 

survivors of childhood cancer treated with cranial radiation for which an external cohort to 

validate our findings was not available10. Thus, we considered an internal validation 

approach, namely the two-step iterative re-sampling (TSIR) approach, used by Yang et al. 11 

for identifying SNPs associated with the risk of relapse in children treated for acute 

lymphoblastic leukemia. An alternative approach would be to use a permutation 

approach12,13, which is particularly suited to situations where the prevalence of the binary 
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outcome is low and the number of cases is small. Another permutation-based internal 

validation approach is the “profile significance”14, particularly suited for situations where 

the global level of association between genomic features may be of interest. For large 

sample sizes these approaches can be computationally intensive and time consuming. The 

focus of this manuscript is to describe the operating characteristics of the TSIR approach.

The TSIR approach used in Yang et al.11 can roughly be described as follows. The original 

cohort is split, using a π : (1-π) ratio, with π=0.5, into discovery and replication cohorts. 

Using the discovery cohort, SNPs are individually tested for association with the outcome 

using Fine and Gray’s hazard regression model. All SNPs that are significant at α1 

(4.4x10−3) are carried forward to the replication step. A SNP identified in the discovery 

cohort is considered to be replicated if the same SNP is associated with the outcome in the 

replication step at α2 (=0.05) significance level. This discovery-replication process is 

repeated 100 times and a particular SNP is designated as “associated” or “internally 

validated” with the outcome if it is discovered/replicated at least 10 times.

In the approach described by Yang et al.11, there was no rationale or statistical justification 

provided for the following: (1) rationale for the 50:50 split of the original cohort into 

discovery and replication cohorts (2) the choice of α1= 4.4x10−3 with α2 is fixed at level 

0.05 (α2 =0.05)(3) a cut-off of 10 in the discovery-replication process. We were interested in 

assessing how the various choices in (1)–(3) above affect the statistical properties of the 

TSIR approach, how the TSIR approach performs for continuous and binary outcomes and 

finally how the performance of TSIR approach compares to the OS and TS GWAS analysis?

The research presented here, supported by extensive simulation studies, is designed to guide 

researchers to employ the appropriate choice of parameters when using the TSIR approach 

for their genomics research involving GWAS when external validation cohorts are not 

available. The usefulness of the TSIR approach is further demonstrated by applying it to data 

reported in Wilson et al.10.

Method

Two-step iterative resampling (TSIR) procedure

The TSIR described by Yang et al.11 was used in the context of survival data. However, in 

the current analysis we were interested in binary as well as continuous phenotypes. 

Accordingly, we discuss evaluation of binary and continuous end points in parallel.

We assume that, for GWAS in a one-stage design, there are N0 controls and N1 cases in a 

case-control genetic association study (total sample size N = N0+N1) or N individuals in a 

genetic association study of a continuous phenotype and that the SNP of interest is biallelic. 

The 2 alleles at a SNP are denoted as A and a, where A is the minor allele and the three 

genotypes are AA, Aa, and aa. Suppose that observations (si, Xi, Gi), i = 1, 2, … N, are 

available for N individuals, si is the indicator of case-control status or the quantitative value 

of the continuous phenotype of the subject i; Xi = [xi1, xi2, …, xim]T is the vector of m 
covariates to be included in the model (e.g., demographic or clinical variables); and Gi = 0, 

1, or 2 is the numerical coding of the 3 genotype aa, Aa or AA of the SNP for an individual.
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For the TSIR approach the original cohort is randomly split into discovery and replication 

set by the ratio π:(1-π). A SNP is considered discovered and replicated if its association 

testing p-values are statistically significant at levels α1 and α2 in the discovery and 

replication steps, respectively (Figure 1). This process is repeated n=100 times and a SNP is 

considered to be “associated” with the phenotype if the SNP is discovered and replicated at 

least r times in 100 repetitions.

It may be noted that if we conduct the association analysis, logistic regression or linear 

regression, with the entire cohort (sample size N), i.e. without splitting the sample into 

discovery and replication cohorts then we are conducting traditional OS GWAS. However, 

without having an independent validation cohort there is always a concern of false 

discoveries and the discovered SNPs are subject to suspicion and criticism. In such 

situations the proposed TSIR approach overcomes this limitation and the simulations studies 

suggest that the results based on TSIR approach are more believable and defensible.

