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Abstract

Prominent developmental theories posit a causal link between early-life exposures and later 

functioning. Yet, observed associations with early exposures may not reflect causal effects because 

of genetic and environmental confounding. The current manuscript describes how a systematic 

series of epidemiologic analyses that combine several genetically-informative designs and 

statistical approaches can help distinguish between competing theories. In particular, the 

manuscript details how combining the use of measured covariates with sibling-comparisons, 

cousin-comparisons, and additional designs can help elucidate the sources of covariation between 

early-life exposures and later outcomes, including the roles of (a) factors that are not shared in 

families, including a potential causal effect of the exposure; (b) carryover effects from the 

exposure of one child to the next; and (c) familial confounding. We also describe key assumptions, 

and how they can be critically evaluated. Furthermore, we outline how subsequent analyses, 

including effect decomposition with respect to measured, plausible mediators, and quantitative 

genetic models can help further specify the underlying processes that account for the associations 

between early-life exposures and offspring outcomes.
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There is growing interest in the role of preconception and prenatal exposures for later 

development in numerous disciplines, ranging, for example, from neuroscience (Pechtel & 

Pizzagalli, 2011) to economics (Heckman, 2012). The Developmental Origins of Health and 

Disease (DOHaD) hypothesis, a broad hypothesis that encompasses such research, posits 

that early-life factors can causally impact later functioning when the exposure is experienced 

during a sensitive developmental period (Barker, 1998). Sensitive periods are characterized 
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by increased plasticity corresponding to changing properties (e.g., in neural circuitry: Ganzel 

& Morris, 2011; Knudsen, 2004; Zeanah, Gunnar, McCall, Kreppner, & Fox, 2011), with the 

prenatal and early-life period being particularly important because of its unrivaled rate of 

neuronal and physical development (Rice & Barone, 2000; Zeanah et al., 2011).

Yet, as many researchers (e.g., Thapar & Rutter, 2009) and prominent scientific committees 

(e.g., Academy of Medical Sciences Working Group, 2007) have noted, genetic and 

environmental factors that influence both the exposures and outcomes could account for the 

observed associations, rather than the exposures having a causal influence. For instance, 

quantitative genetic studies have found that correlations between environments and 

individual’s genetic risk are pervasive (e.g., Jaffee & Price, 2012; Kendler & Baker, 2007; 

Plomin & Bergeman, 1991), which indicates that genetic factors may account for a large 

fraction of the observed association between putative environmental, early-life exposures 

and outcomes. Genetically-informative studies can help test competing hypotheses, which is 

the focus of the articles in this special issue of Behavior Genetics. Several articles and books 

also review the strengths and limitations of many different genetically informed designs 

(e.g., D’Onofrio, Lahey, Turkheimer, & Lichtenstein, 2013; Knopik, 2009; Lawlor & 

Mishra, 2009; Rutter, Pickles, Murray, & Eaves, 2001), and elsewhere we have briefly 

reviewed how some of the designs have been specifically used to examine early-life 

exposures (Donofrio, Class, Lahey, & Larsson, 2014).

In the current manuscript we describe how systematic use of multiple genetically- (and 

environmentally-) informative designs and analytical approaches may help identify the 

processes through which early-life exposures come to be associated with later outcomes. 

The overall rationale is that rigorous translational epidemiological approaches can help 

specify the processes behind observed associations (Gaziano, 2010; Hiatt, 2010; Khoury, 

Gwinn, & Ioannidis, 2010; Weissman, Brown, & Talati, 2011). We explicitly use the term 

“translational epidemiology” here to refer to observational study of health determinants 

designed to provide critical insights for research along the translational continuum—basic 

research informing and being informed by studies of interventions. Because each 

genetically-informative design has a number of assumptions and limitations that require 

tradeoffs between internal and external validity (Shadish, Cook, & Campbell, 2002), the use 

of multiple designs in a systematic series of analyses enables researchers to examine of the 

assumptions and limitations of each approach, which is essential for making meaningful and 

valid conclusions (Rutter et al., 2001). Systematically combining several genetically-

informative designs and approaches also provides the opportunity to examine more complex 

developmental processes and theories. The goal of this manuscript, thus, is to provide a 

framework for considering how to explore the processes associated with early-life 

exposures. The review will provide researchers who are not familiar with genetically-

informative designs an overview of these and the logic and limitations behind their use, 

while illustrating the assumptions researchers must make if they rely on traditional cohort 

studies that compare unrelated individuals who are differentially exposed to an early-life 

exposure. The review will further provide researchers who use these designs (including the 

authors) with a more systematic and integrated framework for conducting research in this 

area, particularly considering what the use of the different designs can and cannot achieve.
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Fundamental for both the rationale and application of the framework is the underlying 

hypothesized structural relationships between the early-life exposure(s) and later 

outcome(s). Construction of diagrams to illustrate the relationships using, for example, 

Directed Acyclic Graphs (DAGs; Greenland, Pearl, & Robins, 1999), helps clarify the causal 

questions and identify if/how/when they can be tested. Such diagrams can also assist the 

identification of potential sources of bias and guide decisions and analyses to help 

differentiate between alternative hypotheses for an observed association. A causal diagram 

should include all variables, measured and unmeasured, that are common causes of any pair 

of variables on the diagram (Pearl, 2000); therefore, its construction relies heavily on 

subject-matter knowledge and expertise (Robins, 2001). Figure 1 provides a schematic 

example of how a diagram can be used to illustrate the hypothesized structural relationship 

between an early-life exposure and later outcome. In this figure, the early-life exposure and 

later outcome share common causes C1 (measured) and U1 (unmeasured), for example. A 

common cause creates a “back-door path” between the variables that leads to a spurious 

association; we say that the association between the two variables suffers from 

“confounding.” This spurious association can be eliminated by “blocking” the back-door 

path, from adjusting for (or conditioning on) a variable on that path. Consequently, we 

define a “confounder” to be any factor that can block a back-door path, not necessarily the 

common cause itself (i.e., in Figure 1 we illustrate this by noting how the confounder C2 

blocks the unmeasured confounding from U2 for the association between the exposure and 

mediator). If correctly specified, the diagram can help identify the set of such factors 

(confounders) required to block all back door paths due to common causes of the exposure 

and outcome (i.e. control for all sources of confounding).

