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Abstract

Following infection, T cells differentiate into a heterogeneous population of effector T cells that 

can mediate pathogen clearance. A subset of these effector T cells possesses the ability to survive 

long-term and mature into memory T cells capable of providing long-term immunity. 

Understanding the signals that regulate the development of memory T cells is crucial to efforts to 

design vaccines capable of eliciting T cell-based immunity. CD4+ T cells are essential for the 

formation of protective memory CD8+ T cells following infection or immunization. However, until 

recently, the mechanisms by which CD4+ T cells act to support memory CD8+ T cell development 

following infection were unclear. Here, we discuss recent studies that provide insight into the 

multifaceted role of CD4+ T cells in the regulation of memory CD8+ T cell differentiation.

Memory CD8+ T cells are a principal component of immunity against intracellular 

pathogens such as viruses. They are distinguished by their capacity to survive long-term and 

undergo rapid and robust proliferation and acquisition of effector function upon antigen re-

exposure 1. Memory CD8+ T cells can vary in their phenotype, localization, and function 

allowing them to protect the host against a broad array of potential insults. CD8+ T cells can 

mediate the killing of infected cells through multiple mechanisms including expression of 

granzymes and perforin, as well as the secretion of cytokines such as interferon γ (IFN γ) 

and tumor necrosis factor α (TNFα). Unlike neutralizing antibodies that largely recognize 

proteins expressed on pathogen surfaces, CD8+ T cells respond to peptide sequences 

presented on the surface of antigen presenting cells. This allows them to recognize internal 

proteins of the pathogen that are less subject to evolutionary pressure and thus tend to be 

more highly conserved among different pathogen variants. Therefore, CD8+ T cells possess 

the potential to provide broadly reactive protection against viruses such as influenza or HIV 

that rapidly mutate their surface proteins 2.

Despite the utility of memory CD8+ T cells in protection against pathogens that rapidly 

mutate to elude neutralizing antibodies, the development of T cell based vaccines has proven 
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problematic 3. This failure is largely due to an incomplete understanding of the signals and 

cell types that operate at different stages of the immune response to influence the quantity 

and quality of developing memory CD8+ T cells. Additionally, knowledge of how CD8+ T 

cells are able to enter and maintain residence in mucosal tissues is of critical importance as 

many of the infections to which effective vaccines have not been developed initially infect 

mucosal sites such as the lungs, reproductive tract, and skin. In order to generate a protective 

memory CD8+ T cell response it is important to understand the signals needed to position 

them at the initial site of infection, as well as to induce a circulating memory pool capable of 

preventing outgrowth of the pathogen.

The T cell response to acute infection can typically be divided into three phases —priming 

and expansion, resolution and contraction, and memory. During the first phase, naïve CD8+ 

T cells divide and differentiate into effector cells that acquire the ability to produce IFNγ, 

TNFα and cytotoxic proteins such as granzymes and perforin 4. Following viral clearance, 

contraction and resolution ensues in which the majority of the effector CD8+ T cells die with 

~5–10% surviving. These enter the third stage — the ‘memory’ phase — and are maintained 

long-term by signals such as IL-7 and IL-15 5. While considerable heterogeneity exists 

among long-lived CD8+ T cells, they are typically divided into resident (TRM), effector 

(TEM), and central (TCM) memory cells. Differences in their localization, recall ability, and 

effector functions allow them to provide overlapping layers of protection against potential 

reinfection 6. TRM cells are located in mucosal sites such as the lungs, skin, and reproductive 

tract and are unique from other memory populations in that they do not reenter the 

circulation. They are characterized by high expression of CD103 and CD69 and act as 

sentinels to provide immediate protection upon local secondary infection through direct 

effector functions and the recruitment and reactivation of immune cells 7–12. The 

developmental pathway and function of TRM cells are reviewed elsewhere in this issue. [Cite 

Mackay, Mueller review] TEM cells can migrate between tissues and secondary lymphoid 

organs and provide immune surveillance. TEM cells have constitutive expression of some 

effector functions and lack expression of L-selectin (CD62L) and CCR7 5. TCM cells reside 

in secondary lymphoid organs and are typically characterized by expression of these 

molecules needed for entry therein. They possess the greatest proliferative potential among 

the memory T cell subsets and can rapidly expand and differentiate following rechallenge.

