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Abstract

The dopaminergic innervation of the striatum has been implicated in learning processes and in the 

development of human speech and language. Several lines of evidence suggest that evolutionary 

changes in dopaminergic afferents of the striatum may be associated with uniquely human 

cognitive and behavioral abilities, including the association of the human-specific sequence of the 

FOXP2 gene with decreased dopamine in the dorsomedial striatum of mice. To examine this 

possibility, we quantified the density of tyrosine hydroxylase-immunoreactive (TH-ir) axons as a 
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measure of dopaminergic innervation within five basal ganglia regions in humans, great apes, and 

New and Old World monkeys. Our results indicate that humans differ from nonhuman primate 

species in having a significant increase in dopaminergic innervation selectively localized to the 

medial caudate nucleus. This region of the striatum is highly interconnected, receiving afferents 

from multiple neocortical regions, and supports behavioral and cognitive flexibility. The medial 

caudate nucleus also shows hyperactivity in humans lacking a functional FOXP2 allele and 

exhibits altered dopamine concentrations in humanized Foxp2 mice. Additionally, striatal 

dopaminergic input was not altered in chimpanzees that used socially learned attention-getting 

sounds versus those that did not. This evidence indicates that the increase in dopamine innervation 

of the medial caudate nucleus in humans is a species-typical characteristic not associated with 

experience-dependent plasticity. The specificity of this increase may be related to the degree of 

convergence from cortical areas within this region of the striatum and may also be involved in 

human speech and language.

Graphical abstract

Humans are unique among primates in having increased dopaminergic innervation of the medial 

caudate nucleus, a region that is highly interconnected with the neocortex and that has been 

implicated in speech and language production. These results indicate that striatal dopamine has 

played an important role in the evolution of the human brain.
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Introduction

Midbrain dopaminergic (DAergic) neurons innervate the basal ganglia and play a critical 

role in the modulation and integration of both motor and cognitive functions (Haber, 2014). 

The basal ganglia are involved in several independent closed-loop systems (i.e., cortico basal 

ganglia) with a topographical organization that is evident in the cortical area, input region, 
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and output structure (Haber, 2003; Haber et al., 2006; Haber et al., 1995; Middleton, 2000; 

Middleton and Strick, 2000; Middleton and Strick, 2002; Nambu, 2011; Postuma and 

Dagher, 2006). Although topographically organized, several lines of evidence indicate 

discrete areas of convergence within the striatum that receive inputs from diverse cortical 

regions (Averbeck et al., 2014; Draganski et al., 2008; Haber et al., 2006). In contrast to 

specificity of relationships, these findings suggest greater integration and synchronization of 

separate information streams within the striatum than previously thought (Averbeck et al., 

2014; Draganski et al., 2008). The basal ganglia have not been extensively studied as a target 

in the evolution of higher cognitive function because many of its fundamental components 

do not appear to vary among species (Ericsson et al., 2011; Smeets et al., 2000; Stephenson-

Jones et al., 2011) in spite of some notable differences. A dramatic increase in connectivity 

characterizes the non-mammalian to mammalian transition (Smeets et al., 2000), and this 

increase in connectivity has been expanded in human and nonhuman primates as the 

neocortex increased in size and became more differentiated (Averbeck et al., 2014; Fudge et 

al., 2004; Postuma and Dagher, 2006; Wise et al., 1996). Because DA is considered to be the 

major neuromodulator of basal ganglia functions (Haber, 2014; Parent et al., 1995), it is 

reasonable to expect that the increased connectivity of cortico-basal ganglia circuits would 

require reorganization of DAergic innervation in the primate brain, with further differences 

expected between human and nonhuman primates to support the evolution of human-specific 

cognitive abilities.

Dopamine (DA) plays a modulatory role in the executive cortico-basal ganglia loop and is 

involved in human language as well as theory of mind, working memory, learning, and the 

ability to recognize causal relationships between an action and its consequences (Dominey 

and Inui, 2009; Giraud et al., 2008; Lex and Hauber, 2010; Poletti et al., 2011). In human 

language, the basal ganglia are active during speech production, sentence comprehension, 

and in the processing of grammar and syntax (Prat et al., 2007; Teichmann et al., 2008; 

Teichmann et al., 2006; Ullman et al., 1997). The only gene that has been definitively and 

consistently linked to central aspects of speech and language production in humans is 

FOXP2 (Enard, 2011; Enard et al., 2002; Lai et al., 2001; Lai et al., 2003). It appears that 

FOXP2 contributed to the evolution of human language through its effects on executive 

corticostriatal circuits, with a possible specific effect of altering the density of DAergic 

innervation (Enard, 2011; Enard et al., 2009; Reimers-Kipping et al., 2011; Schreiweis et al., 

2014).