Diagrams are also very useful when exploring direct and indirect pathways through factors 

in the causal pathway between an exposure and outcome, so called “mediators.” For 

example, diagrams can help identify if the mediator is an effect of more than one cause, 

which it would be if the mediator is an effect of the exposure and when the mediator and 

outcome share common causes (U3 in Figure 1). This is important because conditioning on a 

common effect will open the path between its causes (here the exposure and U3). 

Researchers must carefully consider this because adjusting for a mediator that is also a 

common effect, or “collider”, will introduce a spurious (non-causal) association between the 

exposure and the outcome.

In this manuscript we focus on early-life risk factors that can vary among siblings because 

individual-specific risk factors account for variability in many domains of human health and 

development (Plomin & Daniels, 1987; Turkheimer & Waldron, 2000). We also focus on 

genetically-informative designs that do not require access to datasets that rely on relatively 

rare kinship pairs, such as twin, adoption, or in vitro fertilization studies, although using 

such designs can certainly provide critically important insights (see below). We want to 

stress that no one research team has access to all of the designs and measures needed to fully 

understand the processes through which early-life exposures influence later outcomes. Thus, 

the systematic plan of analyses we propose is designed to help guide translational research 

so that findings from epidemiologic studies can help inform subsequent research on early-

life exposures (e.g., additional epidemiologic studies, research focused on proximal 

mediating factors, etc.). We propose three main aims that are sequential (See Figure 2). The 
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first aim is to examine the robustness of the exposure-outcome association when controlling 

for measured covariates. The second aim is to examine the robustness of the exposure-

outcome association when using multiple genetically-informative designs along with 

measured covariates. The third aim is to examine specific mediators of the exposure-

outcome association using effect decomposition and/or the sources of confounding using 

quantitative genetic modeling.

Aim 1. Examine the Robustness of the Exposure-Outcome Association 

when Controlling for Measured Covariates

Provided a causal diagram of the structural relationships for an early-life exposures and 

outcome has been correctly specified (e.g., Figure 1), the diagram determines the set of 

factors required to block all back door paths due to common causes of the exposure and 

outcome (i.e., control for all confounding). Careful consideration of the hypothesized 

structural relationship should, thus, assist in the identification of which measured covariates 

to account for in Aim 1, and most importantly if the inclusion of the covariates will be 

sufficient to exclude all confounding influences. For example, observational studies of early-

life exposures frequently include several covariates, such as birth year, parity/birth order, 

maternal age at childbearing, etc.

By identifying and controlling for measured confounders (labeled C1 in Figure 1), Aim 1 

will provide less biased estimates of the causal exposure effect. If the observed association is 

completely eliminated when controlling for measured covariates, researchers frequently 

make inferences that confounding factors, rather than a causal influence, explain the 

observed association. We believe such inferences should be provisional until the actual 

processes responsible for the observed association are identified because further 

specification of the precise confounding factors could shed great light on the etiology of the 

outcome. For instance, knowing that measured covariates attenuated an association does not 

identify whether the confounding was due to environmental or genetic processes related to 

the measured covariates. We, therefore, argue that additional designs are needed to help 

identify the underlying causal processes.

If, in contrast, the association persists when controlling for measured covariates additional 

research designs are critically important to explore plausible alternative explanations, 

particularly the role of unmeasured confounding (See Figure 1). A comprehensive 

consideration of plausible confounders should provide researchers with a thorough set of 

factors that need to be considered, and the degree to which a set of measured covariates 

helps rule out these alternative paths certainly depends on the specific research study. We 

can never verify whether any particular study appropriately measured and controlled for 

every salient confounder to rule out influence from unmeasured common causes (U1 in 

Figure 1); for instance, it is impossible to know whether a study has accounted for all 

genetic factors that could confound the exposure-outcome association. Hence, we believe 

that the results and inferences stemming from the analyses in Aim 1 need to be followed up 

by designs that can further examine unmeasured confounding.
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Thus, the approach for addressing the plausible role of confounding factors by statistically 

controlling for measured covariates can help improve our understanding of the origins of the 

exposures and the processes through which the exposures come to be associated with 

subsequent outcomes (e.g., Rutter, 2000), but additional designs are needed.

Aim 2. Examine the Robustness of the Exposure-Outcome Association 

when Using Multiple Genetically-Informative Designs

In general, design features in genetically-informative approaches enable researchers to 

investigate unmeasured genetic and environmental common causes (part of U1 in Figure 1) 

that are shared by family members and explore developmental processes, such as carryover 

effects, that could account for associations between early-life exposures and later outcomes.