Considerable work over the past decade has sought to elucidate the signaling and 

transcriptional networks governing CD8+ T cell fate decisions, with these studies reviewed 

recently 5. This Review will focus on the essential role of CD4+ T cells in the development 

of memory CD8+ T cells 13–19. They regulate CD8+ T cell memory development through 

multiple mechanisms, depending on the type of infection or immunization 20. Here we will 

discuss recent studies that provide mechanistic insight into the process underlying the 

necessity of CD4+ T cells in memory CD8+ T cell maturation and function in different 

settings.

CD4+ T cell help following immunization

Following immunization, CD4+ T cells are necessary for the induction of a robust primary 

CD8+ T cell response (Fig. 1a)21–28. Additionally, CD8+ T cells formed in the absence of 
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CD4+ T cell help are impaired in their long-term maintenance and display poor proliferative 

ability upon secondary challenge 13,16,29,30. Considerable work has sought to understand the 

processes underlying these defects.

A primary mechanism by which CD4+ T cells support the CD8+ T cell response following 

immunization is through the “licensing” of dendritic cells (DCs). CD4+ T cell help is 

required for DCs to increase their antigen-presentation and co-stimulatory capacity to levels 

sufficient to induce a robust effector CD8+ T cell response, with both the CD4+ and CD8+ T 

cells recognizing antigen presented by the same DC 22. This licensing is mediated through 

CD40: CD40L interactions between the DC and cognate CD4+ T cell that allow for the 

functional maturation of DCs 21,24. The licensed DCs can subsequently interact with CD8+ 

T cells and induce a strong primary response 23. In some settings, CD40: CD40L 

interactions can also occur directly between CD8+ T cells and CD4+ T cells 16.

CD4+ T cells also can support the primary CD8+ T cell response through facilitation of their 

interaction with DCs. Prior to antigen encounter, CD8+ T cells in the draining lymph node 

(dLN) upregulate the chemokine receptor CCR5. These cells can then migrate towards the 

site of antigen-specific DC: CD4+ T cell interactions due to the production of chemokines 

such as CCL3 and CCL4 by the licensed DCs 31. This guidance of naïve CD8+ T cells 

provides an explanation for how they can rapidly find their cognate antigen-presenting cell 

following immunization, despite the low frequency of both of these populations. CD4+ T 

cells licensing of DCs also can facilitate entry of naïve CD8+ T cells into the dLN through 

expansion of the arteriole feeding the dLN, as well as enlargement of the dLN itself, 

although the precise mechanism by which CD4+ T cells regulate this process remains to be 

determined 32.

Further insight was provided by two recent studies evaluating the spatiotemporal interactions 

of DCs and cognate T cells 33,34. One found that CD4+ T cell activation precedes that of 

CD8+ T cells and occurs through interactions with migratory DCs 34. Activated CD4+ T 

cells upregulate CD40L and subsequently license cross-presenting XCR1+ DCs that can 

engage and activate antigen-specific CD8+ T cells 34. A separate study found that both CD4+ 

and CD8+ T cells are activated by distinct DC subsets (non-infected and infected DCs, 

respectively) at separate anatomical locations 33. These activated T cells then interact with 

cognate XCR1+ DCs in clusters, which act as the platform by which CD4+ T cell help is 

provided to the CD8+ T cells 33. Going forward it will be important to clarify differences 

between these and previous works regarding whether CD8+ T cells are activated by distinct 

DCs prior to engagement with XCR1+ DCs, and if initial engagement of CD8+ T cells with 

XCR1+ DCs precedes licensing of these DCs by CD40L-expressing CD4+ T cells or 

whether theses interactions occur simultaneously.