For humans, reduced DA in the left caudate nucleus increases the accuracy of phonological 

processing, as indicated by positron emission tomography (PET) (Tettamanti et al., 2005). 

Genetically engineered mice expressing the human variant of FOXP2 exhibit altered 

vocalizations and a decrease in DA concentrations in the striatum, nucleus accumbens, 

globus pallidus, frontal cortex, and cerebellum (Enard et al., 2009). A subsequent analysis 

revealed that DA levels are reduced in the left dorsomedial, but not dorsolateral, striatum 

(Schreiweis et al., 2014). These effects are accompanied by increased dendritic branching of 

striatal neurons (Enard et al., 2009) and enhanced procedural forms of learning that are 

modulated by DA and critical to language and speech (Schreiweis et al., 2014). In humans 

lacking a functional copy of the FOXP2 gene, there are altered activity patterns within the 

medial caudate nucleus of the left hemisphere as revealed by fMRI and PET studies 
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(Liégeois et al., 2003; Vargha-Khadem et al., 1998). Specifically, hyperactivation of the 

medial caudate nucleus was observed in affected individuals of the KE family, who display 

verbal dyspraxia including impairment in word repetition, nonword repetition, and 

sequential orofacial movements (Vargha-Khadem et al., 1998).

Foxp2 includes 3 functional regions: a poly-Q region (exons 5–6), a zinc-finger domain 

(exon 8), and a forkhead DNA binding domain (exons 12–14; Bruce and Margolis, 2002). 

Foxp2 is often assumed to be relatively conserved among mammals (Enard et al., 2002), but 

comparative studies have shown otherwise. For example, sequence variation has been 

reported in echolocating bats (Li et al., 2007), lesser apes, and great apes (Ely et al., 2002; 

Erwin et al., 2002). It also appears that evolutionary changes in FOXP2 transcription factor 

binding sites may have occurred in the lineage leading to modern humans, based on 

comparisons with Neanderthals (Maricic et al., 2013). Two residues differentiate human 

from chimpanzee FoxP2 protein (Enard et al., 2002), however it is not known if the fixed 

human/chimpanzee sequence difference in the forkhead DNA binding region of exons 12–13 

results in a change in DAergic innervation within regions of the human basal ganglia 

compared to other closely related primate species. Based on studies of transgenic mice, 

humans would be expected to have fewer DAergic inputs specific to the dorsomedial 

striatum. The dorsomedial region of the striatum in the mouse presumably corresponds to 

the primate medial caudate nucleus, while the dorsolateral striatum of the mouse may 

correspond to the primate putamen (Balleine et al., 2007; Liégeois et al., 2003; Schreiweis et 

al., 2014; Vargha-Khadem et al., 1998; Woolley et al., 2013). The homology of the 

dorsomedial striatum and primate medial caudate nucleus is based on both connectivity with 

prefrontal and orbitofrontal cortex and involvement in behavioral flexibility and the 

homology of the motor regions is based on function (Clarke et al., 2008; Öngür and Price, 

2000; Ragozzino, 2007; Ragozzino et al., 2002; Roberts et al., 2007; Schilman et al., 2008; 

Thorn et al., 2010; Woolley et al., 2013; Yin and Knowlton, 2006).

Earlier reports suggest that the human striatum has a more complex neurochemical 

organization relative to other mammals, with greater heterogeneity in the levels of 

immunostaining for neurochemical markers in different regions rather than the discrete, 

chemically-distinct compartments described in other species (Holt et al., 1997; Holt et al., 

1996). However, rigorous quantitative comparisons between human and nonhuman primates 

are lacking. In the current study, we conducted a stereologic analysis of the DAergic 

innervation within regions of the basal ganglia (dorsal and medial caudate nucleus, putamen, 

and globus pallidus) to determine if reorganization of the striatal DAergic innervation is 

evident between humans and other primates possibly due to the evolution of uniquely human 

abilities.