Traditional Two-stage GWAS design

The traditional two-stage design was introduced as an efficient alternative to conducting a 

single GWAS analysis (one-stage design) that includes all genotyped participants4,15. The 

two-stage (TS) design was proposed as a way to economize on the cost of genotyping, which 

were quite high when initial GWAS studies were undertaken. In a TS design,  and 

are the number of individuals available for genetic analysis in each of the two stages with 

 being the total sample size. In stage I, a small set of the individuals N1 

=N* π(π < 0.3, π is the proportion of participants included in stage I) would be used as the 

discovery cohort for whole-genome genotyping and the promising markers at liberal levels 

of type I error control (α1≥0.01) would be identified. Then, in Stage II, a larger cohort of 

individuals, independent of those in Stage I, of size N2= N*(1−π), with (1 − π) > 0.7, would 

be used as a validation cohort for genotyping the markers selected in stage I. The final list of 

markers would be determined based on the results from the Stage II data or in combined 

Stages I and II data at more stringent levels of type I error control (α2=α/M, where M is the 

number of markers associated with phenotype in Stage I and α is the genomewide 

significance level)4. However, as genotyping costs have decreased over time, the design of 

TS GWAS has also changed accordingly. Importantly, many more individuals are genotyped 

for markers spread across the genome in stage I and tested for association with the 

phenotype of interest at increasingly stringent level of type I error (α1), while a more liberal 

level of type I error control (α2) is used in stage II in smaller cohort of individuals, 

independent of those in Stage I, as the validation cohort15,16. In order to compare the 

traditional TS GWAS with the proposed TSIR approach in the current analysis, the 

parameters for the TS design were chosen to reflect the set-up of the TSIR approach.

Simulation studies

We performed extensive simulation studies to evaluate the empirical power and type I error 

rate of the TSIR procedure for testing associations of SNPs with binary and continuous 

phenotypes for different parameter combinations as shown below. To evaluate the merits of 

TSIR, we varied the proportion (π) of individuals included in the discovery cohort from 0.3 
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to 0.9 in increments of 0.1, and chose α1 = 0.01, 0.001, and 0.0001 (with α2 fixed at 0.05) 

for both binary and continuous phenotypes. The prevalence of disease was set at 0.01, 0.1 

and 0.3 for the binary phenotype.

Data generation

Genotype generations—Given the minor allele frequency (MAF) pA of minor allele A 

(major allele a), the genotype frequencies p(G=g) were calculated according to Hardy–

Weinberg equilibrium (HWE) law, that is, p(G=0)=(1–pA)2, p(G=1)=2pA (1–pA), 

p(G=2)=(pA)2. Two covariates were considered in our models: x1 a binary variable that takes 

value of 1 with a probability of 0.5 and 0 otherwise, and x2 a continuous variable that 

follows a standard normal distribution. Based on these assumed distributions, the complete 

data on the genotypes and 2 covariates for a population of 2,000,000 individuals was 

generated.

Phenotype generation

Binary phenotype: The case-control status was determined from the generated genotype 

and covariate data according to the model similar to Kang et al.17:

(1)

We controlled the baseline disease prevalence by setting α0 to 0.3, 0.1 and 0.01 to represent 

high, moderate and low disease prevalence in the case where all three regression coefficients 

corresponding to SNP, xi1 and xi2 are 0.

Continuous phenotype: The continuous phenotype was generated from the generated 

genotype and covariate data according to the model outlined in Wu et al. (2011):

(2)

where ei is the random error following a standard normal distribution.

Using the models proposed in (1) and (2), N1 cases and N0 controls or N samples were 

randomly generated from the simulated population of 2,000,000 individuals for binary or 

continuous outcomes, respectively.

Assessment of Type I error probability

Two values for the MAFs considered were 0.05 and 0.2 in our evaluation of type I error. The 

case-control status or the continuous phenotype was determined from the generated 

genotype and covariate data by using their respective models in (1) and (2), with θ = 0. To 

estimate the type I error rate of the TSIR approach, 10,000,000 replicated datasets were 

simulated for the case-control model, with 250, 350, 450, 550 and 1000 cases and 1, 2.5 and 

4 times the numbers of independent controls under the null hypothesis of H0: θ = 0, 

respectively. The same numbers of replicated datasets were simulated for the continuous 

phenotype study, with 500, 700, 900, 1100, and 2000 samples under the null hypothesis of 
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H0: θ = 0. We used the number of successful replication r = 10, 20 and 25 to estimate the 

type I error rate of the TSIR procedure. TSIR was applied to each replicate dataset and the 

empirical type I error rate was estimated as the proportion of replicates in which the tested 

SNP was identified as “associated” with the phenotype using TSIR procedure.