Sibling-Comparison Design

The initial genetically-informative approach that we propose is the sibling-comparison 

design. Numerous epidemiologic studies include several offspring from the same nuclear 

family. For example, several large-scale epidemiologic studies funded by government in the 

United States, such as National Collaborative Perinatal Project (Light, 1973) and the 

Children of the National Longitudinal Survey of Youth (Baker & Mott, 1989), assessed 

multiple siblings of mothers and include information on early-life exposures. National 

registries in Scandinavian countries also enable researchers to examine early risks using 

siblings (Byrne, Regan, & Howard, 2005; Miettunen, Suvisaari, Haukka, & Isohanni, 2011). 

Furthermore, researchers have specifically designed studies to leverage the advantages 

inherent in comparing siblings (Knopik et al., 2015; Neiderhiser, Reiss, & Hetherington, 

2007). We encourage researchers to examine the possibility of using the design when 

conducting secondary data analysis and when designing new data collection focused on 

early-life exposures.

Our research team (D’Onofrio et al., 2013; Lahey & D’Onofrio, 2010) and many others 

(e.g., Donovan & Susser, 2011; Knopik, 2009; Lawlor & Mishra, 2009; Rutter, 2007) have 

written extensively about the logic of the sibling-comparison design. In brief, the design 

accounts for all genetic and environmental factors that make siblings similar because 

researchers use the unexposed siblings of exposed individuals as comparison (instead of 

using unexposed unrelated individuals). If an association with an early-life exposure remains 

when comparing differentially exposed siblings, the association cannot be due to any of the 

factors that they share. If there is no within-family association when comparing siblings, so 

that all siblings have the same rate/prevalence of the outcome regardless of their exposure, 

the results would (under the assumptions reviewed below) suggest that shared confounding 

factors account for the association. Notably, we use the term “shared” here and throughout 

the manuscript to refer to factors that make all siblings similar (i.e., the effective influence), 

regardless of whether the factors are objectively shared (Rutter, Silberg, & Simonoff, 1993). 

Sibling comparisons automatically control for confounding from all factors that are shared 

by siblings, and, because confounding factors may be difficult or even impossible to 

measure, numerous researchers have argued that the estimates from such studies provide a 
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more rigorous examination of potential causal effects compared to those solely relying on 

measured covariates (i.e., using the design strengthens the internal validity of the study).

It is important to stress, however, that sibling comparisons have their own limitations and 

their validity therefore depends on several important assumptions (D’Onofrio et al., 2013; 

Donovan & Susser, 2011; Frisell, Oberg, Kuja-Halkola, & Sjolander, 2012; Lahey & 

D’Onofrio, 2010; McGue, Osler, & Christensen, 2010; Rutter, 2007; Susser, Eide, & Begg, 

2010). To help illustrate some of these, Figure 3 depicts a hypothesized structural 

relationship between an early-life exposure and later outcome in a sibling pair (i). For 

simplicity, each set of common causes is represented with U; this could either be taken to 

cover all confounding factors or only the unmeasured (assuming measured have been 

appropriately accounted for). In addition to sharing common causes of exposure and 

outcome (Ui), siblings also share common causes of exposure (UXi), and outcome (UYi). All 

confounding factors not perfectly shared by siblings (non-shared) are captured in Ui1 and 

Ui2 respectively. When the comparison is made within siblings, all pathways through the 

shared factors (Ui, UXi and UYi) will be blocked. However, only siblings that are 

differentially exposed will contribute to an estimate of association, and their discordance has 

to be due to other factors than those shared. Most limitations of sibling comparisons derive 

from this requirement, and the more similar siblings are with respect to the exposure, the 

more influential the selection of discordance becomes. For internal validity, the main 

concern is that this renders the design sensitive to measurement error and confounding from 

factors the siblings do not share (Frisell et al., 2012; McGue et al., 2010). As the intra-class 

correlation in exposure increases, discordant individuals will also become less common, 

which may have implications for the external validity of the findings (generalization to the 

general population) and precision of the estimates (ability to acquire samples with adequate 

statistical power)(Allison, 2009). Furthermore, because the estimation assumes that the 

siblings’ experiences are independent of all measured and shared confounders, the design 

assumes no contagion from the first siblings status to the next (i.e. no arrow from Xi1 to Xi2, 

or from Yi1 to Yi2) and no carryover effect from one sibling’s exposure to the outcome of 

subsequent siblings (i.e. no arrow from Xi1 to Yi2) (Donovan & Susser, 2011; Sjolander, 

2013; Sjolander et al., 2012).

Several of these limitations can be addressed in the design and/or analysis phase of the 

study, and if not, explored in sensitivity analysis. Exposures should, for example, only be 

considered if reliably measured, to minimize the influence of compounding measurement 

error. Unless all confounders that are not perfectly shared (Uij) can be identified and 

measured, a good rule of thumb is that siblings’ expected similarity (e.g., intra-class 

correlation) in exposure (UXi) should not exceed their similarity with respect to the entire set 

of unmeasured confounding factors (Ui and Uij). Concern for non-shared confounding could 

also be mitigated by considering temporal ordering; if, for example, a child cannot influence 

the exposure (such as the parental age at childbearing) all potentially confounding genetic 

factors are perfectly shared by full siblings. All measured potential confounders that could 

vary in siblings should be appropriately accounted for in the analysis in order to exclude 

their influence on the sibling comparison (see, for example, Sjölander & Greenland, 2013 

for a description of the appropriate analytical methods). For early-life exposures, researchers 

should particularly consider the role of birth order because it is correlated with so many risk 
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factors (e.g., parental age at childbearing, birth weight, gestational age, and infection during 

pregnancy, etc.). Again, careful consideration of the origins of exposures in Aim 1 will 

provide important insights into the additional covariates required to rule out plausible 

alternative hypotheses related to confounding factors that vary within siblings.