Materials and Methods

Specimens

Brain samples from the left hemisphere of 49 individuals representing six primate species 

were used in the present study. They included New World monkeys (tufted capuchins), Old 

World monkeys (pig-tailed macaques and olive baboons), African great apes (western 

lowland gorillas and common chimpanzees), and humans (see Table 1 for details). All 
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individuals were adults and free of neuropathology. Sexes were balanced within species as 

much as possible, based on the opportunistic nature of collecting these brains. Human brain 

samples were provided by the El Paso County Coroner in Colorado (as approved by the 

Colorado College Institutional Review Board, #011311-1), the Northwestern University 

Alzheimer’s Disease Center Brain Bank, and the National Disease Research Interchange 

(NDRI). The human subjects exhibited no evidence of cognitive changes before death, and 

all received a score of zero for the CERAD senile plaque grade (Mirra et al., 1991) and the 

Braak and Braak neurofibrillary tangle stage (Braak and Braak, 1991). The nonhuman 

primate brains were acquired from American Zoo and Aquarium-accredited zoos or research 

institutions and maintained in accordance with federally recognized standards, guidelines, 

and principles (National Research Council, 2011; NIH/OLAW, 2002; USDA, 2013) and 

accrediting bodies (AAALAC-I), with full approval and oversight by each institution’s 

animal care and use committee. Postmortem interval was less than 17 hours for all 

individuals. All brains were immersion-fixed in 10% buffered formalin for a minimum of 7 

days, transferred to a 0.1 M buffered saline solution with 0.1% sodium azide, and stored at 

4° C. While all five sampling regions were available for the majority of specimens, some 

areas were missing in the dissected blocks that were provided from a few individuals (see 

Table 1).

Sample Processing

All samples were from the left hemisphere. Because human and nonhuman primate brains 

(especially great apes) are a limited resource, it was not possible to obtain both hemispheres 

for every individual because many brain collection protocols freeze one hemisphere and 

immersion-fix the other. Although there are differences in connectivity between the left 

versus right basal ganglia components (Postuma and Dagher, 2006), these differences were 

not considered to be a factor in the present analysis of executive and motor cortico-basal 

ganglia loops. Furthermore, the striatal regions implicated in human language are exclusive 

to the left hemisphere (Schreiweis et al., 2014), making it the hemisphere of interest for the 

present analyses.

Prior to sectioning, specimens were cryoprotected in a series of sucrose solutions (10, 20, 

and 30%) until saturated. Brains were frozen in dry ice and cut into 40 μm-thick sections 

using a Leica SM2000R freezing sliding microtome (Leica, Buffalo Grove, IL). Sections 

were placed into individual microcentrifuge tubes containing freezer storage solution (30% 

each of distilled water, ethylene glycol, and glycerol, and 10% 0.244 M phosphate buffered 

saline) and numbered sequentially. Sections were stored at −20°C until further processing. 

Every tenth section was stained for Nissl substance with a solution of 0.5% cresyl violet. 

Nissl-stained sections were used to identify anatomical regions of interest and to quantify 

neuron densities.

Identification of Sampling Regions

All regions in the present study were readily delineated using Nissl-stained sections 

(Graybiel, 2005). Sampled regions for this analysis are shown in Figure 1 and were selected 

based on the topographical organizations of both motor and executive cortico-basal ganglia 

loops that have been described in humans and monkeys (Haber, 2003; Haber and Behrens, 
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2014; Haber et al., 2006; Haber and Knutson, 2010; Middleton, 2000; Middleton and Strick, 

2002; Nambu, 2011; Parent, 1990; Parent et al., 1995; Postuma and Dagher, 2006). Regions 

involved in the executive loop that were analyzed were the head of the caudate nucleus 

(dorsal and medial regions) and the anteromedial GPi. Regions representative of the motor 

loop included the dorsal putamen and intermediate GPi.

