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Abstract

Despite advances in experimental and theoretical neuroscience, we are still trying to identify key 

biophysical details that are important for characterizing the operation of brain circuits. Biological 

mechanisms at the level of single neurons and synapses can be combined as ‘building blocks’ to 

generate circuit function. We focus on the importance of capturing multiple timescales when 

describing these intrinsic and synaptic components. Whether inherent in the ionic currents, the 

neuron’s complex morphology, or the neurotransmitter composition of synapses, these multiple 

timescales prove crucial for capturing the variability and richness of circuit output and enhancing 

the information-carrying capacity observed across nervous systems.

Introduction

To what extent can we understand the dynamics of large circuits using biophysical 

descriptions of single neurons and small subcircuits? In 1989 Getting suggested that the 

biophysical properties of individual neurons and small circuits could serve as ‘building 

blocks’ for a library of biological mechanisms that would aid in understanding all circuits 

[1]. Getting compiled a partial list of cellular, synaptic and network properties important for 

neural network operation (Table 1). Many of the features on this list, including intrinsic 

properties like spike frequency adaptation, post-burst hyperpolarization, and delayed 

excitation, refer to changes in temporal firing patterns that can last from milliseconds to 

seconds. Getting also underscored the dramatically different time courses of individual 

synaptic potentials, such as in the network of interneurons that generate the escape 

swimming motor program of Tritonia, as well as the ability of a single synaptic connection 

to mediate several actions with different timescales as seen in multicomponent synapses.

More than 25 years later, we are still struggling to understand which of the myriad of 

biophysical properties, such as those of Getting’s building blocks (Table 1), are crucial to 
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include in models of brain circuits. Ideally, we should be able to identify a broad array of 

reusable computational mechanisms that can be combined to generate function and describe 

circuit dynamics. We suggest that models should capture the relevant timescales of each of 

the circuit components. These building blocks are often nonlinear; thus, circuit dynamics are 

the product of a complex spatial and temporal interaction of multiple, nonlinear processes at 

the cellular and synaptic levels. Therefore, multiple networks that have distinct functions can 

be realized by using the same constituent building blocks combined in different ways. In this 

review we highlight recent work that discusses the relevance of biophysical building blocks 

for circuit dynamics focusing on the role of multiple timescales in the intrinsic and synaptic 

components of neurons and circuits.

Neuronal intrinsic excitability occurs at multiple timescales

Elaborate morphologies and diverse ion channels determine the intrinsic excitability of all 

neurons. To reduce the potential complexity of this high-dimensional space, for many years 

neuroscientists have been developing strategies to extract the core features of intrinsic 

neuronal excitability [2•].

Many studies employ single-compartment models that simplify the neuron’s morphology but 

incorporate specific details of membrane conductances (Figure 1). Choosing the appropriate 

set of intrinsic conductances depends on the features that the model is aimed at explaining. 

Some models are constructed by modeling measurements from voltage clamp experiments 

of all known membrane currents [3, 4]. Others are more minimalist. For instance, integrate-

and-fire or threshold model neurons can be successful in capturing spike initiation dynamics 

[5•, 6]. But adaptation and history-dependence require additional intrinsic currents [7]. To 

infer parameter values for these currents from observed membrane potential traces, 

probabilistic frameworks based on statistical inference [8, 9] and optimization techniques 

aimed at minimizing different objective functions have been developed [10•]. A recent study 

has implemented a control theoretic approach to promote alignment between the recorded 

and model trajectory during the fitting procedure; in addition to fitting synthetically 

generated data, the procedure also successfully fitted experimental traces [11•].

Approaches for determining appropriate model parameters must overcome the following two 

challenges: (1) Capture the substantial variability observed in experimental measurements of 

voltage-dependent current densities, ion channel mRNA levels and synaptic connections, 

suggesting that the space of solutions is highly degenerate and multiple solutions exist for 

the same output [12–16, 17•]; (2) Achieve robust modulation in spite of variability and 

degeneracy [18•, 19, 20]. Recent studies highlight the importance of building populations of 

models that capture the variability of parameters seen in experimental measurements [21, 

22]. Computational database approaches based on parameter exploration of experimentally 

identified conductances have successfully uncovered multiple and degenerate solutions [23–

25, 26•]. Interesting correlations among intrinsic conductances and neuronal output have 

been found experimentally at the single neuron level [27], and in computational studies at 

the circuit level using reduction approaches like principal component analysis to find the 

interaction of multiple parameters [28•] or simple homeostatic rules operating at the level of 

the constituent neurons [29•].
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Database and model reconstruction approaches have been used to fit ion channel 

distributions on anatomical reconstructions of known neurons [30–32, 33•]. A recent study 

showed that, to maintain functional properties along the dendritic tree of a neuron, 

mechanisms that tune the number of all ion channels collectively are more likely than those 

that tune the number of individual ion channels – this would not have been seen in single-

compartment models [34•]. In some instances, such as the implementation of direction 

selectivity in the mammalian retina, the entire computation relies primarily on the spatial 

structure of dendrites [35••].