Assessment of power

Three genetic disease models were considered: additive, dominant, and recessive with their 

corresponding genotype codings of 0, 1, 2; 0, 1, 1; and 0, 0, 1 for three genotypes aa, Aa and 

AA. The case-control status or the continuous phenotype was determined from the generated 

genotype and covariate data according to the simulation methods given above, with θ = 0.2, 

0.4 and 0.7 to mimic a small, moderate and larger effect sizes, respectively. Datasets were 

generated 10,000 times for each configuration. TSIR used for the type I error simulation was 

applied to each replicate data-set, and power was estimated as the proportion of replicates in 

which the tested SNP was identified as “validated.” Based on type I error simulation results, 

we used n=20 in the power estimation of TSIR procedure, as it seemed to control the type I 

error rate at the desirable levels such as 5x10−5 or 5x10−6.

Comparison with the two-stage (TS) design

To investigate the performance of TSIR, we compared the power of TSIR with that of the TS 

design under two scenarios based on the different sample sizes. Under the fir the number of 

individuals in stage I is the same as those for the TSIR approach. Under the second scenario 

it is assumed that we have another independent replication cohort but the sample sizes in the 

two stages are similar to the sample sizes in the discovery and replication stages of the TSIR 

approach. The TS designs under two scenarios are denoted by TS1 and TS2, respectively. To 

make comparisons reasonable, we selected a significance level combination of α1=10−4 and 

α2=0.05 for the two-stage design to ensure an overall type I error rate per SNP of 5×10−6 

(Table 1)4. Based on power simulation results above, power was optimized for the TSIR 

when the ratio of individuals in the discovery and replication cohorts was 70:30 and 

assuming that both the “discovery” and “validation” cohorts were sampled from the same 

homogenous population. For the TSIR approach, we considered the number of cases for the 

binary phenotype to be N1= 280, 560, and 1120 and the number of controls to be 2.5 times 

the number of cases (N2= 700, 1400, and 2800), with total sample size of N =(N1+N2) = 

980, 1960 and 3920. For TS1, we considered  and 

 to be the number of individuals in 

Stage I (discovery) and Stage II (validation) of the two-stage design. We then randomly 

sampled N1 and N0 individuals (N =N1 +N0) from the general population of 2,000,000 

individuals for the TSIR approach and also used the same sample as the Stage I discovery 

cohort ( , 1960 and 3920) for the TS analysis. To create a validation cohort for 

Stage II for the TS approach, we randomly sampled , 840, and 1680 

individuals from the general population of 2,000,000, this kept the ratio of participants in the 

discovery to validation datasets (0.7:0.3) consistent with the TSIR approach. For TS2, we 

considered the same sample as that for TSIR but mimicked the features of TS design by 
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splitting N individuals into  for stage I discovery cohort and  for 

stage II validation cohort and then applied association analysis methods to these two cohorts.

When considering the continuous phenotype, the number of individuals included in the 

analyses for the TSIR approach were N = 700, 1400, and 2800. A similar approach was 

adopted for analysis of the TS design with the continuous phenotype. Datasets were 

generated 10,000 times for each configuration. The power of TS1 and TS2, was estimated as 

the proportion of replicates in which a SNP was discovered in stage I at p < α1 (where 

α1=10−4) and validated in stage II at p < α2 (where α2=0.05).

The power properties of TSIR approach were also compared to OS GWAS for simulated N 
individuals for both binary and continuous outcomes. The power of OS procedure was 

estimated as the proportion of replicates in which a SNP was statistically significant at a 

level of α1α2.

Simulation results

Empirical type I error rate of TSIR—Table 1 and Supplementary Table S1 display the 

empirical type I error rates when r=20.

When evaluating the binary phenotype using the TSIR approach, as π increased so did the 

empirical type I error, however, the type I error was still maintained at a level of α1×α2 per 

SNP. If α1 = 10−3 and 10−4, the medians of empirical type one error rate were 0.000033 

(range: 0 0.00007), and 0.000001 (range: 0.000000 0.0000056), respectively. The TSIR 

procedure controlled type I error per SNP at 5×10−5 and 5×10−6 if α1 = 10−3 and 10−4, 

respectively, which is the same as the type I error control (α1×α2) seen in the TS approach. 