In addition to their role in the primary response, CD4+ T cells are necessary for robust 

secondary expansion of memory CD8+ T cells 13,16,27,29,30,35,36. One suggested mechanism 

for this requirement is through regulation of tumor-necrosis factor-related apoptosis-induced 

ligand (TRAIL) 37,38. “Helpless” CD8+ T cells rapidly induce TRAIL expression upon 

restimulation and undergo activation-induced cell death, although TRAIL deficiency does 

not seem to rescue secondary responsiveness of “helpless” cells in all settings 30. The ability 
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of CD8+ T cells to respond upon secondary challenge appears to be imprinted during their 

initial priming phase 13,14, but interestingly, the provision of IL-15 during vaccination is 

sufficient to rescue the secondary cytotoxic T lymphocyte response in the absence of CD4+ 

T cells, likely due to IL-15 mediated suppression of the proapoptotic molecule Bax and 

induction of the anti-apoptotic molecule Bcl-xl 28,37. IL-15 production by antigen presenting 

DCs is necessary even in the presence of CD4+ T cells to allow for the secondary 

responsiveness of CD8+ T cells. These studies suggest a model in which DCs gain the ability 

to secrete IL-15 following CD4+ T cell-mediated licensing.

IL-2 is also important during priming to imprint the secondary responsiveness of CD8+ T 

cells 39,40. CD4+ T cells have been suggested as a critical source of IL-2, although other 

studies have found that CD8+ T cells produce the IL-2 that is necessary for their own 

development. 26,27,41–43, with licensed DCs enabling such autocrine secretion. Autocrine 

IL-2 allows for the induction of NGFI-A binding protein 2 (Nab2) in CD8+ T cells, which 

mediates suppression of TRAIL expression and allows for secondary expansion of these 

cells 43. Licensed DCs also produce IL-12p70 that acts directly on antigen-specific CD8+ T 

cells to increase their expression of CD25, rendering these cells more responsive to 

IL-2 41,44.

Regulatory CD4+ T (TREG) cells can act to modulate IL-2 exposure of effector CD8+ T cells 

during the priming phase and are necessary for the generation of functional memory CD8+ T 

cells following immunization (Fig. 1b) 45–48. For instance, competitive consumption of IL-2 

by TREG cells can limit the availability of IL-2 to early activated CD8+ T cells, which 

suppressed CD8+ T cell expansion, but enhanced the functional responsiveness of memory 

CD8+ T cells following secondary challenge 45. While autocrine IL-2 expression is 

necessary for the generation of functional memory CD8+ T cells, prolonged exposure to 

IL-2 early after immunization promotes their terminal differentiation 49,50. TREG cells also 

modulate the maturation state of DCs through leukocyte-associated antigen 1 (LFA-1) and 

cytotoxic T lymophocyte-associated antigen 4 (CTLA4)-mediated regulation of CD80/86 

expression, which may influence the ability of DCs to stimulate CD8+ T cells during 

priming 51,52. TREG cells in addition regulate the stability of interactions between DCs and 

CD8+ T cells through suppression of chemokine production by DCs, and are critical for the 

development of high-avidity effector and memory CD8+ T cells 53–57. Additional 

mechanisms by which TREG cells can regulate memory formation following infection are 

discussed in the following section.

CD4+ T cell help following systemic infection

Despite it being appreciated that CD4+ T cells are necessary for CD8+ T cell memory 

maturation following acute pathogen infection, the mechanism(s) by which this help is 

mediated, and which CD4 T cells are involved is still being understood 14,19,58–61. One study 

showed that CD4+ T cells are required after the priming and expansion phase (i.e., during 

the contraction phase) and that this help can be antigen non-specific60. CD4+ T cell help 

following LCMV infection is independent of CD40-mediated licensing of DCs or CD8+ T 

cells, with passive transfer of LCMV-specific antibodies sufficient to restore a protective 