We want to stress, however, that it is impossible to rule out all possible confounding in a 

sibling-comparison study. For some early-life exposures it is, in fact, impossible to 

completely disentangle sibling-comparison estimates from the associations with highly 

correlated/collinear factors. For instance, any cohort effects (e.g., measured by year of birth) 

are perfectly correlated with advancing parental age in sibling comparisons. Furthermore, 

studies may not include reliable and valid measures of the relevant confounders of the 

exposure and outcome. To state it differently, though more similar than an unrelated 

individual, the unexposed sibling is not a perfectly exchangeable comparison. Researchers 

who use the design, as a result, need to acknowledge the limitation of being unable to 

account for unmeasured confounding.

Cousin-Comparison Design

The second genetically-informative design we propose researchers should use is the 

comparison of differentially exposed cousins. The logic behind the design—the advantages 

of comparing family members to account for unmeasured confounding—is parallel to the 

logic of sibling comparisons. The comparison of the offspring of adult siblings accounts for 

all factors that make individuals within an extended family similar. It follows that cousin 

comparisons do not account for as many genetic and environmental factors as sibling 

comparisons, where most importantly siblings share parents and cousins do not. For 

example, cousin comparisons cannot rule out influence from factors that make cousins 

different, which includes the influences of the spouses of the adult siblings (Eaves, Silberg, 

& Maes, 2005). The internal validity of cousin-comparison studies may, therefore, not be as 

strong as sibling-comparison studies.

Yet, cousin-comparison studies provide researchers with the opportunity to find converging 

evidence using a design with different limitations and assumptions. In fact, the comparison 

of differentially exposed cousins relaxes several of the assumptions found in sibling-

comparisons (D’Onofrio et al., 2013; D’Onofrio et al., 2013). For instance, the finding in 

cousins may be more generalizable to other groups because differentially exposed cousins 

may be more common than differentially exposed siblings. Furthermore, the assumption of 

no carryover effects is arguably more justified when comparing cousins than siblings. 

Finally, studies that contain both sibling and cousin information frequently include a larger 

number of differentially exposed cousins than differently exposed siblings, which provides 

more statistical power.

First-Born Cousin Comparison Design

The third genetically-informative design we propose researchers should use is the 

comparison of first-born cousins. Because birth order is correlated with so many early 

exposures (see above), we propose that researchers specifically examine differentially 

exposed first-born cousins. Restricting the analyses to only include first-born children 
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provides an estimate of the association with an early exposure that is independent of all 

influences associated with birth order.

Carryover Analyses

We also propose that researchers should specifically examine the role of carryover effects by 

analyzing sibling data using alternative analytic approaches. While we strongly encourage 

researchers to control for birth order in sibling comparisons studies and use the comparison 

of first-born cousins to examine associations with early-life exposures that are independent 

of birth order, neither of these approaches explicitly tests the influence of carryover effects. 

Yet, prominent developmental theories for several early risk factors, such as early teenage 

childbearing (e.g., Coley & Chase-Lansdale, 1998; C.A. Coyne & D’Onofrio, 2012), 

explicitly posit that the exposure of the first child has a causal influence on the outcomes 

(e.g., antisocial behavior) for all subsequent offspring (C. A. Coyne, Långström, Rickert, 

Lichtenstein, & D’Onofrio, 2013). Furthermore, reviewers have explicitly called for sibling-

comparison studies to study such “dynamic” family influences (Donovan & Susser, 2011).

With large enough samples researchers can test the assumption of no carryover effects by 

conducting bidirectional case-crossover studies, which explore differentially exposed 

siblings across birth order (Meyer, Williams, Hernandez-Diaz, & Cnattingius, 2004). The 

design separately conducts sibling-comparison analyses among two sub-groups of 

differentially exposed sibling pairs, (1) a subgroup where the first-born was exposed and (2) 

a subgroup where the second-born was exposed. If the two types of sibling-comparison 

analyses were to yield similar results, this would not be consistent with a carryover effect. 

For example, when separately comparing differentially exposed sibling pairs with either the 

first- or second-born child being born prematurely, associations with long-term 

consequences were comparable, suggesting no role of carryover effects (D’Onofrio et al., 

2013). In contrast, in the presence of a carryover effect we would expect the results of the 

sibling comparisons to differ according to which sibling (first or later-born) was exposed, 

assuming no effect modification by birth order.

Bidirectional case-crossover analyses are not possible when the early exposure is highly 

correlated with birth order, such as when exploring parental age at childbearing. Researchers 

have used regression models that explore the associations with both the proband’s and 

previous sibling’s exposure. We would like to stress that such an approach will not 

distinguish between carryover and confounding. For example, researchers have included first 

parental age at childbearing and the age at childbearing for the proband to examine possible 

carryover effects (e.g., Jaffee et al., 2001) or to account for familial confounding (e.g., 

Petersen, Mortensen, & Pedersen, 2011; Turley, 2003). Additional designs, therefore, are 

needed to better identify the processes through which the exposure of an earlier child would 

influence all subsequent children.