For smaller sample sizes, such as for N1=250, it was seen that, irrespective of the 

prevalence, the type I error rate was much closer to α1α2 with discovery cohort proportions 

of π = 0.6 and 0.7. However, with the discovery cohort proportion of π=0.7, the type I error 

rates were much better compared to discovery cohort proportions less than 0.7, particularly 

for more stringent values of α1, e.g. for α1=0.0001. The type I error rates corresponding to 

π=0.60 and 0.70 are 1.8 and 2.7, 2.8 and 4.2, and 4.1 and 4.9 corresponding to sample sizes 

of 250, 550 and 1000, respectively.

It is seen that as the sample size increases the type I error control improves the proportion of 

individuals allocated to the discovery stage relative to the validation stage is minimal when 

the type I error control used in the discovery phase is somewhat larger α1≥0.001. But, for 

more stringent values of α1, such as α1=0.0001, the TSIR approach with 70% in the 

discovery cohort still provides qualitatively superior type I error control. From Table 1, 

similar conclusions can be drawn when the phenotype is continuous.

The type I error rate per SNP was not maintained at α1×α2 level when r=10 was chosen as 

the validation cutoff (Supplementary Table S2). Similarly, the type I error rate per SNP was 

too conservative when r=25 was chosen as the validation cutoff (Supplementary Table S3). 

In addition, with the discovery cohort proportion of π =0.8 and 0.9, the type I error rates 

were close to those when π =0.7 for α1 > 0.0001, but were a little higher than those when π 
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=0.7 for α1 = 0.0001 (Supplementary Table S3). However, the power when π =0.7 for all 

simulated α1 plateaued (see below for empirical power). Thus, for power estimation or 

comparison, we will plot the results for π up to 0.7.

Empirical power of TSIR—All power evaluations, discussed below, were conducted 

using r=20 as the validation cutoff. Based on the extensive power simulation studies the 

following conclusions can be drawn:

Binary phenotype: From Figures 1–2 and Supplementary Figures S1–S2 it is seen that 

when α1 =0.01, the power of the TSIR approach for detecting a SNP with a MAF of 0.2 is 

not affected by the proportion of individuals (π) included in Stage I (discovery cohort). 

However, as expected, for more conservative values of α1, that is, α1 ≤10−3, the power of 

TSIR approach first increased sharply then plateaued with the increasing values of π. Also, 

not surprising, as α1 became more conservative the power of TSIR approach decreased.

When both the effect size of the SNP and the sample size were small or very large, the 

proportion of individuals included in discovery cohort had little effect on the power of the 

TSIR approach. In contrast, if the effect size was moderate or small but the sample size was 

large, or the effect size was large but the sample size was small, then the power estimates 

were optimized when π ranged between 0.5 and 0.7. However, for stringent values of α1, 

π=0.7 for the discovery cohort provided consistently better power. Neither the prevalence of 

disease nor the MAF affected the power of the TSIR approach (supplementary Figures 1–2).

Continuous phenotype: As seen in Figure 4, for a SNP with large effect size, e.g. θ=0.7, 

and MAF=0.2, the power of TSIR was close to 1 regardless of π, α1 and sample size (≥500). 

Similarly, as seen in Figure 3, for a SNP with a small effect size of θ=0.2 and MAF=0.05, 

the power of TSIR approach was close to 0 regardless of π, α1 and sample size (≤2000). As 

seen with the binary phenotype, if α1= 10−3, 10−4, and 10−5, with the increasing proportion 

π of individuals included in step I, “discovery cohort,” the power of TSIR first increased 

sharply then became plateaued around π=0.6 and 0.7, which is particularly true for smaller 

values of α1.

Power comparisons among OS, TSIR, TS1 and TS2—It is clear from Figure 5 that, 

not surprisingly, the power of TS2 was larger due to the fact that TS2 procedure used more 

individuals, and the power of TS1 was lower than OS even though TS1 uses the same 

number of individuals as OS but, under OS procedure, the analysis is conducted only once. 