memory CD8+ T cell response in the absence of CD40-CD40L interactions through the 
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facilitation of viral clearance 62,63. “Helpless” CD8+ T cells displayed increased expression 

of T-bet, a transcription factor involved in fine-tuning CD8+ effector and memory T cell 

differentiation, with reduction of T-bet expression restoring the functionality of these 

cells 64,65. Additionally, CD4+ T cell help influences the epigenetic state of memory CD8+ T 

cells with “helpless” CD8+ T cells displaying reduced acetylation at the IFNγ locus and 

increased methylation at the IL-2 promoter resulting in reduced responsiveness upon 

restimulation 66. Interestingly, treatment with a histone deacetylase inhibitor is sufficient to 

restore the responsiveness of “helpless” CD8+ T cells 67.

Effector CD4+ T cells induced following pathogen infection display considerable phenotypic 

and functional heterogeneity that can influence their ability to provide help (Box 1). Insight 

into the specific mechanism(s) underlying CD4+ T cell help was provided by the finding that 

IL-10, which is normally thought of as an immunosuppressive cytokine, is important for 

memory CD8+ T cell development. Although normal numbers of memory CD8 T cells form 

in the absence of IL-10, the maturation of these cells was impaired, particularly the 

development of TCM cells 68–70. The cellular source of IL-10 needed to promote the 

phenotypic and functional qualities of the memory CD8+ T cells was unclear from these 

studies. Multiple cell types including myeloid cells, DCs, and T cells can secrete IL-10 

following LCMV infection 71,72. Interestingly, and somewhat counterintuitively, we found 

that TREG cells act as the relevant source of IL-10 required for memory CD8+ T cell 

maturation following LCMV infection. In line with the kinetics of CD4 T cell help identified 

earlier 60, Treg cell-derived IL-10 primarily acted during the resolution phase to promote 

memory maturation through suppression of proinflammatory cytokine production by DCs 

(Fig. 2a, b) 47. Conceptually similar, a separate study found that TREG cells influence CD8+ 

T cell memory maturation through CTLA-4 mediated suppression of effector and 

proliferation programs in effector CD8+ T cells 48. Thus, TREG cells through multiple 

mechanisms can promote functional memory CD8+ T cell development.

Box 1

Effector CD4+ T cell differentiation

Following antigen recognition, naïve CD4+ T cell can differentiate into distinct effector T 

helper cell lineages capable of differentially regulating the immune response. The 

inflammatory environment in which recently activated CD4+ T cells develop in drives 

their polarization and allows T cells to match their effector function to the pathogen 

encountered. Viral infection induces high levels of pro-inflammatory cytokines such as 

IL-12, IFNγ, and type I IFNs that promote the induction of Th1 cells. Conversely, IL-4 

produced following helminth infection or allergic responses drives Th2 cell 

differentiation, while fungal infection induces TGFβ and IL-6 secretion that promote 

Th17 cell differentiation 108. T follicular helper (Tfh) cell differentiation is regulated by 

STAT3 signaling cytokines such as IL-6 and IL-21 and is dependent on iterative 

interactions with cognate DCs and B cells 111–115. CD4+ T cell subsets can be identified 

through 1) expression of cell surface markers such as Ly6C, PSGL1, CXCR5, and PD1; 

2) expression of canonical transcriptions factors T-bet, Gata3, Rorγt, and Bcl6; and 3) 

secretion of cytokines such as IFNγ, TNFα, IL-4, IL-5, IL-13, IL-17, and IL-21. 
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Considerable plasticity exists among effector CD4+ T cell subsets in vivo which helps 

facilitate the generation of a diverse immune response capable of mediating pathogen 

clearance, promoting the humoral response, and restraining immunopathology 108.