Sensitivity Analyses

Bias from Measurement Error—The selection of exposure-discordance implies 

selecting relatives who differ in non-shared causes of the exposure. Since random 

measurement error is not shared, the selection will favor relatives that differ in the direction 
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of such error (Frisell et al., 2012). The magnitude of the bias from measurement error 

depends on the intra-class correlation in exposure and the presence of unmeasured 

confounding. The impact that random misclassification of exposure may have on the 

interpretation of sibling comparisons has been reviewed in detail elsewhere (Frisell et al., 

2012; McGue et al., 2010). To examine the potential bias from measurement error 

researchers can apply empirical or hypothesized expectations of measurement reliability (or 

classification sensitivity/specificity) to the specific setting (prevalence of exposure and 

outcome, as well as intra-class correlation in exposure). Such analyses can estimate the 

expected attenuations of population estimates versus sibling-comparison estimates under 

different scenarios, such as the strength of the true causal effect and influence of unmeasured 

confounding. This would be particularly important for the interpretation of an observed 

attenuation in Aim 2; researchers can gauge how much attenuation could be attributed to the 

potential influence of measurement error.

Bias from unmeasured confounding (not shared)—Among the non-shared causes 

of exposure (that will be over-represented in exposure discordant relatives), there most likely 

will be some that also cause the outcome (i.e. common causes). Hence, while the 

comparison of exposure-discordant relatives achieves control for confounding from all 

factors they share, the comparison will be more imbalanced with respect to all other 

confounding influence; see Figure 3 (Frisell et al., 2012). This distinguishes these 

comparisons from ordinary matched designs in which the index person and reference are 

selected to be perfectly correlated on the matching variables, but not expected to be 

correlated in other causes of exposure or confounders. The impact of bias will depend on the 

relative correlations of exposure and confounding factors within families. Given appropriate 

control for all measured confounders, a proposed rule of thumb is that the within comparison 

may be used when (the whole set of) unmeasured confounding factors are more correlated 

than the exposure (and avoided in the opposite scenario). While the latter may be estimated, 

the former can only be hypothesized based on subject-matter knowledge. Discussion of what 

type, strength and direction, and how influenced by familial factors the confounding may be, 

should all be necessary components to guide the decision to apply these methods. In 

addition, to encourage such pre-evaluation, we also recommend careful considerations in 

both the design and analysis phase to help mitigate the influence of individual-level 

confounding. If concern still remains, it would also be possible to explore the influence of 

residual, unmeasured confounding using analytic results and/or data simulations (Frisell et 

al., 2012). By varying, for example, the hypothesized familial correlation in the total 

unmeasured confounding and its influence on exposure and outcome, while holding all other 

parameters constant (i.e. the correlation in exposure, the prevalence of exposure, 

confounding factors and outcome, and the true causal effect) researchers could try to assess 

under which conditions (if any) their results could be explained by unmeasured 

confounding.

Generalizability of Findings from Sibling and Cousin Comparisons—As 

previously mentioned, representativeness may generally be of less concern in cousins, 

because there is rarely grounds to suspect exposure-discordant cousins to be substantially 

different from the general population. For both sibling and cousin comparisons, potential 
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deviance could be due to (a) the restriction to related individuals (i.e., requiring mothers to 

have a sister or a mother to have at least two offspring, respectively) and/or (b) the additional 

requirement of exposure-discordance. The first selection can be explored by comparing 

estimates of association in the population to samples restricted to siblings or cousins 

respectively, and commensurate findings would provide some reassurance that the 

requirement of certain family ties does not influence representativeness. If the concern is, 

however, that exposure discordant individuals differ from the full sample (or the entire 

population) we suggest that researchers compare the distributions of measured covariates to 

identify and interpret potential differences.

Summary of Aim 2

The use of family-based designs, such as sibling- and cousin-comparisons, enables 

researchers to examine whether associations are independent of unmeasured genetic and 

environmental factors that make family members similar, which can provide a rigorous 

examination of competing hypotheses. It is important to stress that comparisons of related 

individuals make several assumptions, as described above. Fortunately, asking the same 

scientific question using different statistical approaches and genetically-informative designs 

(each with different assumptions and limitations) allows researchers to explore many of 

these assumptions, as well as examine alternative hypotheses about the processes 

responsible for associations between early exposures and adverse outcomes. Careful 

considerations in the design and analysis phase, use of multiple genetically-informative 

designs, and sensitivity analyses may allow for three potential outcomes (See Figure 1: 

results from the methods in Aim 2), which represent different processes that could explain 

why early risk factors are associated with later outcomes: (a) they cannot be explained by 

factors shared in families or the influence of measured covariates (i.e., the within-family 

associations remain robust); (b) the results are consistent with carryover effects; and (c) the 

results are consistent with role of familial confounding (i.e., there are no within-family 

associations). We certainly do not believe that these processes are mutually exclusive; rather, 

we expect that multiple processes will account for the associations with early exposures.

Aim 3. Examine Specific Mediators of the Exposure-Outcome Association 

Using Effect Decomposition and/or the Sources of Confounding Using 

Quantitative Genetic Modeling

None of the possible scenarios under Aim 2 will identify specific causal processes. However, 

additional epidemiologic methods can help (a) specify mediating factors, (b) examine 

carryover effects, and (c) identify the source (genetic and environmental factors) of the 

familial confounding. The objective of this aim is (for scenario a) to examine specific factors 

as mediators; (for scenario b) to rigorously test the exposure of the first-born child; and/or 

(for scenario c) to better understand the source of the confounding factors shared by siblings 

that account for the exposure-outcome association.