Methods have been developed to assess quantitatively the role of biophysical parameter 

variations in neuronal activity, independent of the neuron model and the set of intrinsic 

conductances [36••]. Dynamic input conductances (DICs) are voltage-dependent 

conductance curves that evolve over time, aggregating the activity of all ion channels in the 

generation of neuronal activity, and are a useful technique to study how diverse ion channels 

contribute to modulation, robustness and homeostasis in neuronal signaling in different 

biological systems [36••, 37•]. Although currently only applicable to single neurons, this 

method can also include the contribution of synaptic conductances. This should allow the 

characterization of network dynamics from the analysis of smaller building blocks in more 

principled ways than large-scale simulations.

Modeling the complexity of biological synapses

Most models of neuronal networks use simple synapse models that do not capture the full 

richness of use-dependent synaptic dynamics, even when they attempt to represent synaptic 

learning rules [38–40]. It has been long known that many different neurotransmitters are 

used in nervous systems, and that the same neurotransmitter can elicit a variety of 

postsynaptic actions, depending on the properties of the receptors on the postsynaptic 

membrane (Figure 2A) [41]. Moreover, many neurons contain and release cotransmitters 

that can act on multiple timescales [42].

In the last several years, a variety of exciting studies of cotransmission in the vertebrate 

brain are revealing additional features of synapses long-thought simpler than they really are 

[43–46, 47••, 48•, 49•, 50••, 51••]. Midbrain dopaminergic neurons can corelease glutamate 

and GABA [46, 47••, 52], which have been shown to be regionally heterogeneous [53••] and 

differentially affected by external perturbations such as cocaine consumption [54••]. 

Neurons can switch their transmitter composition over time, both during development and 

under different physiological conditions in the mature brain leading to changes in behavior 

[55, 56•, 57•].

Wieland and colleagues [58••] show that the corelease of glutamate and dopamine from 

midbrain dopamine neurons onto olfactory tubercle cholinergic interneurons induces a 

triphasic postsynaptic event composed of an early excitation due to glutamate (NMDA) 

receptor activation, an intermediate inhibition due to dopamine D2 receptor activation, and a 

late excitation due to dopamine D1 receptor activation (Figure 2B). Such multicomponent 

drive underlies the typical response of striatal cholinergic interneurons to relevant sensory 
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stimuli, which can be an initial burst, a firing pause, a late burst, or a combination of the 

three.

Khalilov and colleagues have recently demonstrated that GABA actions in the immature 

hippocampal network critically depend on network state [59••]. Due to transient changes in 

the postsynaptic chloride driving force, GABA currents transiently switch from depolarizing 

to hyperpolarizing to depolarizing during giant depolarizing potentials, exerting both 

excitatory and inhibitory roles. This might explain the otherwise contradictory epileptogenic 

effect of GABAA antagonists observed in this network.

Taken together, these recent observations suggest that the multicomponent nature of synaptic 

potentials is a critical property that strongly shapes neuronal activity at the network level. 

Due to the richness of cotransmitters and postsynaptic receptors, transient synaptic release 

can exert both transient and long-lasting effects on postsynaptic neuron excitability. This 

argues that network models that treat all synapses with a single timescale are likely to be 

missing important principles of how brain circuits compute.

From single neuron dynamics to circuit function

Understanding how single neuron and single synapse dynamics alter circuit behavior has 

classically been studied in both small and large circuits. In the former, it is possible to see 

directly how one or more biophysical details influence circuit function. In the latter case, it 

is common to ask how changes in the properties of a population influence circuit function. In 

both cases, the challenge is to understand the extent to which the circuit’s output is 

influenced either by its architecture or by the properties of its component elements.

Reciprocal inhibition in half-center oscillators has been studied for 100 years [60–63]. In 

modeling studies, the two constituent neurons and their synapses are usually identical. 

Experimental studies, however, have incorporated some variable properties of the intrinsic 

and synaptic components [63, 64]. In a recent modeling study, Dethier and colleagues 

examine the robustness of half-center oscillations made from neurons with different subsets 

of conductances [65••]. They find that a network with low-threshold T-type calcium current 

has a slow positive feedback at a timescale that endows the network with increased 

robustness to intrinsic and external perturbations, relative to a network with an H-

conductance. This offers opportunities for reliable modulation [65••].

