
Mnemonic functions for nonlinear dendritic integration in 
hippocampal pyramidal circuits

Patrick Kaifosh1,2 and Attila Losonczy1,3,4

1Department of Neuroscience, Columbia University, New York, NY 10032, USA

2Center for Theoretical Neuroscience, Columbia University, New York, NY 10032, USA

3Kavli Institute for Brain Science, Columbia University, New York, NY 10032, USA

4Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 
10032, USA

Summary

We present a model for neural circuit mechanisms underlying hippocampal memory. Central to 

this model are nonlinear interactions between anatomically and functionally segregated inputs onto 

dendrites of pyramidal cells in hippocampal areas CA3 and CA1. We study the consequences of 

such interactions using model neurons in which somatic burst-firing and synaptic plasticity are 

controlled by conjunctive processing of these separately integrated input pathways. We find that 

nonlinear dendritic input processing enhances the model’s capacity to store and retrieve large 

numbers of similar memories. During memory encoding, CA3 stores heavily decorrelated engrams 

to prevent interference between similar memories, while CA1 pairs these engrams with 

information-rich memory representations that will later provide meaningful output signals during 

memory recall. While maintaining mathematical tractability, this model brings theoretical study of 

memory operations closer to the hippocampal circuit’s anatomical and physiological properties, 

thus providing a framework for future experimental and theoretical study of hippocampal function.

Introduction

The mammalian hippocampus supports episodic memory formation and storage (Squire & 

Wixted, 2011) by passing information through its canonical trisynaptic circuit: from the 

dentate gyrus (DG) input node, to area CA3, and then to the CA1 output node. Theoretical 

and experimental studies predict that specialized computational operations are carried out by 

each of these subregions during memory processing (Marr, 1971; McClelland & Goddard, 

1996; Nakazawa et al., 2002; Guzowski et al., 2004; Lee et al., 2004; Gold & Kesner, 2005; 
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Kesner & Rolls, 2015). In particular, DG is implicated in input decorrelation (pattern 

separation), reducing interference between distinct memories of similar events (McHugh et 

al., 2007; Neunuebel & Knierim, 2014). The downstream CA3 area is thought to operate as 

a Hebbian autoassociative network, allowing memory storage and later recall of whole 

memories from partial cues (pattern completion). Various functions have been proposed for 

area CA1, including novelty detection (McClelland et al., 1995; Hasselmo et al., 2000; 

Lisman & Otmakhova, 2001; Vinogradova, 2001), and enrichment of the hippocampal 

output to the neocortex either by forming more information-rich re-encodings of CA3 

ensembles during memory storage (McClelland & Goddard, 1996) or by redistributing 

information across a greater number of neurons during recall (Treves & Rolls, 1994).

A prominent feature of afferent connectivity to pyramidal cells (PCs) both in the CA3 and 

CA1 subregions is the anatomical segregation of functionally distinct input pathways. That 

is, synapses of the trisynaptic circuitry occupy the proximal dendrites of PCs (DG mossy 

fibers onto CA3 PCs, CA3 Schaffer collaterals onto CA1 PCs), while long range external 

inputs from the entorhinal cortex (EC, layer II to CA3, layer III to CA1) mainly innervate 

the distal dendrites (Andersen et al., 2006; Ahmed & Mehta, 2009). The electrical 

compartmentalization present within dendrites of hippocampal PCs (Spruston et al., 1994; 

Golding et al., 2005) indicates that these input pathways are initially processed 

independently. However, only a subset of theoretical models of hippocampal memory 

operations have considered this dual afferent connectivity (e.g. Treves & Rolls, 1992; 

McClelland & Goddard, 1996; Vinogradova, 2001), and none to our knowledge have 

accounted for the need for anatomical segregation of these input pathways. Even more 

strikingly, none of the hippocampal network models incorporates the assumption supported 

by extensive experimental evidence that dendritic input processing in hippocampal PCs is 

highly nonlinear, exhibiting several different types of dendritic spikes and plateau potentials 

(Golding & Spruston, 1998; Ariav et al., 2003; Gasparini et al., 2004; Jarsky et al., 2005; 

Losonczy & Magee, 2006; Spruston, 2008; Katz et al., 2009; Kim et al., 2012; Makara & 

Magee, 2013). Computational theories incorporating nonlinear dendritic processing into 

single-neuron or abstract network models suggest that nonlinear input processing within 

dendritic compartments can enhance the neurons’ ability to process and store information 

(Koch et al., 1983; Archie & Mel, 2000; Poirazi & Mel, 2001; Poirazi et al., 2003a,b; 

Morita, 2008; Wu & Mel, 2009; Legenstein & Maass, 2011). Furthermore, nonlinear 

interactions between different input streams through dendritic spikes and backpropagating 

action potentials are known to induce long-lasting changes of synaptic strength and intrinsic 

excitability, and produce a distinct burst-firing output mode of PCs (Kamondi et al., 1998; 

Larkum et al., 1999; Golding et al., 2002; Jarsky et al., 2005; Sjöström & Häusser, 2006; 

Dudman et al., 2007; Tsay et al., 2007; Takahashi & Magee, 2009; Harvey et al., 2009; 

Epsztein et al., 2011; Xu et al., 2012; Larkum, 2013; Grienberger et al., 2014). Despite the 

overwhelming experimental evidence for the presence of dendritic nonlinearities and 

resulting burst-firing in PCs, the specific consequences of nonlinear dendritic processing for 

hippocampal memory operations at the circuit-level have, with few exceptions (Katz et al., 

2007; Wu & Mel, 2009), remained unexplored.

Here, we present a model reflecting the separate nonlinear integration of and interaction 

between anatomically segregated excitatory inputs to hippocampal areas CA3 and CA1. We 
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show that nonlinear interaction between the intra-hippocampal and perforant path (EC) 

inputs provides a mechanism for the storage of partially decorrelated engrams. Nonlinear 

synaptic integration also provides a mechanism by which EC inputs to CA3 can trigger 

recall of the most related memory engrams, while noise in these inputs does not perturb the 

recalled activity pattern. The dependence of the degree of decorrelation on the nonlinear 

integration parameters allows for a scheme (Figure 1), analogous to that proposed by 

McClelland & Goddard (1996) in the context of a linear integration model, by which CA3 

representations of similar memories can form non-interfering attractors, while CA1 

representations can provide information-rich output to the neocortex. The model accounts 

for experimental findings independent of those which motivated its construction, including 

the different spatial remapping properties in CA3 and CA1 PCs (Leutgeb et al., 2007; Ziv et 

al., 2013), and the differential sensitivity of CA1 spatial representations to lesion of inputs 

from CA3 and EC (Brun et al., 2002, 2008).