In addition to this function, TREG cells can act during the priming phase to suppress the 

magnitude of the CD8+ T cell response thereby restricting the number of cells that survive 

into the memory phase 73–75. However, type I IFNs generated early after infection can 

directly inhibit TREG cell activation and proliferation facilitating the generation of an 

optimal effector T cell response 76. As type I IFNs wane, Treg cell expansion occurs with the 

newly populating TREG cells displaying an activated phenotype with more robust IL-10 

expression relative to TREG cells present at steady state (Box 2) 47,77. IL-10-competent TREG 

cells are primarily located in the white pulp of the spleen, near to DCs as well as memory 

precursor CD8+ T cells, positioning them optimally to suppress the activation state of DCs 

thus insulating CD8+ T cells from excess bystander inflammation and preserving their 

memory precursor-state 47,65,78–80.

Box 2

Regulatory CD4+ T cell differentiation

Regulatory CD4+ T (TREG) cells express the transcription factor FoxP3 and are critical in 

the prevention of excess immunopathology or autoimmunity through multiple 

mechanisms116. TREG cells possess considerable functional and phenotypic 

heterogeneity. Central or naïve TREG cells express CD62L and are predominantly found 

in circulation and secondary lymphoid tissues. Following exposure to antigen and/or 

IL-2, TREG cells adopt a more effector-like state and downregulate CD62L and 

progressively upregulate CD69 and KLRG1. Acquisition of a more effector like 

phenotype is accompanied by enhanced expression of suppressive molecules such as 

IL-10 and CTLA4 with KLRG1+ TREG cells representing a terminally differentiated 

population 47,77.

Effector TREG cells appear to co-opt the transcriptional network of effector CD4+ T cells 

in order to match their suppressive function to their present environment. T-bet+ TREG 

cells express the chemokine receptors CXCR3 and CCR4 and regulate skin and lung 

inflammation. STAT3-expressing TREG cells upregulate CCR6 and regulate gut 

homeostasis, while Bcl6-expressing TREG cells display high levels of CXCR5 and 

regulate the germinal center response. TREG cells also accumulate in adipose tissue, with 

these cells distinguished by expression of PPARγ and are important in regulating adipose 

metabolism 117. TREG cells have recently been identified in the muscle where they are 

promote muscle repair through secretion of the growth factor amphiregulin 118.

CD4+ T cell help following mucosal infection

CD8+ TRM cells are critical in guarding mucosal surfaces against pathogen challenge 81. 

While CD4+ T cells are not needed to initiate a primary virus-specific response following 

mucosal infection by pathogens such as influenza, they are necessary for the optimal 
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development of a memory CD8+ T cell population capable of mediating protective 

immunity 18,75. However, until recently the role of CD4+ T cells in mediating tissue-specific 

CD8+ T cell memory was unclear. Insight into this question was provided by work showing 

that CD4+ T cell help is needed for entry into the female reproductive tract following 

mucosal viral infection 82. CD4+ T cells indirectly mediated the entry of CD8+ T cells into 

the tissue through IFNγ-dependent induction of chemokines by locally infected cells (Fig. 

3a) 82. While CD4+ T cells do not appear necessary for CD8+ T cell entry into the skin 

following viral infection, CD4+ skin TRM cells can facilitate recruitment of circulating CD8+ 

T cells into the skin in a CXCR3-dependent manner following challenge with Leishmania 
major 83,84.

We extended these studies to find that CD4+ T cells are important for the development of 

airway-homing CD8+ TRM cells following influenza virus infection 85. While CD8+ T cells 

entered the lung in the absence of CD4+ T cell help, they failed to properly localize to the 

lung airways and had a reduced ability to recruit CD8+ T cells from circulation and mediate 

protective immunity upon heterosubtypic challenge. “Helpless” CD8+ T cells also displayed 

enhanced expression of T-bet, which rendered these cells less responsive to TGFb-mediated 

induction of CD103, an integrin essential for TRM cell maintenance in the tissue 85. 

Together, these studies provided a model in which IFNγ-producing CD4+ T cells directed 

effector CD8+ T cell migration into particular areas of certain mucosal tissues that then 

facilitated their exposure to signals, such as TGFβ, necessary for their continued maturation 

into CD103+ TRM cells (Fig. 3b).