Information and correlation transfer also depend on the constituent neurons’ biophysical 

properties. Small two-neuron populations allow this feature to be studied analytically. For 

instance, type I neurons (with more A current) transfer correlations over longer timescales 

(100 ms), while type II neurons (with less A current) transfer correlations over shorter 

timescales (5 ms) (Figure 1) [66, 67]. The next challenge would be to take these small circuit 

motifs and translate them to describing the dynamics of larger networks [68••].

How biophysical properties of single neurons impact network function and coding has been 

addressed in the context of signal propagation through feedforward networks [69••]. Mease 

and colleagues have recently identified a change in the ratio of INa and IK in developing 

mouse cortical neurons that enables these neurons to adaptively scale the gain of their 

Gjorgjieva et al. Page 4

Curr Opin Neurobiol. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



response to the amplitude of the fluctuations they encounter [70•]. In a follow-up study, 

Gjorgjieva and colleagues examined information transmission at different timescales in 

networks equipped with neurons with different conductance ratios [69••]. Independent of the 

absolute values of the conductances, the networks either became efficient encoders of fast 

input fluctuations, or gained the ability to transmit slower, population-wide input variations 

in the network [69••]. This work underscores the significance of simple changes in 

conductance parameters in governing how neurons represent and propagate information 

across multiple timescales in networks.

Several experimental and computational studies address the role of diversity in intrinsic 

properties for how neuronal populations process stimuli and produce robust output. Some 

recent work examines the possibility that intrinsic properties are tuned to maximize the 

information of the neurons’ response about the stimuli they encode [71, 72•, 73••, 74•, 75]. 

Such theories of efficient coding, however, thus far apply most directly to sensory 

populations where there is a clear definition of the stimuli that the neurons represent. A 

future challenge will be to interpret them in the context of larger circuits where information 

is integrated from different brain regions and sensory modalities.

How do we know what biophysical details matter for circuit performance?

We are starting to see increasing attempts to build very large networks of neurons with 

biophysically “realistic” sets of conductances [76–78]. While aiming for increased 

biological verisimilitude, such models, even when carefully constructed and supposedly 

validated, can be as difficult to understand as the biological systems they are meant to 

represent. What is worse, these models, no matter how carefully constructed, are always 

“wrong,” as they fail to contain all the biological machinery that is either unknown or 

viewed as less fundamental by the investigator. Paradoxically, up to a point, increasing 

biological realism in large-scale networks probably aids understanding, while past some 

point, increasing biological realism impedes understanding. At present, it is unclear where 

the inflection point describing model complexity and increased understanding lies. Used 

well, with specific questions in mind, large-scale biophysically-realistic models can drive 

intuition [77, 78]. Otherwise, they risk adding mystery and confusion.

To understand circuit dynamics as a function of their intrinsic and synaptic properties, it is 

necessary to have a reliable measure of circuit output. In some cases, circuit behavior is 

clear. Primary sensory circuits like the retina in the visual system and the olfactory bulb in 

the olfactory system can be described by well-defined input-output relations. For motor 

circuits, it is relatively easy to quantify circuit performance.

Quantifying circuit dynamics becomes a difficult problem if circuits are degenerate so that 

understanding the role of any one attribute to circuit function is nontrivial because a 

manipulation of a single component can have different effects depending on the particular 

ways that circuit components are combined. Older studies on the Aplysia gill withdrawal 

reflex showed that variable sets of neurons can participate in the production of a given 

behavior and that no two trials produce the same pattern [79–81]. Sensory neurons in C. 
elegans exhibit stochastic responses to the repeated presentation of the same sensory 
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stimulus [82]. This variability is present at the level of behavior as well: behavioral 

variability persists even when responses of sensory neurons are reproducible [83••]. 

Moreover, the sensitivity to specific odors shows increased variability across individual 

animals relative to repeated stimulation in one animal, and adaptation of response variability 

can be observed in multiple trials [83••].

The analysis of small rhythmic circuits can help discover principles in larger circuits. For 

instance, neurons can switch in and out of different oscillatory subnetworks, or participate in 

two rhythms at the same time [84•]. Computational and experimental studies can help us 

uncover degenerate mechanisms by which such switching occurs [18•, 84•, 85]. But the 

main challenge remains: if different neurons are active in multiple trials to repeated 

presentation of the same stimulus, how do we determine the role of individual biophysical 

properties in different states of neuronal activity?

In higher brain areas, it can be less than obvious what computations the circuits perform. 

