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Abstract

Purpose—A highly accurate, automated algorithm would facilitate cost-effective screening for 

asymptomatic atrial fibrillation. This study analyzed a new algorithm and compared to existing 

techniques.

Methods—The incremental benefit of each step in refinement of the algorithm was measured, 

and the algorithm was compared to other methods using the Physionet atrial fibrillation and 

normal sinus rhythm databases.

Results—When analyzing segments of 21 RR intervals or less, the algorithm had a significantly 

higher area under the receiver operating characteristic curve (AUC) than the other algorithms 

tested. At analysis segment sizes of up to 101 RR intervals, the algorithm continued to have a 

higher AUC than any of the other methods tested, although the difference from the second best 

other algorithm was no longer significant, with an AUC of 0.9992 with a 95% confidence interval 

(CI) of 0.9986–0.9998, versus 0.9986 (CI 0.9978–0.9994). With identical per-subject sensitivity, 

per-subject specificity of the current algorithm was superior to the other tested algorithms even at 

101 RR intervals, with no false positives (CI 0.0%–0.8%) versus 5.3% false positives for the 

second best algorithm (CI 3.4–7.9%).

Conclusions—The described algorithm shows great promise for automated screening for atrial 

fibrillation by reducing false positives requiring manual review, while maintaining high sensitivity.
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Introduction

Atrial fibrillation is a very common rhythm disturbance which is estimated to have affected 

over 5 million people in the US in 2010, and is projected to affect over 12 million by 

2030[1]. It can be paroxysmal and asymptomatic[2], and if untreated, may increase the risk 

of stroke from 2 to 10%[3]. Screening for asymptomatic, paroxysmal atrial fibrillation 

requires prolonged monitoring and technician review of the recordings for presence of atrial 

fibrillation. High-accuracy automated algorithms for detection of atrial fibrillation would 

reduce the need for tedious and expensive manual review.

This article measures the incremental benefit of each step of a new method for highly-

accurate automated detection of atrial fibrillation[4,5], and compares the results of the 

complete algorithm to several other published algorithms.

Materials and Methods

Source data

For training and testing of the algorithms, the annotated records from Physionet were 

used[6] (www.physionet.org). The atrial fibrillation database (www.physionet.org/

physiobank/database/afdb/) was used for records of atrial fibrillation, and the normal sinus 

rhythm database (www.physionet.org/physiobank/database/nsrdb/) was used for normal 

sinus rhythm. Each database has annotations indicating regions containing the respective 

rhythms. Only regions that had been annotated as having the identified rhythm were used for 

analysis, that is, only regions identified as atrial fibrillation or normal sinus rhythm 

respectively. There are 25 records in the atrial fibrillation database, and 18 in the normal 

sinus rhythm database.

Programming

All programs, testing and graphs were created in Matlab (R2009a version 7.8.0.347, 

Mathworks, Inc., Natlick, Massachusetts, USA). All variations of the current algorithm were 

written in ANSII C and compiled as external functions for use in Matlab. All of the other 

algorithms were written in the Matlab programming language. The WFDB tools interface 

library, available from Physionet, was used to access the Physionet data from Matlab.

Description of the algorithm

Algorithms for the detection of atrial fibrillation generally fall into two categories: Those 

that are based on variability of the interval between QRS complexes (RR interval) and those 

that attempt to directly detect atrial activity. The algorithm described here falls in the former 

category, as it exclusively is based on the timing of the RR intervals. Additionally, methods 

for detection must use a group of beats or segment rather than a single beat for the analysis, 

and the accuracy of any technique is dependent on the size of this segment, increasing with 

larger sizes.

The current algorithm, called AFD for Atrial Fibrillation Detection, calculates a measure of 

local variability in the RR intervals within an analysis segment, and therefore the likelihood 

of atrial fibrillation, as illustrated in Figure 1. After a QRS complex is detected, the RR 
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interval is computed. The RR interval is then converted to an equivalent heart rate by 

dividing it into 60 (Step A on Figure 1). The values are stored in a buffer until the desired 

number of RR intervals have been collected, called the segment width. The mean value and 

linear trend the values within the segment are calculated, and subtracted from each of the 

values (Step B). The median of the absolute value of the previous step is reported as the 

measure of variability for that segment (Step C). The calculated measures of variability of 

the preceding, current and following segment are compared, and the median value returned 

as the reported value for the current segment, shown in step E[4].

The final version of the AFD algorithm has one additional feature. Examining the output of 

the baseline algorithm when compared to the mean heart rate, it is apparent that there is a 

negative linear relationship between the calculated value and heart rate for normal sinus 

rhythm (Figure 2a). This means that a simple threshold will tend to have false positives at 

low heart rates, and false negatives at high heart rates. A linear adjustment for mean heart 

rate (Step D) can allow better discrimination between the two groups, when inserted before 

the last decision step (Figure 2b)[5].