In the executive loop, focal projections from the dorsolateral prefrontal cortex (e.g., areas 9 

and 46) are received by the dorsal region of the head of the caudate nucleus (Calzavara et al., 

2007; Haber et al., 2006; Robinson et al., 2012). Areas 9 and 46 are involved in working 

memory and the perception and inference of mental states (Frith and Frith, 2006; Levy and 

Goldman-Rakic, 2000). Specific functions attributed to the head of the caudate nucleus 

include working memory and strategic planning processes (Barbas, 2000), theory of mind, 

emotion recognition (Kemp et al., 2013; Kemp et al., 2012), and representation of action-

outcome contingencies that support flexibility in goal-directed behaviors (Grahn et al., 

2008).

The medial caudate nucleus corresponds to the DA-deficient dorsomedial striatal region in 

humanized Foxp2 mice (Liégeois et al., 2003; Schreiweis et al., 2014; Vargha-Khadem et 

al., 1998). In primates, the medial caudate nucleus receives projections from the 

orbitofrontal and anterior cingulate cortices, areas associated with decision-making, 

motivation, reward, and vocalization (Allman et al., 2001; Haber and Behrens, 2014).

The head of the caudate nucleus relays information to the dorsal anteromedial GPi. Damage 

to this area of the globus pallidus results in cognitive deficits in category and letter fluency 

(word generation tasks that test aspects of language and executive retrieval), proactive 

interference (impaired learning as a consequence of previously learned information), and 

impaired performance on the paced auditory serial addition test (auditory processing speed 

and flexibility and calculation ability) (Lombardi et al., 2000).

The motor loop involves somatosensory cortical areas projecting to the putamen. The dorsal 

putamen, which receives information from the leg and foot region (Künzle, 1975), was 

selected for comparisons among primates because alternative regions (i.e., orofacial and 

hand) may be expected to exhibit differences between human and nonhuman primates. 

Information from the dorsal putamen is then relayed to the ventral intermediate GPi, and 

lesions in this region do not result in cognitive deficits (Lombardi et al., 2000).

Immunohistochemistry

Every tenth section from each subject and sampling area was immunohistochemically 

processed for tyrosine hydroxylase (TH; the rate-limiting enzyme in DA synthesis) using the 

avidin-biotin-peroxidase method as described previously (Raghanti et al., 2009; Raghanti et 

al., 2008b). Briefly, sections were pretreated for antigen retrieval by incubation in 0.05% 

citraconic acid (pH 7.4) at 85–90°C for 30 minutes. Endogenous peroxidase was quenched 

and sections were preblocked, pretreated, and incubated in a rabbit anti-TH polyclonal 

antibody (Millipore, AB152, RRID AB_390204) at a dilution of 1:1,000 for 24 hours at 

room temperature followed by 24 hours at 4°C. This antibody is derived from rat 

pheochromocytoma and labels a band at approximately 60 kDa by Western blot in human 
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and nonhuman primates (Lewis et al., 1994; Wolf et al., 1991) and has been validated for use 

in a wide range of applications, including immunohistochemistry (Hunter et al., 2012; 

Raghanti et al., 2008b; Sharma et al., 2010). Sections were then incubated in a biotinylated 

secondary antibody (1:200) followed by the avidin-peroxidase complex (PK-6100, Vector 

Laboratories, Burlingame, CA). A 3,3′-diaminobenzidine-peroxidase (DAB) substrate with 

nickel enhancement was used as the chromogen (SK-4100, Vector Laboratories).

Data Acquisition

Quantitative analyses were performed using computer-assisted stereology with an Olympus 

BX-51 photomicroscope system equipped with a digital camera and StereoInvestigator 

software version 10 (MBF Bioscience, Williston, VT, RRID SciRes_000114). Subsampling 

techniques were performed for each species to determine appropriate sampling parameters 

(Slomianka and West, 2005).

The regional length of TH-ir axons was calculated using the SpaceBalls probe at 100x (N.A. 

1.4) under Koehler illumination (Calhoun et al., 2004; Calhoun and Mouton, 2000; 

Kreczmanski et al., 2005; Mouton et al., 2002). Beginning from a randomly selected section 

within the sampling region, 3 to 4 equidistant sections were sampled. Mounted section 

thickness was measured at every fifth sampling site. Axons were marked where they 

intersected the outline of the hemisphere. As described previously, the axonal length density, 

ALv, was calculated as the total fiber length divided by the planimetric measurement of the 

reference volume sampled (Raghanti et al., 2008a; Raghanti et al., 2008b; Raghanti et al., 

2008c).