Results

Formation of partially decorrelated engrams through nonlinear integration of segregated 
inputs to CA3 PCs

We first constructed an abstract model of CA3 with nonlinear interactions between the 

anatomically segregated distal (EC afferents) and proximal (DG afferents and CA3 recurrent 

collaterals) excitatory inputs to CA3 PCs. This model consists of a network of two-

compartment neurons receiving separate external inputs to their proximal and distal 

compartments and connected recurrently through modifiable binary synapses onto their 

proximal compartments (Figure 2A). To reflect nonlinear dendritic processing, the inputs to 

each compartment are thresholded to produce compartmental outputs, with the values of 0 or 

1 respectively corresponding to input levels below or above the local threshold for dendritic 

integration.

To store memories in this network, we developed a memory encoding scheme motivated by 

the capability for combined distal and proximal input to evoke burst-firing (Takahashi & 

Magee, 2009; Larkum et al., 1999, 2009) and plasticity at intra-hippocampal synapses 

(Dudman et al., 2007; Basu et al., 2013; Han & Heinemann, 2013). When encoding 

memories, we consider the CA3 recurrent synapses to be suppressed (Hasselmo et al., 1995), 

such that the proximal inputs are determined entirely from the DG afferents. Model neurons 

receiving suprathreshold distal and proximal inputs enter a burst-firing state (Figure 2B). 

Potentiation occurs at recurrent synapses between burst-firing neurons and is balanced by 

depression at synapses between burst-firing neurons and neurons not burst-firing (Figure 

2C). Both synaptic potentiation and depression are applied probabilistically to reduce the 

rate at which stored memories are overwritten by the storage of more recent memories (Amit 

& Fusi, 1992, 1994). These plasticity processes create engrams consisting of the co-active 

burst-firing neurons.

We then considered the characteristics of engrams that would be formed for pairs encoding 

events in which the distal inputs – conveying the cortical representations – were similar, 

while the proximal inputs – conveying the output of DG pattern separation – were less 

similar. For this purpose, we report the correlation between burst-firing patterns evoked by 
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pairs of input patterns in which the proximal input patterns are less correlated than the distal 

input patterns (Figure 2D; Experimental Methods). The engram correlation decreases 

monotonically as the proximal correlation (cp, between two thresholded proximal input 

patterns) decreases, and under the assumption that proximal correlation is less than the distal 

correlation (cd, between two thresholded distal input patterns), the engram correlation is 

always less than distal correlation. Importantly, the engram correlation also depends on the 

fractions of neurons in which the distal and proximal compartments are activated, termed the 

distal (sd) and proximal (sp) sparsities, whose product determines the engram sparsity (s = 

spsd). Burst-firing patterns are more constrained by, and thus have correlations generally 

more similar to those of the sparser of the two compartments. Overall, this analysis shows 

that nonlinear interactions between distal and proximal inputs provide a mechanism for 

creating attractor patterns that are decorrelated to an intermediate degree that depends on the 

distal and proximal sparsities.

For mathematical simplicity throughout the remainder of this study, we focus on the limit in 

which the proximal inputs are fully decorrelating, regardless of the degree of distal 

correlation. In this limit, the engram correlation, c = cd (1−sd)/(1−s) = cd (1−s/sp)/(1−s), 

interpolates between the distal correlation and zero, as the distal sparsity varies between s 
and 1, or equivalently as the proximal sparsity varies between 1 and s.

Illustration of encoding and recall with pictorial network representations

We illustrate the storage and recall of correlated memories using pictorial network 

representations, in which each of the 128×128 pixels displays the state of a neuron in a fully 

connected recurrent network of 16384 neurons (Figure 3). We first show the contrasting case 

of a single network of one-compartment neurons with a single input pathway (Figure 3A). 

During memory encoding, external inputs activate ensembles of neurons, with Hebbian 

plasticity dictating the potentiation of synapses between co-active neurons. Following 

encoding of three correlated memory patterns, recall is tested: the external inputs initialize 

the network with a cue similar to a stored pattern, and then the network activity evolves 

according to the dynamics dictated by the recurrent connections (Experimental Procedures). 

As expected, the correlated memory engrams interfere: regardless of which cue initiates 

recall, the network converges to a mixed attractor that combines features of all three 

memories. We note that this single input pathway architecture is not compatible with 

decorrelation of patterns prior to storage, the reason being that any recall cue passing along 

this same pathway would then also become decorrelated and thus not resemble the 

corresponding engram sufficiently to initialize the network within the appropriate attractor 

basin.

We next show the case of our network of two-compartment neurons with separate distal and 

proximal input pathways (Figure 3B), with parameters set to match the engram sparsity of 

the single compartment case. During encoding, the distal (EC) inputs, encoding the content 

of the memory, combine with decorrelated proximal (DG) inputs to determine the pattern of 

burst-firing neurons that forms the engram. Following encoding of three engrams with 

correlated distal input patterns, the distal input pathway provides a recall cue similar to one 

of the input patterns that was provided during encoding. The proximal inputs play no role 
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during recall in this model because the same circuitry that decorrelates activity patterns for 

similar memories would be expected to produce a decorrelated, hence useless, recall cue. 

Under the influence of this distal recall cue, as explained in the following section, the 

network’s recurrent activity then converges to the cued memory engram consisting of the set 

of neurons that were burst-firing together during memory encoding. The network of two-

compartment neurons thus successfully stores and recalls engrams corresponding to similar 

memories.