D’Onofrio et al. Page 10

Behav Genet. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Exploring Specific Mediators

If the findings from the genetically-informative (and sensitivity) analyses in Aim 2 suggest 

an independent association between an early-life exposure and later outcome (consistent 

with a causal effect), subsequent research should explore mediating mechanisms that are 

more proximal and/or ideally (for translational science) amenable to intervention. Having 

established associations in sibling-comparisons analyses also helps narrow the list of 

possible mediators, because, in addition to the standard criteria of being in the causal 

pathway (i.e. a cause of the outcome that is also an effect of the exposure), these are 

expected to vary within siblings (Lahey & D’Onofrio, 2010). In fact, researchers should, 

whenever possible, conduct genetically-informed studies (such as those described above) to 

explore plausible mediating factors to further justify their inclusion in subsequent analyses. 

Such analyses would enable researchers to help rule out measured (C2 and C3 in Figure 1) 

and some unmeasured confounding (U2 and U3 in Figure 1) related to the mediating factor.

The traditional practice of adjusting for a factor in the causal pathway in order to obtain the 

direct effect of an exposure is problematic if (a) the mediator acts as a modifier of the 

exposure effect on the outcome (Kaufman, Maclehose, & Kaufman, 2004) or if (b) the 

mediator is a collider (by sharing unmeasured common causes with the outcome) (Cole & 

Hernan, 2002). A structural approach can, however, help identify and avoid erroneous 

inferences in effect decomposition (VanderWeele, 2009, 2010; VanderWeele & Hernandez-

Diaz, 2011).

To help address some of the problems with traditional mediation analyses (Cole & Hernan, 

2002; Kaufman et al., 2004), researchers can implement a causal structural approach for 

counterfactual-based effect decomposition. First, illustration of the hypothesized structural 

relationship between exposure – mediator – and outcome (using, for example, a DAG) is 

instrumental to evaluate necessary assumptions of no unmeasured confounding (of exposure 

and outcome, mediator and exposure, and mediator and outcome). Second, under 

assumptions identified in the first step, the total effect can be decomposed into direct and 

indirect effects, (Pearl, 2001; Robins & Greenland, 1992). Controlled direct effects may be 

used to establish if there are pathways between the exposure and the outcome independent of 

the mediator and, with the special condition of no interaction between the effects of the 

exposure and the mediator on the outcome, they can also be used for effect decomposition. 

In the case of interactions, natural direct and indirect effects are more useful for effect 

decomposition (VanderWeele, 2009). Third, researchers should conduct sensitivity analysis 

to evaluate the robustness of underlying assumptions (VanderWeele, 2010). Exploring the 

influence of effect modification or unmeasured confounding helps identify conditions under 

which we would observe different scenarios.

Exploring Possible Carryover Effects

If the alternative exploration of exposures highly correlated with birth order under Aim 2 

suggests the possibility that carryover effects may be present, then additional designs and 

approaches are needed to better understand the processes through which the exposure of one 

child affects later born children in the family. It is important to note that such associations 

could due to causal processes (i.e., biological and social effects from the previous exposures 
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influence all subsequent siblings, a so-called “carryover effect”). However, the association 

could also be due to environmental and/or genetic confounding. To better distinguish among 

these possibilities researchers can conduct analyses using the “children of full-/half-siblings” 

design in quantitative genetic modeling. This approach compares cousins (the offspring of 

siblings) who vary in their exposure to the risk factor and their genetic risk, as offspring of 

full-siblings share 12.5% of their genetic makeup (on average), whereas offspring of half-

siblings share 6.25% (on average). Established multivariate quantitative genetic models 

(D’Onofrio et al., 2003; Heath, Kendler, Eaves, & Markell, 1985; McAdams et al., 2014; 

Silberg & Eaves, 2004) with these designs can help estimate the degree to which the 

observed association is due to environmental processes correlated with the exposure of the 

first-child, which is consistent with a causal influence; environmental factors that make all 

cousins in an extended family similar, providing support for the role of environmental 

confounding; and/or genetic factors shared by cousins, suggesting the importance of genetic 

confounding.

The design and analyses include several assumptions, which have been articulated elsewhere 

(D’Onofrio et al., 2013; D’Onofrio et al., 2003; Heath et al., 1985; McAdams et al., 2014; 

Silberg & Eaves, 2004). We want to highlight two that are particularly relevant, though. 

First, researchers need quite large datasets to precisely estimate the parameters of the models 

because the difference in genetic relatedness between the offspring of full- and half-siblings 

is relatively small (D’Onofrio et al., 2013). Second, the offspring of siblings designs do not 

account for factors that make cousins different, including the genetic and environmental 

factors associated with the spouses of the adult siblings (Eaves et al., 2005). As such, 

combining the quantitative genetic modeling with measured covariates will help researchers 

make more valid inferences about the carryover “effects.” For example, our studies on 

teenage childbearing using children of siblings designs and quantitative modeling strongly 

support the importance of studying the influence of age at first childbearing on all siblings 

when studying outcomes, such as ADHD and criminality (Chang et al., 2014; C. A. Coyne 

et al., 2013). In sum, the major advantage of using the offspring of full-/half-siblings is that 

the approach can help further distinguish among the causal and confounding hypotheses 

regarding how the exposure of the first child is associated with outcomes in all of his/her 

siblings.