Parallel results of variable output have been found in recordings of larger networks, such as 

the place cells in the rodent hippocampus during a virtual navigation task. The place cells 

exhibit location-specific firing so that their activity is confined with remarkable precision to 

a cell-specific part of the environment. Despite this spatial precision, the temporal firing 

pattern is not nearly as reliable [86, 87]. Variability across individuals is also prevalent in 

studies of the human cortex, as shown by functional magnetic resonance imaging [88, 89•].

Conclusions

Models of the future will need to capture more explicitly the multiple timescales shaping 

intrinsic and synaptic excitability. Although we can learn much from small circuits that 

produce well-defined outputs, the challenge will be to transfer that knowledge to understand 

the operation of larger brain circuits that integrate information from different sensory 

modalities and internal states as in the case of behaving animals. Recent studies have 

underscored the widely variable internal dynamics and responsiveness to external stimuli 

across different behavioral contexts and brain states [90]. Neuromodulators modulate 

intrinsic currents and thus control the excitability of cortical neurons as well as the 

generation of slow oscillations. These modulations occur on fast timescales that cannot be 

explained with processes like long-term potentiation and depression that change the strength 

of synaptic connections over many minutes or hours. Thus, to account for neuromodulation 

and homeostasis on one hand [29•, 91, 92•], and long-term synaptic plasticity on another 

[93, 94•] it will be necessary to build models of timescales that can account for the activity 

ranging from milliseconds to hours and days. Biological systems have managed to find 

mechanisms that allow them to function on many timescales seamlessly, but we are far from 

understanding the computational principles that allow this to occur.
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Highlights

• Biological neurons and synapses operate with many timescales.

• Many computational models of networks are timescale impoverished.

• Circuit operation can be understood from interacting nonlinear building blocks.
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Figure 1. Single neuron biophysics impacts intrinsic properties and correlated-based population 
coding
A. Firing rate vs. injected current (f-I) curves, for the Connor- Stevens model [95]. We show 

f-I curves for a range of gA values yielding a range from type II to type I excitability and 

then to type II* excitability [37]. B. Top: A microcircuit in which two neurons receive input 

currents with a common component that represents correlated activity or shared afferents 

upstream. The mean of the input currents is μ and each fluctuates with standard deviation σ. 

By varying the fraction of the common component (black trace in A), relative to the 
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independent components (red and blue traces in A), we can control the strength of the input 

correlation driving the microcircuit. Shared input currents lead to correlated spikes, which 

are quantified using the correlation coefficient of the two neurons’ spike counts counted in 

time windows of length T. Type II neurons with low gA transfer more correlations at small 

T, while for high T the trend switches (dashed line) with type I neurons with high gA being 

able to transfer more correlations [66].

Gjorgjieva et al. Page 19

Curr Opin Neurobiol. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Synaptic transmission occurs at multiple timescales
A. Left: A two-component inhibitory response of medial pleural neuron (in Aplysia) at 

resting level (Post) to a single presynaptic spike (Pre). Right: Typical response of a medial 

pleural neuron to repeated firing of the presynaptic neuron. A rapid IPSP is associated with 

each presynaptic spike, whereas the slow IPSP is only evident with repeated firing and is 

seen as a summated slow wave [41]. B. Phasic activation of DA controls the three different 

components of firing in striatal interneurons by coordinated action of glutamate and DA 

release: glutamate (NMDA) receptor activation evokes an initial burst followed by an 
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afterhyperpolarlization with a firing pause, while DA elicits both a D2-type DAR-dependent 

firing pause and a late D1-type DAR-dependent burst. DA – dopamine, Ach – 

Acetylcholine, CIN – cholinergic interneuron [58].
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Table 1

Building blocks for circuit dynamics by Peter Getting [1].

Cellular synaptic Connectivity

Threshold Sign Mutual or recurrent inhibition

F-I relationship Strength

Spike frequency adapt. Time course Reciprocal or lateral inhibition

Post-burst hyperpol. Transmission

Delayed excitation   Electrical Recurrent inhibition

Post-inhibitory rebound   Chemical Recurrent cyclic inhibition

Plateau potentials Release mechanism Parallel excit./inhib.

Bursting   Graded

  Endogenous   Spike

  Conditional Multicomponent PSP

Curr Opin Neurobiol. Author manuscript; available in PMC 2017 April 01.


	Abstract
	Introduction
	Neuronal intrinsic excitability occurs at multiple timescales
	Modeling the complexity of biological synapses
	From single neuron dynamics to circuit function
	How do we know what biophysical details matter for circuit performance?
	Conclusions
	References
	Figure 1
	Figure 2
	Table 1