Influences of nonlinear integration on recall dynamics

To model the role of nonlinear dendritic input integration during memory recall, we again 

focused on the ability of conjunctive distal and proximal input to evoke burst-firing. We 

modeled a recall state in which the CA3 recurrents – no longer suppressed as during 

encoding (Hasselmo et al., 1995) – dominated over the DG inputs. such that the proximal 

input was determined entirely by recurrent connections. After initializing the network in a 

random state whose activity level matched the engram sparsity, we updated the binary state 

xi of individual neurons asynchronously with the following update rule:

where Wij represents the binary recurrent synaptic weight from the j-th to the i-th neuron, 

WI the effects of disynaptic inhibition, b the increase in output due to burst-firing, and  the 

thresholded distal input to the j-th neuron. According to this rule, proximal recurrent inputs 

determine which neurons become active, while distal (EC) inputs determine the level of 

output (non-bursting, 1; or bursting, 1 + b) from each active neuron.

We applied this recall mechanism to the network represented in Figure 3B, with the same 

three stored engrams. When evolving according to these recall dynamics, the network 

activity would converge into one of the three attractors formed during encoding. We found 

that as the burst-firing ratio b increased, the probability of the network converging to the 

cued attractor increased (Figure 4A), and the number of asynchronous update cycles 

required for convergence decreased (Figure 4B). Even for relatively large burst-firing ratios, 

which gave high probabilities of recovering the cued attractor, the distal input cues did not 

perturb the attractor, which remained a fixed point of the dynamics whether the distal inputs 

were active or not.

For insight into this recall behavior, we related these modified recurrent dynamics to a 

pseudo-energy function (Experimental Procedures), analogous to the energy function whose 

local minima correspond to the dynamical attractors for networks with symmetric weights 

(Hopfield, 1982). We found that the distal inputs lower the energy of the stored engrams to a 

degree dependent on the burst-firing ratio and the overlap of the distal inputs with the 

engram (Figure 4C). Perfect recall cues – matching exactly the distal input patterns that were 

present during encoding – scale the recurrent input to each neuron by 1 + b when the 

network activity matches the cued engram, and because this scaling does not change the sign 

of the input to any neuron, the cued engram remains a fixed point of the dynamics. Noisy 
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recall cues, provided any correlations between the noise and the recurrent weights are 

negligible, leave the cued attractor unperturbed for similar reasons. Thus, the distal recall 

cues alter the pseudo-energy landscape to guide the dynamics toward cued attractors, but do 

so without changing the activity pattern at these fixed points to which the recall dynamics 

converge.

The results of this section show that, through nonlinear interactions with recurrent proximal 

inputs, the distal (EC) inputs can bias the recall dynamics to favor recovery of the memory 

engrams with which they overlap most strongly.

The interference-information trade-off

The production of partially decorrelated memory engrams through the combination of 

correlated distal (EC) inputs with decorrelated proximal (DG) inputs has been previously 

explored (McClelland & Goddard, 1996), though in the context of single-compartment 

neurons with linear input integration (Figure 5A). In that context, the degree of decorrelation 

is determined by the relative variances of the distal and proximal input (McClelland & 

Goddard, 1996), rather than the proximal and distal sparsities as in our model with nonlinear 

input integration. We sought to investigate the implications of these differing input 

integration schemes for storage and recall of similar memories.

Networks with either integration scheme are constrained by a trade-off between the amount 

of information that engrams contain about the cortical state (EC inputs) during encoding, 

and the degree to which engrams for similar memories are decorrelated to prevent 

interference (McClelland & Goddard, 1996). For example, perfectly decorrelated engrams 

would not interfere with each other, but once recalled would provide no meaningful 

information to downstream areas because of their complete lack of correlation with engram 

representing similar memories. To quantitatively compare the two integration schemes in 

terms of this trade-off, we computed the relationship between the pairwise engram 

correlation – in the limit of highly similar distal inputs – and the information that each 

engram contains about the distal input pattern that produced it (Figure 5B; Experimental 

Procedures). We calculated this relationship for different fixed levels of engram sparsity, 

while varying the distal and proximal sparsities or variances in the nonlinear or linear model, 

respectively. This relationship was qualitatively similar across the two models, although for 

low correlations, activity patterns in the two-compartment model contain more information 

about the distal input pattern.

Storage and recall of multiple similar memories

While the above analysis may indicate comparable performance of the linear and nonlinear 

integration schemes when pairs of similar memories are stored, it does not guarantee 

comparable performance when larger sets of similar memories are stored. To examine such 

scenarios, we studied networks in which the proximal inputs provided the dominant 

contribution to the engram so as to provide a high capacity for the storage of similar 

memories. In the model with nonlinear integration, we set the proximal sparsity to sp = 0.05 

and distal sparsity to sd = 0.5. We set the parameters in the linear integration model to match 
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the nonlinear integration model with regard to engram sparsity and pairwise correlation 

between engrams for similar memories.

We first examined, for each integration scheme, the probability with which each active 

neuron in an engram would also be active in the engram for a highly similar memory (Figure 

5C), modeled by taking the limit of perfect distal input correlation. In the case of nonlinear 

integration, all neurons within an engram have the same probability, equal to the proximal 

sparsity, of recurring in an engram for a highly similar memory. In the case of linear 

integration, however, the recurrence frequency is distributed over a range of values; most 

neurons have a low probability, less than the proximal sparsity, of recurring in a similar 

engram, while a smaller fraction of neurons recur with much higher probability. Since this 

recurrence probability is also the fraction of similar memory engrams in which the neuron is 

expected to be active, we hypothesized that these different distributions would imply 

different network behavior when large numbers of similar memories were stored.

To test this hypothesis, we created a network of 10000 neurons for each integration scheme. 

In each network we stored 200 engrams with independent proximal inputs, to reflect DG 

pattern separation, but identical distal (EC) inputs, to model the limiting case of high 

memory similarity. After storing these patterns, we assessed the integrity of the attractor for 

each of these engrams. To do this, we initialized the network with the activity pattern of each 

of the stored engrams, allowed the network activity to evolve according to the recurrent 

dynamics determined by the learned synaptic weights, and then measured the correlation 

between the resulting activity pattern and each of the encoded engrams (Figure 5D). With 

the linear integration scheme, the network activity evolved away from most recall cues, as 

evidenced by the paucity of strong correlations along the diagonal, and into a single 

common attractor, as evidenced by the horizontal banding pattern. In contrast, the network 

with the nonlinear integration typically remained near the location of the cue, indicating the 

presence of an intact memory-specific attractor. Network dynamics following initialization 

from perturbed version of encoded patterns and with asymmetric plasticity rules are 

explored in Supplementary Figures 1 and 2.