Exploring Sources of Familial Confounding

If the designs and approaches in Aim 2 suggest that familial factors (shared genetic and 

environmental factors) account for the association between an early-life exposure and later 

outcome, additional designs are needed because the comparisons of siblings (or cousins) 

alone cannot explore the source of such familial confounding (Donovan & Susser, 2011; 

Lahey & D’Onofrio, 2010). Stated differently, the use of sibling and cousin comparisons can 

highlight the importance of Ui in Figure 3, but the designs cannot determine to what extent 

Ui is genetic and/or environmental. Furthermore, the conclusions researchers can draw from 

the multiple designs used in Aim 2 are based solely on interpreting the pattern of the results 

across the designs. To quantify the role of different processes, other designs and analytical 

strategies are needed.
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In particular, researchers can take advantage of analytical models that combine sibling 

comparisons (with their ability to study exposures that are not shared by siblings) with the 

“children of full/half-siblings” design (with the ability to study factors that are shared by 

siblings). Sibling-comparison analyses may indicate that factors (either genetic and/or 

environmental) that make siblings similar account for the observed associations with the 

early exposure. The “children of half/full siblings design” (described above) can help 

researchers explore the extent to which the confounding is due to genetic or environmental 

factors. In particular, quantitative genetic analyses of the design can help distinguish 

between environmental (confounding) processes that are specific to nuclear families (i.e., the 

factors do not make cousins similar); environmental (confounding) processes that make 

cousins within an extended family similar; and (confounding) genetic factors. Combining 

the different approaches in the same model enables researchers to simultaneously estimate 

the magnitude of these confounding processes and the magnitude of the sibling-comparison 

estimates (which, under certain assumptions, is consistent with a causal influence). 

Combining the different designs, therefore, enables researchers to estimate several processes 

that may account for the observed association between an early exposure and an outcome.

Several articles discuss the combined designs, the statistical models, and their application to 

early exposures (D’Onofrio et al., 2008; Harden et al., 2007; Kuja-Halkola, D’Onofrio, 

Larsson, & Lichtenstein, 2014; Kuja-Halkola et al., 2010). In particular, we recently 

combined these different genetically-informed designs to study the processes that account 

for associations between maternal smoking during pregnancy and numerous offspring 

outcomes, including pregnancy outcomes, intellectual abilities, and externalizing problems 

(Kuja-Halkola et al., 2014). Notably, the model results indicated that maternal smoking 

during pregnancy was associated with pregnancy outcomes (e.g., low birth weight and 

preterm birth) when comparing differentially exposed siblings, consistent with a causal 

influence. In contrast, the sibling-comparison estimates found no within-family associations 

with later intellectual abilities or externalizing—siblings had the same frequency/rates of 

these problems, regardless of their exposure to maternal smoking during pregnancy. 

Moreover, the quantitative genetic analyses indicated that genetic factors were largely 

responsible for this confounding, suggesting that genetic factors that influenced maternal 

smoking during pregnancy also influenced offspring cognitive and behavioral problems. The 

results highlight how advanced quantitative genetic modeling that combines several 

genetically-informed designs can help elucidate and distinguish between very different 

processes.

Summary of Aim 3

With Aim 3 we hope researchers will use more detailed measurement and advanced designs/

analyses to better understand the processes behind observed associations between early-life 

exposures and later outcomes. We described three possible scenarios. First, using effect 

decomposition would provide insight into theoretically and empirically-supported plausible 

mediators of early-life exposures. Second, exploring carryover effects would enable 

researchers to explore social and biological factors related to the exposure of the first-born 

offspring on all subsequent offspring in a family. Third, quantitative behavior genetic 
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modeling considering family relationships in multiple generations would help elucidate the 

sources (i.e., genetic and/or environmental) of the familial confounding.

Future Directions

In the current manuscript we provide an overview of how several genetically-informed 

designs can be used to conduct translational epidemiologic studies of early-life exposures 

using a systematic framework. We believe that studies using this framework can provide key 

insights into the consequences of early-life exposures.

We also see several other steps forward. First, to further strengthen the inference from these 

methods we believe that researchers should also use other family-based, genetically-

informative designs, such as the co-twin design (McGue et al., 2010), quantitative genetic 

modeling of identical and fraternal twins (Turkheimer & Harden, submitted), adoption 

studies (Leve, Neiderhiser, Scaramella, & Reiss, 2010), and in vitro fertilization approaches 

(Thapar et al., 2007) when appropriate. For instance, causal inference regarding the 

importance of fetal growth for psychosocial outcomes have been greatly strengthened by the 

use of several genetically-informed designs (review in Donofrio et al., 2014). Researchers 

also can use genetically-informed approaches that rely on molecular genetic data, such as 

Mendelian Randomization (Smith & Ebrahim, 2005), to examine early-life exposures.

Second, researchers will need to collaborate to include more detailed measures of early-life 

exposures and plausible mediating mechanisms, including biomarkers, in genetically-

informative studies (Donofrio et al., 2014). This will be particularly important because most 

of the studies using the designs we describe in the current review have relied on register-

based assessments of global risks (e.g., birth weight for gestational age as a proxy for fetal 

growth) or maternal self-report of health behaviors (e.g., smoking during pregnancy). More 

detailed measurement will also enable researchers to better understand the origins of within-

family differences in the exposures (e.g., why was one sibling exposed but not another?), 

which is important for understanding the consequences of the exposures (e.g., Caspi et al., 

2004). Thus, the degree to which genetically-informed studies can specify more precise 

processes relies on rigorous assessments of risk factors at multiple levels of analysis.