TREG cells also may play a role in the formation of CD8+ TRM cells. In the absence of TREG 

cells, reduced numbers of CD8+ TRM cells were retained in the central nervous system 

(CNS) following West Nile virus infection. The reduction in TRM cell numbers is associated 

with decreased amounts of TGFβ in the CNS suggesting that Treg-dependent modulation of 

TGFβ levels may be important in driving CD8+ TRM cell formation and retention in mucosal 

tissues (Fig. 3c)86. Together these findings highlight a new, perhaps ironic, role for TREG 

cells in providing “helper” as opposed to suppressive functions for the generation of long-

term T cell immunity.

CD4+ T cell help following chronic infection

CD4+ T cells play critical roles in the long-term maintenance of CD8+ T cell responses in 

multiple models of chronic viral infection 87–91. A central component of CD4+ T cell help in 

this setting is the secretion of IL-21 92,93. IL-21 sensing by CD8+ T cells is necessary for the 

avoidance of clonal deletion and maintenance of effector activity even in the presence of 

CD4+ T cells 94. IL-21-production by CD4+ T cells in individuals infected with the human 

immunodeficiency virus type 1 (HIV-1) correlates with CD8+ T cell functionality and viral 

control, suggesting that this pathway might be an important therapeutic target 95–97.

Persistence of high antigen levels is a key driver of CD8+ T cell functional exhaustion during 

chronic viral infection 98. Therefore, an additional indirect role of CD4+ T cell-derived 

IL-21 in bolstering the CD8+ T cell response during chronic infection may be through 

promoting viral control. Multiple effector CD4+ T cell subsets are capable of secreting IL-21 
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following viral infection including follicular helper T (Tfh) and Th1 cells 99. Viral 

persistence promotes the differentiation of Tfh cells, which are necessary for the 

maintenance of the germinal center (GC) response and the continued production of virus-

specific antibodies in the face of prolonged high levels of virus replication and 

immunosuppression 100,101. Tfh cell-derived IL-21 is also critical for the GC response with a 

deficiency in IL-21 resulting in impaired maintenance of the GC along with reduced affinity 

maturation and isotype class switching 102–104. Together, these studies suggest that Tfh-cell 

derived IL-21 is needed to promote the virus-specific humoral response thus allowing for the 

continued control of viremia and the prevention of terminal exhaustion.

IL-2 treatment also can enhance CD8+ T cell responses during chronic infection and allows 

for enhanced control of viral burden 40,105. The beneficial effect of such treatment is limited 

in the absence of CD4+ T cells, which can serve as a source of IL-2 during chronic 

infection 106. IL-2 therapy also results in an increase in the number of TREG cells 106. TREG 

cells adopt an activated phenotype during chronic viral infection and have enhanced 

expression of molecules related to their suppressive activity including CTLA4, CD39, and 

IL-10 71,107. Depletion of TREG cells during chronic infection resulted in a marked 

expansion of functional CD8+ T cells through a process dependent on CD4+ T cells and the 

expression of costimulatory molecules on DCs 107. TREG depletion alone was not sufficient 

to reduce viral burden, but did lead to significant reduction in viral titers when combined 

with PD-L1 blockade 107. Therefore, in contrast to acute infection, suppression of the 

maturation state of DCs by TREG cells during chronic infection serves to dampen long-term 

effector CD8+ T cell responses.

Concluding remarks and perspective

A temporal model for the function of CD4+ T cells in regulating CD8+ T cell maturation 

into distinct subsets capable of mediating protective immunity following viral infection has 

begun to emerge (Fig. 4).

During the priming phase CD4+ T cells, through IFNγ-mediated chemokine induction, 

license CD8+ T cell entry into mucosal tissues and facilitate their migration into a tissue 

microenvironment where they can sense signals necessary for their long-term 

residence 82,85. Effector CD4+ T cells also help facilitate viral clearance through the 

induction of an anti-viral humoral response, as well as directly through the secretion of 

effector molecules and cytokines 108. Rapid viral clearance is important in restricting the 

degree of exposure of CD8+ T cells to antigen and inflammation thus preventing functional 

exhaustion. High levels of type I IFN present during this stage of infection also restrict TREG 

cell expansion and allow for a robust effector T cell response 76.