The power of TS2 was larger than that of the TSIR approach especially when the sample size 

and effect size were moderate. However, this has to be balanced by the fact that the TS 

procedure used 30% more individuals (for the validation cohort) than those used for TSIR 

approach. For the binary phenotype the largest difference in power estimates between both 

approaches was seen to be 0.14 when there were 560 cases and 1400 controls corresponding 

to a SNP with MAF of 0.2 and effect size of 0.4. For other situations, corresponding to large 

effect sizes or small/large sample sizes the power estimates for the two approaches were 

comparable and reasonably close. The power of TSIR was almost identical to that of OS, 

which is expected, since for TSIR and OS the sample was the same but TSIR used a re-

sampling statistical technique to better control possible false positives (the simulated type I 
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error rate of TSIR was smaller than α1×α2 which is the theoretical type I error rate for OS) 

at the same time without sacrificing the power as TS1 did.

All simulation results for TS1, TS2 and TSIR were conducted using the two-sided test in 

stage 2 for TS1 and TS2 or in step 2 for TSIR, which will have slightly reduced power since 

it ignores the direction of association. We re-ran all simulations using exactly the same 

parameters as those for Figure 5 and re-calculated the power for TS1, TS2 and TSIR but used 

one-sided test in stage 2 or step 2. For the binary phenotype, the maximum gain in power for 

TSIR with one-sided test was 0.01. But for the TS1 and TS2, the maximum gain in power 

was 0.052 and 0.053, respectively. The very similar conclusions held for continuous 

phenotype. One-sided test did improve the power of TSIR but the power increase was 

relatively small which means TSIR approach is relatively robust to one-sided or two-sided 

test due to 100-round iterative resampling. For TS1 and TS2, though one-sided test improved 

their power at about 5%, our simulations suggest that, in general, TS1 had smaller power 

than TSIR and TS2 but TS2 is not feasible due to lack of availability of an external validation 

cohort. Thus the results further confirm the good performance and the practical usefulness of 

TSIR compared to OS or TS with or without the availability of additional validation cohort 

in ongoing and future GWAS or NGS.

Simulation studies for the obesity SNPs—Simulation studies were also conducted to 

estimate the empirical power for detecting association between SNPs identified for the 

obesity phenotype in Table 2 using the TSIR approach10. The simulation parameters were 

taken to reflect the MAF, prevalence and effect size (in terms of odds ratios) observed in a 

cohort of cancer survivors exposed to cranial radiation therapy (CRT) cohort (Table 2). 

Specifically, for each SNP, we first generated genotype data under Hardy–Weinberg 

equilibrium with MAF similar to that observed in the survivor cohort for a population with 

2,000,000 individuals as above; then generated phenotype (case-control) data from the 

generated genotype dataset using the model above with OR and prevalence of the disease 

same as those observed for the survivor cohort. Finally, a sample of 365 cases and 411 

controls was randomly drawn from the population and analyzed using the TSIR approach. 

This process was repeated 10,000,000 and 10,000 times for the estimation of empirical type 

I error and power, respectively. The empirical type I error rate was estimated as the 

proportion of times the SNP associated with obesity was validated wrongly and the 

empirical power was estimated as the proportion of times the SNP was validated correctly. 

For example, for SNP rs2769921 with MAF of 0.43, there was 69% power using TSIR 

approach to detect if the SNP was truly associated with obesity in cancer survivors with an 

odds ratio of 0.577; however, there was only 3.4×10−6 chance to wrongly identify that this 

SNP was associated with obesity in cancer survivors (Table 2). Similarly, for SNP 

rs4971486 with MAF of 0.22, the power to detect it was 0.69 if it was truly associated with 

obesity with an OR of 1.9 and the type I error was 4.51×10−6 if it were not associated with 

obesity.

Discussion

It is well recognized that the top signals emerging from GWAS or next generation 

sequencing must be validated in independent cohorts18,19. However, independent external 
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validation cohorts among those with rare diseases can be difficult to find within a limited 

timeframe. In such situations, two stage resampling approaches have been used to identify 

and validate the SNPs associated with binary phenotypes of interest if the number of cases is 

not small. One such approach, namely the TSIR approach, has been proposed and we 

evaluated its operating characteristics through extensive simulation studies. These studies 

suggest that the TSIR approach, with the choice of 7:3 partitioning of the original cohort 

into “discovery” and “replication” cohorts, a cut-off of r=20 for identifying SNPs associated 

with the phenotype in 100 replications, and strictly controlling the type I error rate below 

α1×α2 provide good type I error control and near optimal power. In our analyses, using the 

parameters above the power of the TSIR approach was found to be slightly lower than that 

observed for the TS2 approach, but this is due to the fact that fewer individuals were 

included in the analyses of the TSIR approach than in the TS approach. Interestingly, with 

same sample sizes, the power of the TSIR was almost identical to that of OS, but TSIR 

approach had a conservative type I error control than OS. It is often not possible to obtain an 

external cohort for validation for very rare diseases and unique cohorts. Thus, based on our 

analyses, we recommend the use of the TSIR approach for identifying the top candidate 

SNPs associated with a particular phenotype of interest. Identification of SNPs using the 

TSIR approach may help prioritize those candidate SNPs that should be evaluated in 

laboratory studies. However, it should be noted that the TSIR approach is only applicable 

when the size of the population of interest is sufficiently large for sample splitting.