Examining the common attractor to which the network with linear input integration 

converged, we found that the active neurons were indeed those which had occurred in a high 

proportion of the stored engrams (Figure 5E), and we therefore refer to this attractor as a 

“composite attractor” henceforth. To track the formation of this attractor as progressively 

many patterns were stored, we determined a composite pattern after each new storage event 

by selecting the n neurons that had been active in the highest fraction of stored patterns, 

choosing n in each case to minimize the pseudo-energy of this composite pattern. The 

pseudo-energy of the composite pattern progressively decreases and drops well below that of 

the most recently stored engram (Figure 5F). The same analysis applied to the network with 

linear input integration shows that pseudo-energy of the composite state remains well above 

that of the most recently stored pattern. Calculations regarding the parameter conditions 

under which composite attractors are formed are presented in the Experimental Procedures. 

Asymmetric plasticity rules do not prevent the formation of the composite attractor in the 

linear integration model but can support the coexistence of memory-specific attractors 

despite the presence of this composite attractor (Supplementary Figures 1 and 2).
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Overall, our comparison of the linear and nonlinear integration schemes indicates that while 

both the nonlinear and linear networks effectively decorrelate pairs of engrams, only the 

nonlinear network effectively decorrelates larger numbers of similar patterns. While all 

neurons recur in similar memories with equal probabilities in the nonlinear model, the 

uneven distribution of recurrence probabilities in the linear model promotes the formation of 

a spurious attractor that interferes with the recall of individual engrams.

Distinct roles for CA3 and CA1

We have observed that the parameters that maximize the capacity to store non-interfering 

memory engrams are those that also minimize the information that these engrams encode 

(Figure 5B). This antagonism, along with the lack of recurrent activity in hippocampal area 

CA1, suggests distinct roles for areas CA3 and CA1, as also noted by those studying the 

dual-input model with linear integration (McClelland & Goddard, 1996). In the recurrently 

connected area CA3, engrams should be strongly decorrelated to prevent similar memories 

from forming interfering attractors, but these engrams need not have high information 

content, provided they are paired with more information-rich representations in downstream 

CA1. Lacking strong excitatory recurrent connectivity, area CA1 can store correlated 

engrams without risk of interference during recall; the high information content of these 

engrams would suit area CA1’s role in providing the major excitatory output from the 

hippocampus. These differing demands of the CA3 and CA1 networks can be satisfied if 

proximal activation patterns are sparser than distal activation patterns (i.e. sp < sd) in CA3, 

and distal activation patterns are sparser than proximal activation patterns (i.e. sd < sp) in 

CA1.

The combined CA3-CA1 hippocampal memory system can then be modeled as follows. 

During encoding (Figure 6A), sparse proximal activation patterns determined by DG inputs 

combine with less sparse distal activation patterns determined by EC inputs to produce the 

pattern of burst-firing neurons in area CA3. The resulting heavily decorrelated CA3 activity 

pattern provides feed-forward input to the proximal compartment of CA1 PCs, which is 

thresholded to produce a non-sparse proximal pattern. The CA1 PC burst-firing pattern 

results from the combination of this proximal pattern with a sparse distal activation pattern 

determined by EC inputs to CA1. Synapses from CA3 PCs onto CA3 and CA1 PCs are then 

modified according to the aforementioned Hebbian plasticity rule (Figure 2C). During recall 

(Figure 6B), distal inputs from EC provide a recall cue to area CA3, which then evolves 

according to the network dynamics dictated by its recurrent activity. From a modeling 

perspective, we can view CA3 and CA1 during recall as one combined recurrent network 

with some neurons, those of CA1, having no outgoing recurrent synapses. The CA1 activity 

thus tracks the CA3 activity such that, when the CA3 network converges to an activity 

pattern resembling a stored engram, the CA1 network likewise converges to the activity 

pattern that was co-active with that CA3 pattern during encoding. We note that, in this 

model, the distal inputs to area CA1 do not influence which CA1 activity pattern is 

recovered during recall.
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Distal and proximal contributions to spatial tuning in CA3 and CA1

Lastly, we sought to relate this model of hippocampal memory function to experimental 

results regarding place cell properties of PCs in hippocampal areas CA3 and CA1. In 

particular, we wished to examine the model’s predictions regarding differences in CA3 and 

CA1 spatial coding resulting from the distinct properties of distal and proximal input 

processing by CA3 and CA1 networks.

For this purpose, we constructed random input patterns that varied continuously across 

position in a periodic one-dimensional model environment (Experimental Procedures). We 

then thresholded these inputs to produce spatially dependent distal and proximal activation 

patterns for each neuron. For the model CA3 network, we set the distal and proximal 

thresholds such that at each location the fractions of neurons receiving suprathreshold distal 

and proximal input were sd = 0.5 and sp = 0.05, respectively, resulting in strongly 

decorrelated representations (  for highly similar distal inputs) encoding a low level of 

information about the EC inputs (I = 0.025 bits/neuron). These thresholds and corresponding 

compartmental sparsities were reversed for the model CA1 network, resulting in weakly 

decorrelated representations (  for highly similar distal inputs) encoding greater 

information about the distal input pattern (I = 0.12 bits/neuron).

The resulting CA3 and CA1 spatial tuning patterns, alongside the distal and proximal 

activation patterns giving rise to these tunings, are displayed in Figure 6C. The similarity of 

the CA1 activity patterns to their distal activations is notable in light of experimental reports 

that place field properties are maintained when proximal (Brun et al., 2002; but see 

Nakashiba et al., 2008) but not distal (Brun et al., 2008) excitatory inputs to this network are 

lesioned, the latter lesion resulting in larger and more dispersed CA1 place fields. Together 

with a compensatory mechanism that eliminated the requirement for suprathreshold input to 

the compartment receiving lesioned inputs while preserving nonlinear processing in the 

compartment receiving intact inputs, this model would account for these experimental 

results; the CA1 output would come to resemble the thresholded input coming from the non-

lesioned pathway.

We next assessed the model’s predictions for remapping of spatial representations in similar 

environments (Figure 6D,E). We simulated similar environments by producing dissimilar 

proximal input patterns, and distal patterns with varying degrees of similarity (Experimental 

Procedures). We then evaluated the level of correlation (Figure 6E) between activity patterns 

in the original environment (Figure 6C) and the similar environments (Figure 6D). In 

striking agreement with experimental studies of different remapping in CA3 and CA1 

(Leutgeb et al., 2004), the model CA3 network remapped substantially in all three similar 

environments, while the model CA1 network remapped progressively with decreasing 

environmental similarity.