The regional neuron density, Nv, was assessed in adjacent Nissl-stained sections using an 

optical disector combined with a fractionator sampling scheme. The optical disector probe 

was performed using a 40x objective (N.A. 0.75). Neurons were counted when the nucleolus 

was in focus within the counting frame and displayed the presence of a large, lightly stained 

nucleus, a distinct nucleolus, and lightly stained proximal portions of dendritic processes. 

Nv was calculated as the sum of neurons counted within the sum of optical disectors divided 

by the product and volume of the disector (Sherwood et al., 2005). To correct for tissue 

shrinkage in the z axis, the height of the disector was multiplied by the ratio of section 

thickness to the actual weighted mean thickness after mounting and dehydration. No 

correction was necessary for the x and y dimensions because shrinkage in section surface 

area is minimal (Dorph-Petersen et al., 2001).

The ratio of ALv/Nv was used for comparative analyses among species rather than the 

absolute total axon length to avoid several confounding factors. For example, cell density per 

unit volume varies with brain size (Gabi et al., 2010; Haug, 1987; Sherwood et al., 2007). 

Thus, the ratio of ALv/Nv allows for evaluation of fiber density in the context of species 

differences in neuron density. Furthermore, postmortem interval, method of fixation, and 

amount of time in fixative are factors that contribute to preprocessing tissue shrinkage. 

Additional tissue shrinkage may also occur with histological and immunohistochemical 

procedures. These confounding factors are unavoidable, however, the ALv/Nv ratio serves to 

standardize data for differential tissue shrinkage among species and individuals.
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Statistical Analyses

The ratio of TH-ir ALv/Nv was analyzed among species using a mixed model ANOVA with 

repeated-measures. Area (dorsal or medial caudate nucleus, putamen, dorsal anteromedial 

GPi, and ventral intermediate GPi) was the within-subjects factor and species was the 

between-subjects factor. Fisher’s least significant difference (LSD) post hoc tests were 

performed to evaluate significant effects. Statistical analyses were performed using SPSS 

(version 13.0) and Statistica (version 6.0), and the level of significance (α) was set at 0.05 

for all statistical tests.

An additional analysis that included chimpanzees that used socially learned attention-getting 

vocalizations (AG+; n = 4, 2 males, 2 females) was compared with chimpanzees that did not 

use these vocalizations (AG−; n = 4, 2 males, 2 females) to evaluate potential experience-

dependent plasticity of striatal DAergic expression. Among captive chimpanzees, some 

individuals use vocalizations to get the attention of humans and this is a socially transmitted 

skill that appears to be passed from mother to offspring (Russell et al., 2013; Taglialatela et 

al., 2012). Student’s t-tests were used to compare ALv/Nv in the dorsal and medial caudate 

nucleus and putamen between chimpanzee groups.

Results

Figure 2 provides examples of TH immunostaining in the striatum and globus pallidus for 

each species. The patterns of immunostaining were comparable to previous studies in 

humans and nonhuman primates (Graybiel, 1990; Hedreen, 1999; Holt et al., 1997; Holt et 

al., 1996). Within the striatum, we observed fine varicose axons organized into zones of 

weaker immunoreactivity (striosomes) embedded in regions of intense staining (matrix), 

with a denser immunoreactivity present in the medial and ventral caudate nucleus. Axons 

were more sparsely distributed in the GPi overall, with many being of a larger diameter.

The repeated-measures ANOVA for ALv/Nv yielded significant main effects of area (F(4,104) 

= 29.02, p < 0.01) and species (F(5,26) = 22.27, p < 0.01), with a significant interaction 

(F(20,104) = 3.12, p < 0.01; Fig. 3). Post hoc analyses revealed that humans had the highest 

TH-ir ALv/Nv in the medial caudate nucleus (all p’s < 0.01). Among the nonhuman 

primates, gorillas and capuchins had higher TH-ir ALv/Nv in the medial caudate nucleus 

compared to baboons (all p’s < 0.02; see Fig. 3).