During the resolution phase, as type I IFN levels wane, there is an expansion of activated 

TREG cells. IL-10 secretion by activated TREG cells can suppress the maturation state of DCs 

and limit their secretion of pro-inflammatory cytokines thus allowing for the preservation of 

less differentiated effector CD8+ T cells 47. TREG cell expression of CTLA-4 acts in a 

similar manner by limiting CD80/86 stimulation on DCs by CD28 48. Effector CD8+ T cells 

are then able to continue to mature and develop into memory CD8+ T cells capable of 

Laidlaw et al. Page 8

Nat Rev Immunol. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



rapidly responding upon pathogen reencounter. TREG cells also act during the resolution 

phase to modulate TGFβ levels within mucosal tissues thereby bolstering the induction of 

CD8+ TRM cells 86. Following the resolution phase, CD4+ T cells may contribute to the 

maintenance of memory CD8+ T cells through suppression of the outgrowth of viral 

reservoirs that could drive terminal exhaustion of CD8+ T cells.

This Review has focused on recent advances providing insight into the role of CD4+ T cell 

help in promoting the maturation of memory CD8+ T cell following immunization and 

infection. As our understanding of the mechanisms underlying CD4+ T cell help grows it 

will be important to harness these findings therapeutically to bolster vaccine efficacy. 

Considering the difficulties surrounding previous attempts at developing effective T cell 

based vaccines it may be necessary to modify existing vaccination approaches to more 

closely mirror the natural response to infection. This may be particularly relevant for 

vaccines to mucosal viruses such as influenza and HIV to which it will likely be necessary to 

induce TCM, TEM, and TRM populations in order to optimally protect the host. Work is 

underway to develop vaccines capable of driving CD8+ T cells into mucosal sites and 

exposing them to the signals necessary for their continued maintenance in the tissue, similar 

to the function of CD4+ T cells during mucosal infection 9,109. Therapeutic interventions 

designed to suppress inflammatory levels in individuals following vaccination through 

expansion of TREG cells or provision of IL-10 may also be a novel approach to bolstering 

systemic T cell immunity. Individuals suffering from chronic infection have impaired 

development of protective immunity following vaccination, potentially due to high levels of 

bystander inflammation, and would be an attractive target for this type of intervention 110. 

Continued study of the mechanisms underlying CD4+ T cell help should provide clearer 

understanding into how we can harness the utility of CD4+ T cells to improve vaccine 

efficacy.
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Figure 1. CD4+ T cell help to CD8+ T cells during immunization
a. Following immunization, naïve CD4+ T cells interact with and license cognate dendritic 

cells (DCs) through a CD40-dependent process. Licensed DCs express higher levels of 

MHC and costimulatory molecules and can recruit naïve CD8+ T to their cognate DC 

through secretion of the chemokines CCL3, 4, and 5. Licensed DCs also secrete IL-12 and 

IL-15, which increase expression of IL-2R (CD25) on CD8+ T cells and promote cell 

survival, respectively. Enhanced expression of CD25 facilitates the responsive of CD8+ T 

cells to IL-2 and promotes CD8+ T cell survival and their ability to proliferate upon 

secondary antigen encounter. Both CD4+ and CD8+ T cells act as sources of the IL-2, with 

CD4+ and CD8+ T cells in some settings also directly interacting through CD40:CD40L. b. 