We thus see that this model – motivated entirely by considerations of circuit anatomy, 

nonlinear dendritic integration, and hippocampal memory function – accurately accounts for 

experimentally observed differences in the remapping properties of CA3 and CA1 place 

cells, as well as the differential importance of proximal and distal inputs to CA1 place field 

properties.
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Discussion

Comparison with other models of CA3 and CA1

Our consideration of the nonlinear synaptic integration of segregated inputs to hippocampal 

PCs led us to a theory in which the roles of the various hippocampal subfield elements are 

similar to those proposed by McClelland & Goddard (1996). Area CA3 stores attractors that 

are decor-related by the orthogonalizing DG inputs, but can be recalled based on cues from 

EC inputs, while area CA1 pairs CA3 representations with recoded representations 

containing greater information about the cortical state at the time of encoding. Our work 

builds on this understanding by demonstrating that nonlinear dendritic integration enhances 

the ability of the network to store greater numbers of similar memories, and can serve as a 

recall cue not only by initializing the state of the recurrent CA3 network, but also by 

lowering the energy state of the cued engram without introducing artifacts due to the 

noisiness of the cue.

This model differs from other attractor based hippocampal theories (Treves & Rolls, 1992, 

1994; Rolls & Treves, 1994). Regarding the roles of the separate input pathways to CA3, we 

propose that DG serves not to increase the information content of CA3 engrams (Treves & 

Rolls, 1992), but instead to orthogonalize and as a consequence decrease the information 

content of CA3 engrams. We consider the mutual information with the EC input pattern, not 

the DG input pattern (Treves & Rolls, 1992), to be the proper measure of the attractor’s 

information content and interpretability. Instead of requiring associative plasticity of the EC 

inputs to CA3 (Treves & Rolls, 1992), we instead require these inputs to influence plasticity 

at recurrent synapses within CA3. In contrast to previous arguments for the needs for weak 

plastic EC inputs to cue recall and for strong DG inputs to overcome CA3 recurrence during 

encoding (Treves & Rolls, 1992), our analysis of the trade-off between attractor interference 

and information (McClelland & Goddard, 1996) explains why no single input pathway can 

suffice, whether it be plastic, nonplastic, strong, weak, or even modulated (Hasselmo et al., 

1995). In our model, dendritic nonlinearities do not simply compensate for passive 

attenuation (Treves & Rolls, 1992), but are central to interactions between the dual input 

pathways to CA3 PCs.

We propose that area CA1 functions not to redistribute the information content of CA3 

attractors across a larger number of cells (Treves & Rolls, 1994), but instead to attach mutual 

information to an otherwise uninformative CA3 attractor pattern. Rather than providing 

richer information about the cued aspects of the event during recall (Treves & Rolls, 1994), 

EC inputs to CA1 are in our model essential only during encoding, when they control 

plasticity at CA3-CA1 synapses to pair the information-poor attractor pattern in CA3 with 

an information-rich representation in CA1. This proposed function is arguably more useful, 

in that it ultimately enhances recalled information that is not already represented in cortex.

The proposed recall mechanism, by which orthogonalized CA3 activity patterns reactivate 

information-rich CA1 patterns, resembles Marr’s proposal that hippocampal “codon” 

representations reactivating cortical representations through hippocampal-cortical synapses 

(Marr, 1971). The key difference here, of an intermediate CA1 layer between the codon 

representation and the cortical representations, has important implications for memory 
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capacity. The orthogonalization of representations in CA3 “codons” necessitates a 

substantial plasticity at synapses emanating from CA3 during memory formation. Given the 

stringent constraints on and memory capacity during online learning (Amit & Fusi, 1992, 

1994), the extra synaptic resources provided by a CA1 region, whose entire set of Schaffer 

collateral synapses can be dedicated to learning such associations, would allow for a 

memory capacity not possible if such associations had to be learned through the small 

fraction of synapses that cortical neurons receive from the hippocampus.

Here, we have focused on a role for CA1 distinct from novelty detection (Hasselmo et al., 

2000; Lisman & Otmakhova, 2001; McClelland et al., 1995). However, the model we 

present is not incompatible with such a role for CA1. The proposed associative potentiation 

of CA3-CA1 synapses during encoding would cause later repetition of the same CA3 

activity pattern to provide much stronger feed-forward input to CA1. Nonlinear interaction 

between the CA3 and EC inputs to CA1 would also provide a mechanism for assessing the 

similarity of the recovered memory (CA3 inputs) to the recall cue (EC inputs).

Model predictions and relations to experimental data

Nonlinear interactions between spatially segregated and functionally distinct inputs, and the 

instructive role of the resulting dendritic spiking and somatic burst firing for synaptic and 

intrinsic plasticity, have been extensively demonstrated across various neocortical and 

hippocampal pyramidal circuits (Golding & Spruston, 1998; Larkum et al., 1999; Golding et 

al., 2002; Jarsky et al., 2005; Sjöström & Häusser, 2006; Dudman et al., 2007; Tsay et al., 

2007; Takahashi & Magee, 2009; Xu et al., 2012; Basu et al., 2013; Larkum, 2013; Gambino 

et al., 2014). Recent studies have also provided compelling evidence for the presence of 

dendritic plateau potentials and somatic burst spiking in hippocampal pyramidal circuits in 

vivo (Kamondi et al., 1998; Harvey et al., 2009; Epsztein et al., 2011; Grienberger et al., 

2014). Our model gives insight into how these cellular-level phenomena can allow dynamic 

coupling of two functionally and spatially distinct pathways, and provides experimental 

predictions about the resulting cellular and network dynamics during hippocampal spatial 

and memory operations.

Inherent in this proposed model for hippocampal memory are specific predictions for epoch-

dependent requirements of specific input pathways and plasticity rules. DG inputs are 

predicted to be important specifically during encoding, with their disruption – provided 

sufficient compensatory mechanisms to ensure EC-driven CA3 attractor formation – leading 

to the interference of similar memories. EC inputs to CA3 are essential for both encoding 

and recall, whereas EC inputs to CA1 are required only for encoding. The latter prediction 

has been verified, though so far only in the case of hippocampal-dependent temporal 

associative learning (trace fear conditioning), for which EC layer 3 input to CA1 was found 

to be necessary during encoding but not recall (Suh et al., 2011).