Humans and chimpanzees both possessed higher ALv/Nv in the dorsal caudate nucleus and 

putamen relative to capuchins, pig-tailed macaques, baboons, and gorillas (all p’s < 0.05; see 

Fig. 3). In the globus pallidus, humans and chimpanzees had significantly higher ALv/Nv 

than capuchins, pig-tailed macaques, and baboons in the dorsal anteromedial GPi (all p’s < 

0.02), while gorillas had increased ALv/Nv relative to capuchins and baboons (all p’s < 

0.02). In the ventral intermediate GPi, humans had significantly higher ALv/Nv than 

baboons and chimpanzees (all p’s < 0.01) and capuchins had significantly lower ALv/Nv 

compared to pig-tailed macaques, gorillas, and humans (all p’s < 0.02).

Among chimpanzees, no significant differences were detected between those that used 

learned attention-getting vocalizations compared to those that did not (dorsal caudate 
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nucleus t = −0.71, p = 0.50; medial caudate nucleus t = −1.40, p = 0.21; putamen t = −1.87, 

p = 0.11; Fig. 4).

Discussion

Primates have increased the size and number of association areas of the cortex, resulting in a 

tremendous amount of information being channeled through basal ganglia circuits (Smeets 

et al., 2000). It has been proposed that reorganization of the basal ganglia would have been 

required to support this increase in cortico-basal ganglia circuitry, and such an alteration 

would require an increase in modulatory components to maintain the flow of information. 

DA is the major modulator of cortico-basal ganglia circuits and functions in the synthesis of 

information across motor, limbic, and executive processing streams (Haber, 2014), and thus 

might have been a target in the evolution of the basal ganglia. Previous research 

demonstrated significant differences between rodents and primates in DAergic input to 

thalamic circuits that seems to coincide with a dramatic increase in the number of 

interneurons, the targets of that increased innervation, in the primate thalamus (García-

Cabezas et al., 2009). García-Cabezas and colleagues reported that dopamine transporter-ir 

axons were denser throughout the thalamus of the pigtailed macaque monkey relative to that 

of the rat, with a particularly dense innervation present in the mediodorsal nucleus and 

motor ventral nuclei. Their ultrastructural analyses revealed that the dopamine transporter 

axons largely targeted thalamic interneurons in the monkey thalamus, and there is a distinct 

lack of interneuron populations within the rat thalamus (García-Cabezas et al., 2009).

Here we present an extensive comparative analysis of DAergic innervation in the human and 

nonhuman primate basal ganglia. Our findings show that, remarkably, humans are 

distinguished from other primate species in having higher density of DAergic innervation in 

the medial caudate nucleus. It is notable that the human striatum is significantly smaller in 

overall size than would be predicted based on nonhuman primate brain scaling trends 

(Barger et al., 2014; Yin et al., 2009). Thus, our findings highlight the potential for 

evolutionary reorganization of a human brain structures in the absence of overt volumetric 

enlargement. Such region-selective increase in DAergic innervation may mediate the 

increased complexity and integration of information required for the processing of 

computational aspects of human and speech and language..

The role of striatal DA in the processing of human speech and language has generated 

tremendous interest with recent research in transgenic mouse models using the human 

FOXP2 gene (Enard et al., 2009; Reimers-Kipping et al., 2011; Schreiweis et al., 2014). The 

medial caudate nucleus shows hyperactivation in humans that lack a functional FOXP2 gene 

using fMRI and PET imaging techniques (Liégeois et al., 2003; Vargha-Khadem et al., 

1998) and is associated with dysphasia and impaired orofacial motor control (Lai et al., 

2001; Liégeois et al., 2003; Vargha-Khadem et al., 1998). Our finding of a relatively greater 

DAergic input in the human medial caudate nucleus differs from expectations based on data 

from mice expressing the human FOXP2 gene. In mice, the insertion of the human FOXP2 
gene resulted in a 70% reduction in DA concentrations within the dorsomedial striatum 

compared to wild type littermates, with no differences in the dorsolateral striatum 

(Schreiweis et al., 2014). Enhanced procedural, but not declarative, memory was coincident 
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with decreased DA in humanized Foxp2 mice. Procedural memory processes are 

preferentially invoked during speech and language and it was suggested that the decrease in 

DA levels within the dorsomedial striatum contributed to the switch from declarative to 

procedural memory during behavioral experiments (Schreiweis et al., 2014). The association 

of reduced DA in the human left caudate nucleus with increased accuracy in phonological 

processing (Tettamanti et al., 2005) further suggested that lower levels of DA are 

functionally important for human language. However, based on the results presented here, 

humans possess higher baseline DA concentrations in the medial caudate nucleus relative to 

other species.