Regulatory T (TREG) cells can modulate the CD8+ T cell response following immunization 

by suppressing the maturation state of DCs, thereby limiting their ability to stimulate CD8+ 

T cells. By limiting chemokine secretion by DCs, TREG cells can destabilize CD8+ T cell: 

DC interactions and accordingly promote the induction of high affinity effector and memory 

CD8+ T cells. TREG cells also limit the sensing of IL-2 by CD8+ T cells by competing for 

available IL-2 and limiting the expression of CD25 by CD8+ T cells through control of DC 

secretion of IL-12.
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Figure 2. TREG cells promote memory CD8+ T cell maturation during viral infection
a. Following acute viral infection, TREG cells expansion is initially suppressed due to the 

presence of high levels of type I IFNs. As type I IFNs wane, TREG cell numbers increase 

with these cells adopting a more effector like phenotype marked by increased expression of 

IL-10 and CTLA-4. During the resolution phase of infection, TREG cell-derived IL-10 acts to 

suppress the maturation state of DCs and limit their production of proinflammatory 

cytokines. TREG cell expression of CTLA-4 acts in a similar manner through modulation of 

the CD28-CD80/86 signaling axis. Low levels of proinflammatory signals allow for the 

continued maturation of effector CD8+ T cells into functional memory CD8+ T cells. b. In 

the absence of TREG cell-derived IL-10 and/or CTLA-4, DCs adopt a more mature 

phenotype and secrete higher levels of proinflammatory cytokines. The enhanced levels of 

proinflammatory cytokines are sensed by effector CD8+ T cells and drive these cells to adopt 

a more terminally differentiated phenotype, limiting their ability to proliferate and mediate 

protective immunity upon reencounter with the pathogen.
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Figure 3. CD4+ T cell help to CD8+ T cell during mucosal infection
a. Following influenza virus infection, CD4+ T cells rapidly migrate from the draining 

lymph node (dLN) to the lung airways where they mediate the release of chemokines from 

epithelial cells via secretion of IFNγ. As CD8+ T cells move from the dLN to the lung 

parenchyma they upregulate CD69, likely due to exposure to inflammatory cytokines and T 

cell receptor signaling. These cells can then migrate towards the chemokine gradient 

surrounding the airway where they encounter TGFβ, which subsequently induces the 

expression of CD103 and suppression of the transcription factor T-bet, thereby promoting 

the establishment of a lung TRM cell population. b. Following herpes simplex virus 

infection, CD4+ T cells migrate from the draining lymph node (dLN) to the female 

reproductive tract (FRT) where they mediate the release of chemokines from the infected 

tissue via secretion of IFNγ. CD4+ T cell-derived IFNγ is necessary for CD8+ T cells to 

migrate into the virally infected FRT. c. Following West Nile virus infection, CD8+ T cells 

primed in the dLN migrate to the central nervous system (CNS) parenchyma. TREG cells 

also traffic to the CNS where they modulate the levels of TGFβ. TREG cell-dependent 

control of TGFβ may modulate the expression of CD103 expression on CD8+ T cells and 

accordingly influence their ability to reside long-term in the brain.
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Figure 4. Temporal model of CD4+ T cell help during viral infection
a. Following infection, antigen-specific T cells rapidly proliferate during priming and 

differentiate into cytotoxic T lymphocytes (CTLs) that mediate viral clearance. Most of 

these cells die over the next several weeks during the resolution phase of the response. Only 

a small percentage of effector T cells (5–10%) survive and further develop into functional 

mature memory CD8+ T cells. b. CD4+ T cells play distinct roles during these phases to 

regulate the development of CD8+ T cell memory. During the priming phase, CD4+ T cells 

license the entry of CD8+ T cell into mucosal tissues and promote viral clearance through 

the induction of a virus-specific effector CD4+ T cell and humoral response. Later in the 

resolution phase, TREG cell-derived IL-10 facilitates the maturation of a mature memory 

CD8+ T cell population and can promote functional quiescence of memory cell through 

expression of the inhibitory receptor CTLA-4. TREG cells may also modulate TGFβ levels in 

mucosal sites to promote CD103 expression and accordingly regulate TRM cell development. 

During the memory phase, the CD4+ T cell-dependent immune response allows for 

continued suppression of viral outgrowth.
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