We also predict that memory formation depends critically on plasticity at synapses from 

CA3 PCs to both CA3 and CA1 PCs, and that this plasticity is regulated by nonlinear 

interactions between distal and proximal inputs. Heterosynaptic control exerted by distal 

(EC) inputs over proximal (CA3) inputs has been observed in CA1 PCs (Takahashi & 

Magee, 2009; Dudman et al., 2007; Basu et al., 2013; Han & Heinemann, 2013). Moreover, 
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dendritic plateau potentials require inputs from EC layer III and are sufficient to induce 

rapid place field formation in CA1 PCs in vivo (Bittner et al., 2015). Similar behavior of 

CA3 PCs remains to be confirmed, although active dendritic input integration in CA3 PCs 

has been recently demonstrated (Kim et al., 2012; Makara & Magee, 2013), and quantitative 

arguments have been made for the interaction of EC and DG inputs driving CA3 PC activity 

(Lisman, 1999). Plasticity of neither DG nor EC inputs is predicted to be essential during the 

formation of memories, though such plasticity rules could serve ancillary network 

maintenance functions.

The model also makes predictions regarding activity of hippocampal circuit elements 

following plasticity and input manipulation. For example, under in vivo conditions, a higher 

fraction of CA3 PCs should respond to proximal stimulation with burst firing due to the 

higher fraction receiving strong distal input. Consistent with the reported sensitivity of CA1 

PC spatial tuning properties to lesion of inputs from EC but not from CA3 (Brun et al., 

2002, 2008), the predicted differences in distal and proximal sparsity also imply a greater 

dependence of CA1 tuning on distal inputs, with CA3 tuning being instead more dependent 

on proximal inputs. Accordingly, environmental perturbations, evoking stronger changes in 

proximal than distal inputs (Neunuebel & Knierim, 2014), should cause greater changes in 

CA3 than in CA1 (Leutgeb et al., 2007). Viewing elapsed time as a form of environmental 

perturbation, we predict that long-term spatial remapping in CA3 should be much stronger 

than in CA1. While experimentally characterized long-term place field dynamics in CA1 

(Ziv et al., 2013) match our predictions for remapping between similar environments (Figure 

6B), CA3 place fields are reported to be more stable than CA1 place fields, though on much 

shorter time-scales and in familiar environments (Mankin et al., 2012), where recurrent 

dynamics within CA3 might compensate for temporal-coding-related changes in DG and EC 

inputs.

Outlook

We have presented a hippocampal memory model motivated by the anatomical segregation 

of excitatory inputs to hippocampal areas CA3 and CA1. This model builds on previous 

attractor-based models of memory, but extends them through consideration of nonlinear 

interactions between separate input pathways during PC input integration. Our model allows 

for the storage and recall of information rich memory engrams, which do not interfere even 

when large numbers of highly similar memories are stored. By reducing the gap between the 

anatomical details of the hippocampus and abstract models of hippocampal memory, this 

work provides a framework for future experimental and modeling investigations into 

hippocampal functions.

Experimental Procedures

All simulations, numerical integrations, and visualizations were performed with Python, 

Scipy, and matplotlib.
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Memory encoding

We initialize the recurrent synapses with random weights sampled from a Bernoulli (i.e. 0 or 

1) distribution with mean equal to the equilibrium fraction of potentiated synapses. 

Following the presentation of each input pattern, weights are updated according to a 

stochastic Hebbian rule: the transition probabilities for the weight Wij of the synapse from 

the j-th neuron to the i-th neuron are

where the binary variables Xi and Xj represent the burst-firing state of the neurons. In our 

simulations, we set p+ = 0.25 and p− = 2spp+. For the asymmetries plasticity rules in 

Supplementary Figures 1 and 2, the value of  was changed to either 

 or .

In the case of the two-compartment model, the burst-firing state Xi is equal to the product 

, where  and , which take values of 0 or 1, represent respectively the distal and 

proximal activations (i.e. thresholded inputs) of the i-th neuron.

In the one-compartment model, the distal and proximal inputs are each Gaussian distributed 

with with mean zero and variance  or , respectively. A neuron is activated (Xi = 

1) if the summed proximal and distal inputs exceeded a threshold, which we set to 

 to impose a coding level s; otherwise, the neuron is inactive (Xi = 0). 

Here, erf denotes the error function defined by .

Recall Dynamics

For recall dynamics without distal inputs, we followed standard approaches for attractor 

networks with non-negative weights and activity states (Denker, 1986). The recurrent input 

to the i-th neuron was calculated as vi = Σj≠i (Wij − WI)xj, where the binary variable xj ∈ {0, 

1} represents the activity of the j-th neuron. The variable WI, representing disynaptic 

inhibition, was set to (1.2)spp+/[spp+ + 2(1 − sp)p−] based on considerations outlined in the 

subsection below on synapse equilibria. We repeatedly cycled through the neurons, setting xi 

to 1 whenever vi > 0, and setting xi to 0 otherwise. We continued this process until 

convergence to a fixed point or limit cycle. When considering the contribution of distal 

inputs to recall dynamics in the two-compartment model, we modified the equation input 

received by the i-th neuron as follows: , where  is the 

binary thresholded distal input to the j-th neuron, and b is a constant representing the amount 

of extra output due to burst-firing in the presence of suprathreshold distal input.
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Pseudo-energy calculations

In the case of symmetric synaptic weights and no distal input, the above recall dynamics 

correspond to the following energy function:

To reflect the modified dynamics of the two-compartment network in the presence of distal 

inputs, this energy function can be altered as follows:

Here, the modification ( ) is interpreted – in the sense that this energy model is used 

with stochastic dynamics at finite temperature – as reflecting the increased likelihood that a 

neuron will respond to proximal input if it also receives distal input, and the modification 

( ) can represent the increased output magnitude (burst-firing) of a neuron receiving 

distal input. When plotting the pseudo-energies (Figures 4B, 5F), we normalized both of 

these quantities by N2s2(1 − WI), with N representing the number of neurons.