The human medial caudate nucleus, which is the putative homologue of the dorsomedial 

region of the mouse striatum, shows increased activity on PET and MRI in humans who lack 

a functional FOXP2 gene and exhibit severe deficits in speech and language (Vargha-

Khadem et al., 1998). Of note, this same region, the medial caudate nucleus, uniquely 

displays a convergence of inputs from different prefrontal cortical areas (dorsal anterior 

cingulate cortex, ventral medial prefrontal cortex, orbitofrontal cortex, dorsolateral 

prefrontal cortex) and premotor cortex in the rhesus macaque monkey, indicating that 

integration of information from different functional domains may be especially pronounced 

in this part of the striatum (Averbeck et al., 2014). Interestingly, humans and chimpanzees 

diverged from the other species included in the present analysis by having increased TH-ir 

ALv/Nv in the dorsal caudate nucleus and dorsal putamen. These findings indicate that a 

significant reorganization of the striatal DAergic innervation occurred after the panin-

hominin clade branched from the gorilla lineage, approximately 10 million years ago (Scally 

et al., 2012).

We were also able to demonstrate that using learned attention-getting vocalizations did not 

alter DAergic input to the striatum in chimpanzees. This result suggests that such a form of 

experience-dependent plasticity in DAergic afferents is unlikely to account for the 

differences observed between humans and nonhuman primates. In conclusion, our results 

show that humans possess significantly higher DAergic innervation within the medial 

caudate nucleus, a region implicated in the computational aspects of language and speech 

(i.e., speech recognition and generation), relative to nonhuman primate species. Also, 

humans and chimpanzees together showed an increased DAergic innervation for other 

regions of the striatum. Although the previous research on mice engineered to express the 

human FOXP2 gene showed decreased DA levels within the dorsomedial striatum, it is 

important to note that the gene was expressed within the context of a mouse genome. The 

positive selection of two amino acids in the human FOXP2 gene is functionally relevant, 

with the human and chimpanzee sequences having differential effects on downstream 

transcription when expressed in human cell lines (Konopka et al., 2009). It is possible that 

the FOXP2 mutation in humans that results in language deficits affects DA concentrations in 

the medial caudate nucleus, and this could contribute to the abnormally high levels of 

activity on MRI (Liégeois et al., 2003; Vargha-Khadem et al., 1998). Hyperactivation of the 

caudate nucleus is also observed in patients with Parkinson’s disease when in a 

hypodopaminergic state (Tinaz et al., 2008). This is attributed to a decreased efficiency of 

processing that resulted in a compensatory hyperactivation. The two diseases most often 

associated with basal ganglia dysfunction are Huntington’s disease and Parkinson’s disease. 
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Both diseases affect the production of aspects of speech and language (Benítez-Burraco, 

2009; Gordon and Illes, 1987; Huber et al., 2012; Sambin et al., 2012; Teichmann et al., 

2008; Tinaz et al., 2008), and both are characterized by decreased striatal DAergic input 

(Bédard et al., 2011; Cachope and Cheer, 2014). It is possible that the increased DAergic 

innervation that characterizes the human medial caudate nucleus was necessary for the 

evolution of speech and language, but became vulnerable in neurodegenerative disorders 

affecting the basal ganglia. Future work may reveal whether the human medial caudate 

nucleus possesses unique connectivity patterns and how increased DAergic modulation 

contributed to the evolution of human language acquisition.
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Figure 1. 
Nissl-stained sections from a pig-tailed macaque showing the regions sampled for this study. 