Third, future studies of early risks that do not use genetically-informed designs should be 

informed by explicit consideration of unmeasured genetic and environmental confounding 

and the plausible role of carryover effects (i.e., the research is guided by explicit causal 

diagrams). We certainly understand that it will not be possible to conduct genetically-

informative studies of every salient early-life exposure. For example, it is currently not 

feasible to conduct large-scale studies of fetal brain development based on prenatal fMRI 

assessments. Researchers conducting analyses of early-life risks (and those designing new 

studies) will need to use rigorous methods to identify and measure possible confounders and 

carefully consider the role of unmeasured confounding when interpreting results.

Finally, with the growing availability of GWAS data, including in large epidemiologic 

studies, the field will need to further explore how SNP-based information can be leveraged 

to further examine and clarify the processes related to parent-child associations (e.g., Eaves, 
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Pourcain, Smith, York, & Evans, 2014) and early exposures. While the use of GWAS data 

may enable us to better understand early-life exposures, we believe that considerable 

methodological work is needed to better appreciate the advantages, limitations, and 

assumptions of using different methodological approaches with GWAS data (including from 

studies that have genotyped both the parents and offspring) when studying such exposures.

Conclusion

Leading researchers in numerous fields (review in D’Onofrio et al., 2013) have all stressed 

the critical need for researchers to use design features, including those in genetically-

informative approaches, instead of solely relying on measured covariates to test competing 

hypotheses. For example, using measured covariates to account for confounding factors and 

exploring mediating variables to explain an association with an early-life exposure will often 

produce biased estimates because of unmeasured confounding. The overall significance of 

the proposed framework is that the results of studies using these approaches will help 

specify the processes responsible for public health problems associated with early-life 

exposures, regardless of whether the associations are due to causal processes or 

confounding. These efforts could influence policy and medical decision-making by 

providing public health officials, physicians, clinicians, and the public with important 

information about the consequences of early-life exposures. To provide just one example, 

using these designs to explore outcomes associated with maternal prescription medication 

use during pregnancy could help answer important public health questions (e.g., Parisi, 

Spong, Zajicek, & Guttmacher, 2011).

In addition to the implications for policy, medical, and personal decision-making, the 

outcomes of such research could also have important positive impact on subsequent 

translational research. First, using these designs would help prevention science better 

identify (a) modifiable targets for intervention/prevention efforts that are consistent with 

causal risks factors, and (b) putative risk factors that are markers/predictors, but not causally 

related to the outcomes (Cicchetti, 1993; J.D. Coie, Miller-Jackson, & Bagwell, 2000; J.D 

Coie et al., 1993). Second, the findings could help identify which biological mechanisms 

should be explored by basic research (D’Onofrio et al., 2013; Fernando & Robbins, 2011; 

Nestler & Hyman, 2010), emphasizing a key benefit of translational epidemiology (e.g., 

Weissman et al., 2011). Third, the proposed research would provide a critical foundation for 

empirically supported studies of effect moderating biological factors (e.g., gene-by-

environment interactions) because identification of true environmental influences is required 

for such endeavors (e.g., Dick, 2011; Moffitt, Caspi, & Rutter, 2005; Vrieze, Iacono, & 

McGue, 2012).
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Figure 1. 
Schematic Example of a Causal Diagram for the Structural Relationship between an Early-

life Exposure and Later Outcome

Note. In the diagram both measured (C1) and unmeasured (U1) common causes create back-

door paths between the exposure and outcome. A known mediating factor in the causal 

pathway from exposure to outcome also shares common causes with the exposure (U2) and 

the outcome (U3) respectively. The exposure-mediator association is used to illustrate how 

the act of conditioning (marked by a box) on a measured covariate (C2) can block the back 

door path from unmeasured common causes (U2), so that C2 is a confounder of the 

exposure-mediator association, although the variable itself is not a common cause. Lastly the 

diagram also serves to illustrate how the presence of common causes of the mediator and 

outcome (U3) make the mediator a collider (an effect of both exposure and of U3). 

Conditioning on the mediator would, therefore, introduce a spurious association between 

exposure and outcome through the common causes (U3).
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Figure 2. 
Framework for Guiding Analyses of Associations with Early Life Exposures

Note. Black (thick) boxes represent methods. Blue (thin) boxes represent inferences. Solid 

black arrows represent results. Shaded gray arrow indicates further steps.

D’Onofrio et al. Page 21

Behav Genet. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Example of a Causal Diagram for the Relationship between an Early-life Exposure and Later 

Outcome in a Pair of Siblings

Note. For simplicity of illustration, we assume that all measured confounders of exposure 

(X) and outcome (Y) for sibling pair (i) have been properly controlled for (Aim 1), so that 

all common causes in this diagram are unmeasured. In addition to sharing some common 

causes of exposure and outcome (Ui), siblings may also share causes of exposure (UXi) and 

outcome (UYi) respectively. All common causes of exposure and outcome that can vary in 

siblings (non-shared) are captured in Ui1 and Ui2 respectively. The diagram assumes no 

contagion from the first sibling’s status to the next (i.e. no arrow from Xi1 to Xi2, or from 

Yi1 to Yi2), and no carryover effect from the first siblings’ exposure to subsequent sibling’s 

outcome (Xi1 → Yi2). When a comparison is made “within” (or conditional on) siblings, all 

pathways through shared factors (Ui, UXi and UYi) will be blocked. However, restriction to 

differentially exposed siblings (which corresponds to conditioning on one of the siblings’ 

exposure) will create a spurious association between one sibling’s exposure and the other 

sibling’s non-shared common causes (Ui1 → Xi1 ← UXi → Xi2; where Xi1 is a collider).
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