In the interest of biological plausibility, we did not enforce symmetric weight changes 

resulting from the probabilistic weight updates. As a consequence of the resulting random 

asymmetries in synaptic weights, these energy functions only approximately govern the 

recall dynamics (with the approximation quality increasing with network size) and are 

therefore referred to as the pseudo-energies throughout.

Synapse equilibria and conditions for engram recall

Under this model, the equilibrium mean synapse weight is . 

Immediately following storage of a new engram, the fraction of potentiated synapses 

between neurons active within the engram becomes Ŵij = W̄ij + (1 − W̄ij)p+. Also, when a 

large number of engrams with highly similar distal inputs are stored, the mean weight of 

synapses between neurons receiving suprathreshold distal input converges to 

.

Conditions for recall can be derived in the limit of large numbers of neurons by considering 

two requirements. First, neurons within an engram must provide net excitation to each other, 

i.e. W̄ij > WI. Second, neurons within an engram must provide net inhibition to neurons that 

are not active as part of the engram, but which may be active in engrams for highly similar 

memories, resulting in the condition, resulting in the inequality W̃ij < WI. The simultaneous 

satisfiability of these two conditions requires that Wĩj < Ŵij, which is equivalent to the 

condition .
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The second condition can be adapted to the case of the one-compartment model by replacing 

sp with the recurrence frequency (Figure 5C) in the calculation of W̃ij. The high values for 

W ̃ij for the neurons with the highest recurrence probabilities (i.e. the upper tail of the 

distribution in Figure 5C) results in a tendency for these neurons to become activated during 

the recall of engrams in which they were not activated, ultimately leading to the formation of 

composite attractors. The conditions above indicate that the avoidance of such composite 

attractors would require higher values of WI and p+; however, higher rates of synaptic 

turnover would increase the rate at which memories were over-written and (Amit & Fusi, 

1992, 1994) and thus limit the memory capacity of the network.

Recurrence frequencies

For the two-compartment model, the expected frequency with which a neuron recurs in 

engrams for similar memories (the recurrence frequency, Figure 5C) is equal to the proximal 

sparsity sp. For the one-compartment model, the probability density of the expected 

recurrence frequency is given by

This expression is obtained by considering the distribution of distal input levels conditioned 

on a neuron being active, and the probability of activation given each level of distal input.

Engram correlations

Since each neuron is independent during encoding, correlation between two engrams is 

equivalent to the correlation between the activity of a single neuron in each of the engrams. 

In general, the correlation c between two Bernoulli random variables Xa, Xb each with mean 

m can be calculated in terms of the expectation of their product:

Applying this formula to the two-compartment model, we set  and , and 

noting the independence of the proximal and distal activations, calculate 

. When we can then reapply the same formula to calculate the 

product expectations in terms of the distal and proximal correlations – cd and cp, 

respectively – to obtain an expression for the engram correlation in terms of the correlations 

of the distal and proximal activations:
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In Figure 5B, we consider the limit of perfect distal correlation (cd = 1) and perfect proximal 

decorrelation (cp = 0), in which case the above formula simplifies to c = (sp − s)/(1 − s).

For the one-compartment network, in the limit of perfectly correlated distal inputs and 

perfectly decorrelated proximal inputs, the product expectation can be calculated by 

integrating over the distribution of the distal input values:

We obtained the correlation values in Figure 5B by calculating this integral numerically and 

substituting the result into the general formula above.

Mutual information

Since each neuron is independent during encoding, the mutual information between the 

engram and the distal input pattern is linear in the number of neurons. We therefore focus on 

calculating the mutual information between the activity of a single neuron and its distal 

input. For the two-compartment network, this quantity is calculated as

where h(x) = −x log2(x) − (1 − x) log2(1 − x) is the entropy of a Bernoulli random variable 

with mean x. For the one-compartment network, this quantity is calculated as

which we integrated numerically when creating Figure 5B. To obtain the mutual information 

per active neuron, we divide these quantities by the engram sparsity s.

The parametric curves in Figure 5B were obtained by varying sp and sd under the restriction 

that spsd = s in the case of the two compartment model, or by varying  and  under the 

restriction that  and with a fixed threshold θ in the case of the one-compartment 

model.

Spatial Tunings

We generated random spatial input patterns that varied continuously across the unit circle [0, 

2π). The continuous valued distal and proximal inputs to the k-th neuron are determined as 

, where f (θ|μ, κ) is the probability density function of a von Mises 

distribution centered at μ and with concentration κ, and where each θi is independently 
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sampled from a uniform distribution over [0, 2π). Then index α takes values d and p to 

denote the distal and proximal inputs, respectively. We determined distal and proximal 

threshold such that, at a given position along the unit circle, the probability of the input 

being above threshold was equal to sd or sp, respectively. We then applied these thresholds to 

the randomly generated continuous functions to obtain binary distal and proximal activation 

patterns for each model neuron.

Tunings for similar environments were created by regenerating entirely new proximal input 

patterns and perturbing the distal input patterns. The perturbed distal activation patterns were 

constructed by thresholding continuous input patterns of the form 

, where the values of  were the same as used to generate 

the inputs in the original environment, and where the perturbations  were sampled from 

a von Mises distribution with a mean of zero and concentration (κ) of 1000, 10, and 1 for the 

environments with high, medium, and low similarity, respectively.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Roles of hippocampal subfields, inputs, and connections
Schematic diagram outlining the roles for specific input pathways and hippocampal 

subfields during memory encoding and recall phases considered here and by McClelland & 

Goddard (1996). Pathways with essential roles at each stage are indicated in red or blue, 

with blue indicating pathways in which synaptic plasticity occurs. Enconding: EC and DG 

inputs to produce a heavily decorrelated CA3 engram, which is stored through plasticity at 

recurrent connections. Plasticity at synapses between CA3 and CA1, modulated by direct 

EC inputs, associates the decorrelated CA3 engram with a more information-rich CA1 

engram. Recall: EC layer II (LII) inputs to CA3 determine which engram will be reactivated 
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by CA3 recurrent dynamics. The reactivated CA3 engram in turn activates the associated 

CA1 engram, which provides an informatin-rich hippocampal output representing the stored 

memory.
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Figure 2. Memory encoding in an attractor network of two-compartment neurons
(A) Model architecture. Two-compartment model neurons receive external inputs to their 

distal and proximal compartments and recurrent connections to their proximal 

compartments.