Each sampling region is indicated by a dashed line, with the dorsal and medial caudate 

nucleus and putamen represented in (A). The anteromedial dorsal GPi is indicated in (B) and 

the intermediate ventral GPi is illustrated in (C). Abbreviations: C = caudate nucleus; cc = 

corpus callosum; GPe = external globus pallidus; GPi = internal globus pallidus; ic = 

internal capsule; ot = optic tract; P = putamen.
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Figure 2. 
High-powered photomicrographs showing TH immunostaining in the medial caudate 

nucleus (A–F) and globus pallidus (G–L) of capuchin (A, G), pig-tailed macaque (B, H), 

baboon (C, I), gorilla (D, J), chimpanzee (E, K), and human (F, L). These images are meant 

to demonstrate the intensity of the immunostaining rather than the axon density in each 

species. Arrows in A–F indicate medium and large diameter axons that were occasionally 

observed within striatal regions. Scale bars = 250 μm.
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Figure 3. 
Boxplots showing TH-ir ALv/Nv for each species in the dorsal and medial caudate nucleus, 

putamen, dorsal anteromedial GPi, and ventral intermediate GPi. The TH-ir ALv/Nv values 

in the human medial caudate nucleus are uniformly higher with no overlap with other 

species’ values and show very little interindividual variation. Whiskers indicate 1 SD.
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Figure 4. 
Boxplots showing TH-ir ALv/Nv in the striatal regions of the chimpanzees that used learned 

attention-getting vocalizations (AG+) versus those that did not (AG−).
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Table 1

Study sample.

Species Common Name Sex Age ALv/Nv

Homo sapiens Human M 24 ‡

Homo sapiens Human M 44 *

Homo sapiens Human M 44 †§

Homo sapiens Human M 54 ‡

Homo sapiens Human M 56 ‡

Homo sapiens Human M 59 †§

Homo sapiens Human F 22 †§

Homo sapiens Human F 25 †§

Homo sapiens Human F 30 ‡

Homo sapiens Human F 35 †§

Homo sapiens Human F 43 ‡

Homo sapiens Human F 45 ‡

Pan troglodytes Chimpanzee (AG+) M 17 †

Pan troglodytes Chimpanzee (AG+) M 19 *

Pan troglodytes Chimpanzee (AG−) M 24 ‡

Pan troglodytes Chimpanzee (AG−) M 40 ‡§

Pan troglodytes Chimpanzee M 40 *

Pan troglodytes Chimpanzee M 46 *

Pan troglodytes Chimpanzee (AG−) F 35 †

Pan troglodytes Chimpanzee (AG+) F 44

Pan troglodytes Chimpanzee (AG−) F 12

Pan troglodytes Chimpanzee F 39 *

Pan troglodytes Chimpanzee (AG+) F 41 §

Gorilla gorilla Western lowland gorilla M 11 *

Gorilla gorilla Western lowland gorilla M 16 *

Gorilla gorilla Western lowland gorilla M 21 ‡||

Gorilla gorilla Western lowland gorilla M 34 ‡§

Gorilla gorilla Western lowland gorilla M 40 *

Macaca nemestrina Pig-tailed macaque M 2 *

Macaca nemestrina Pig-tailed macaque M 4 *

Macaca nemestrina Pig-tailed macaque M 7 †

Macaca nemestrina Pig-tailed macaque M 15 *

Macaca nemestrina Pig-tailed macaque F 6 *

Macaca nemestrina Pig-tailed macaque F 9 *

Macaca nemestrina Pig-tailed macaque F 15 ‡

Macaca nemestrina Pig-tailed macaque F 15 †

Papio anubis Olive baboon M 6 *
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Species Common Name Sex Age ALv/Nv

Papio anubis Olive baboon M 7 *

Papio anubis Olive baboon M 9 *

Papio anubis Olive baboon M 10 *

Papio anubis Olive baboon F 5 †

Papio anubis Olive baboon F 9 *

Papio anubis Olive baboon F 12 *

Cebus apella Tufted capuchin M 3 *

Cebus apella Tufted capuchin M 16 *

Cebus apella Tufted capuchin M 17 *

Cebus apella Tufted capuchin F 13 *

Cebus apella Tufted capuchin F 17 *

Cebus apella Tufted capuchin F 18 *

Age is in years, M, male; F, female. ALv/Nv = TH-ir axon length density/total neuron density.

*
Included in among-species analyses for all five regions;

†
Included in among-species analyses for striatum;

‡
Included in among-species analyses for globus pallidus;

§
Included in among-species analyses for dorsal caudate nucleus and putamen only;

||
Included in among-species analyses for medial caudate nucleus only. Chimpanzees that used attention-getting vocalizations are indicated by AG+ 

and those that did not are indicated by AG−.
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