In GWAS, the first step prior to statistical genetic association testing is quality control 

analysis which includes Hardy-Weinburg Disequilibrium (HWD) test to remove markers 

departing from HWE20. Thus, in our TSIR simulations the genotype data is generated by 

assuming HWE. However, if we are concerned about HWD in a GWAS, then some 

statistical association testing method21 that can adjust for HWD is available and can be used 

to replace the logistic regression in TSIR but we would expect the conclusions drawn above 

would still hold. Furthermore, in our simulations we used logistic regression. In the 

literature, there are many statistical methods available for genetic association testing, which 

can also be employed in TSIR approach18. We would expect that the conclusions drawn 

above would still hold. The common SNPs with MAFs of 0.2 and 0.05 in GWAS were 

investigated in this study. Currently rare variant association identification in the next 

generation sequencing studies is highly in demand due to missing inheritability of complex 

trait post-GWAS22. If the sample size of the study is large enough so that the splitting of the 

cohort is reasonable, then the TSIR approach allows for sufficient statistical power to detect 

the rare variants in both steps23. With smaller sample sizes where splitting is unreasonable, a 

permutation test may be applied. However, for rare variants association, we often conduct 

gene (set)-based analysis24,25, not single SNP-based analysis. This way we can employ 

TSIR procedure as an internal validation method if there is no external validation cohort 

available.

If the individuals in the study cohort are from different populations, we can just simply 

adjust for population stratification by including genetic ancestry score as covariates in the 

logistic regression model26. Here our interest was on detecting genetic effect on the binary 

outcome. In Post-GWAS, besides rare variant associations above, gene-environment 

interaction also plays an important role in finding missing inheritability for complex trait27. 
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They are worthy of investigation by simulations but we would expect that similar 

conclusions would hold.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The two-step iterative re-sampling procedure for GWAS
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Figure 2. Empirical power of TSIR for detecting a SNP with a MAF of 0.2 for a binary 
phenotype
A, B and C are for small effect size θ = 0.2, moderate effect size 0.4, and large effect size 0.7 

for a large prevalence of 0.3, respectively. D, E and F are for small effect size θ = 0.2, 

moderate effect size 0.4, and large effect size 0.7 for a small prevalence of 0.01, respectively. 

The solid lines with the numbers of 1–4 correspond to α1 = 0.01, 0.001, 0.0001, and 

0.00001, respectively.
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Figure 3. Empirical power of TSIR for detecting a SNP with a MAF of 0.05 for a binary 
phenotype
A, B and C are for small effect size θ = 0.2, moderate effect size 0.4, and large effect size 0.7 

for a large prevalence of 0.3, respectively. D, E and F are for small effect size θ = 0.2, 

moderate effect size 0.4, and large effect size 0.7 for a small prevalence of 0.01, respectively. 

The solid lines with the numbers of 1–4 correspond to α1 = 0.01, 0.001, 0.0001, and 

0.00001, respectively.
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Figure 4. Empirical power of TSIR for detecting a SNP with a MAF of 0.05 (A–C) and 0.2 (D–E) 
for a continuous phenotype
A, B and C are for small effect size θ = 0.2, moderate effect size 0.4, and large effect size 

0.7, respectively. The solid lines with the numbers of 1–4 correspond to α1 = 0.01, 0.001, 

0.0001, and 0.00001, respectively.
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Figure 5. Power comparisons between TSIR, OS and TSs for detecting a SNP with MAFs of 0.05 
and 0.2 associated with binary (A) and continuous (B) phenotypes
The first x-axis for A and B is for the number of cases (the number of controls is 2.5 times 

of the number of cases) and the number of individuals, respectively. The second x-axis is for 

θ. The four bars are for TSIR, OS, TS1 and TS2, respectively.
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