(B) Nonlinear integration rule. Neurons receiving receiving suprathreshold proximal input 

are active, and those that additionally receive suprathreshold distal input enter a burst-firing 

state that engages plasticity mechanisms. (C) Dependence of synaptic plasticity on the 

combined inputs to presynaptic and postsynaptic neurons. Synapses between burst-firing 

neurons undergo potentiation, while synapses between burst-firing neurons and non-burst-

firing neurons undergo depression.

(D) Correlation between engrams created through integration of correlated distal input 

patterns and less correlated proximal input patterns. Each plot, corresponding to a different 

pair of values for the total sparsity (s) and correlation between distal activations (cd), shows 

how the correlation between engrams, ranging from 0 to cd, depends on the proximal 

sparsity, ranging from s to 1, and the correlation between proximal activations, ranging from 

0 to cd.
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Figure 3. Storage and recall of correlated memories illustrated with pictorial network 
representations
(A–B) Example storage of correlated patterns (left), followed by presentation of recall cues 

(center), each resulting in the network converging upon a recall activity pattern (right). 

Schematic diagrams (above) indicate which inputs are active (dark) or suppressed (faded) at 

each stage.

(A) The attractor network with a single input pathway consistently converges to a common 

mixed attractor combining features of all three stored patterns. Inset: Plasticity rule, 

analogous to Figure 2C, for the case of a single input pathway.

(B) The attractor network of two-compartment neurons maintains separate engrams for each 

stored pattern. Encoding (left) occurs through combination of distal and proximal inputs, 

with pixels colored according to input combinations (Figure 2B). Recall cues (center) are 

provided through the distal inputs. The recalled activity patterns (right) match the patterns of 

burst-firing neurons during encoding.
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Figure 4. Recall with nonlinear dendritic integration
(A) Probabilities of recall dynamics converging to each engram (Pattern A, blue; Pattern B, 

green; Pattern C, red) as a function of the burst-firing ratio b. Throughout, the recall cue is a 

noisy version of the distal input pattern for Pattern B (Figure 3B). Bars indicate 95% 

confidence intervals estimated with bootstrapping after 250 recall simulations.

(B) The number of asynchronous update cycles required for convergence. Bars indicate 

mean ± standard deviation. (C) Pseudo-energies of the three stored engrams as a function of 

the burst-firing ratio b, with a noisy version of the distal inputs for Pattern B as the recall 

cue. Since this cue has overlap with all three engrams, the pseudo energy of each engram 

decreases as the burst-firing ratio increases, and that of the most overlapping pattern 

decreases most.
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Figure 5. Comparison of linear and nonlinear integration of distal and proximal inputs
(A) Schematic diagrams of contrasting input integration schemes. For linear integration 

(top), distal and proximal inputs are summed before thresholding is applied. For nonlinear 

integration (bottom), the proximal and distal inputs are each thresholded separately, with an 

AND operation applied to the output of these threshold operations.

(B) Trade-off between engram decorrelation and information. Parametric curves show the 

relationship between the correlation between engrams for pairs of highly similar memories, 

and the mutual information that an engram contains about the distal input pattern at the time 

of encoding. Separate curves correspond to networks with linear (blue) and nonlinear (red) 

integration for three different levels of engram sparsity.
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(C) Distribution of recurrence frequency – i.e. the fraction of highly similar engrams in 

which a neuron is active – for neurons in engrams of networks with linear (blue) and 

nonlinear (red) integration.

(D) Evaluation of engram attractors following the storage of 200 similar (i.e. same distal 

inputs) memories. The plots show the correlation between the 50 most recently stored 

engrams (comparison patterns, ordered with most recent first) and the activity state to which 

the recall dynamics converge when the network is initialized with each of these same 

engrams (initialization patterns). The network with linear input integration (left) converges 

into a common attractor independent of the initialization. The correlation of this common 

attractor with each of the engrams determines the horizontal banding pattern. The network 

with nonlinear integration (right) maintains distinct attractors for each pattern, as indicated 

by the high correlations along the diagonal. The two networks were matched with regard to 

both sparsity and the pairwise correlation between similar engrams.

(E) The recurrence frequency distributions for neurons that are active (red) or inactive 

(black) in the composite attractor of the linear integration network in (D). The composite 

attractor consists of the neurons that have been active is the highest fraction of stored 

patterns.

(F) Pseudo-energies of the most recently stored engram and the composite activity pattern 

following storage of progressively many similar patterns. In the network with linear 

integration (left), but not in the network with nonlinear integration (right), the pseudo-energy 

of the composite pattern falls below that of the most similar stored pattern.
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Figure 6. Distinct memory roles correspond to distinct place cell properties in CA3 and CA1
(A–B) Schematic of the combined CA3-CA1 network during encoding (A) and recall (B) 

phases. The synaptic connections determining activity in each phase are darkly shaded, with 

other pathways faded.

(A) Encoding phase: Distal and proximal inputs combine to determine burst-firing neurons 

in both CA3 and CA1, with synapses from burst-firing CA3 neurons to burst-firing or non-

burst-firing CA3 and CA1 neurons potentiated or depressed, respectively. For the CA3 

network, the proximal sparsity is lower than the distal sparsity, whereas the opposite is true 

for the CA1 network.

(B) Recall phase. EC layer II (EC-2) inputs promote recall of a similar engram through 

recurrent activity within CA3. The CA3 engram provides feed-forward input to CA1 and 

thus reactivates the CA1 ensemble with which it was co-active during encoding.

(C) Distal and proximal contributions to spatial tuning. Simulated CA3 (top) and CA1 

(bottom) place cells sorted according to their spatial tuning (left). Spatial tunings of the 

distal (center) and proximal (right) activations are shown for each cell.

(D) Remapping of spatial tunings across similar environments. Spatial tunings are shown for 

environments with high (left), medium (center), and low (right) similarity to the original 

environment (C), with neurons sorted in the same order. CA3 spatial representations remap 
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almost entirely across all environments, whereas CA1 representations remap progressively 

with changes to the environment.

(E) Correlations between the spatial tunings in the original environment (C) with those in 

environments of progressively decreasing similarity (D).
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