Several of these steps distinguish AFD from other algorithms used to detect atrial fibrillation 

based on RR intervals. Each of these has been labeled with a letter in Figure 1. To test the 

effect of each of these distinguishing steps on the improvement in accuracy, several different 

versions of the algorithm lacking some of these features were used.

Statistics

The primary method for comparison of the accuracy of algorithms was the area under the 

receiver operating characteristic curve (AUC). The receiver operating characteristic curve is 

generated by plotting sensitivity as a function of (1 – specificity) while the threshold is 

varied through all recorded values. The AUC has a maximum value of 1.0, while for a test 

with no predictive value the AUC would be 0.5. The AUC was calculated using SPSS 

(Version 19.0.0.1, IBM, Armonk, New York, USA), which also calculated the confidence 

limits based on the method of Hanley and McNeil[7]. For trials using cross validation, where 

the AUC was calculated repeatedly, the confidence limits were calculated directly based on 

1.96 x the standard error of the multiple trials.

Per-record sensitivity and specificity confidence limits were calculated based on a binomial 

distribution using R (Version 3.1.2, R Foundation for Statistical Computing, Vienna, 

Austria).

Analysis of algorithm features

To explore the impact of various steps in the algorithm on the performance, the performance 

was compared with versions that lacked specific steps. For this comparison, the analysis 

segment size was fixed at 7 RR intervals, and the AUC was used as the measure of 

performance.

The algorithm (AFD) was compared to versions lacking the compensation for heart rate 

(Step D, AFD no HR comp), lacking that and the comparison with adjacent segments (Steps 

D and E, AFDSingle), lacking all of those steps and the removal of the linear trend (Steps B, 
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D and E, HR), and lacking all of these steps and using the raw RR intervals rather than the 

instantaneous heart rate (Steps A, B, D, and E, RR).

Comparison with other algorithms

Four other algorithms were chosen for comparison, representing a variety of strategies for 

detection of atrial fibrillation based on the RR intervals, as well as including the best results 

that have been published. These were the standard deviation of the RR interval[8] (SD), the 

median difference of the RR intervals[9] (Med), a Kolmogorov-Smirnov test on the 

histogram of differences[10,11](KS), and a wavelet -based method[12]. Of note, in a 

published comparison of methods by Larburu[13], the KS method was felt to have the 

highest specificity of all methods tested. A variable number of RR intervals was used in the 

analysis segments for each mentod, ranging from 5 to 101. The AUC was used as the 

measure of performance.

Some algorithms require training on data to adjust parameters. For this reason, each database 

was randomly divided into two sets of records. Six of the atrial fibrillation records (04126, 

04746, 04936, 07162, 08378, 08434), and five of the normal sinus records (16273, 16786, 

19090, 19140, 19830) were used for training of the algorithms tested (training set), and the 

remainder used for testing (test set). The records in the atrial fibrillation and normal sinus 

rhythm databases are about 10 and 24 hours in length respectively. For these tests, all of the 

algorithms were tested only on the test set, even if they did not require training.

For some of the testing situations, with longer segment sizes, the training set of atrial 

fibrillation records was not sufficiently large for the KS algorithm to have adequate training 

data. This is because the algorithm constructs 16 histograms of the RR intervals during 

training, each based on segments with different mean RR intervals ranging from 350 to 1100 

msec. With longer segment lengths and the training records used, some of the histograms 

were empty since the mean RR interval required was not present in the training records. To 

allow comparison of that method at higher segment sizes, a 25-fold cross-validation 

technique was used. One of the atrial fibrillation records was selected as a test record against 

all 18 of the normal sinus records, and the other remaining 24 atrial fibrillation records used 

as a training set. After training, the discrimination of the test record from the normal sinus 

records was calculated. This constituted one “fold”. This procedure was then repeated for 

each of the atrial fibrillation records, and the results averaged.

The wavelet method required 256 RR intervals, and had two internal parameters for 

adjustment, so it did not lend itself to AUC analysis, and was tested separately. The 

parameters were adjusted for optimum performance, and the results for sensitivity and 

specificity compared to AFD.

Per-record specificity

In order to test the per-record specificity, a 25-fold cross-validation technique was used for 

training and setting of the threshold. All of the atrial fibrillation records except one were 

used to determine a threshold for each method, as well as training the KS method. The 

threshold was set as the minimum value that would label all of the training records as having 
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at least one segment of atrial fibrillation, or 100% per-record sensitivity on the training set. 

This threshold was then used to analyze all of the remaining records, which included normal 

sinus rhythm records and the remaining atrial fibrillation record, and the count of false 

positive or false negative records recorded. This procedure was repeated 25 times, each time 

excluding a different atrial fibrillation record from the training set. The entire process was 

performed at an analysis segment size of 7 and 101, to test the extremes. If no episodes of 

atrial fibrillation in the remaining atrial fibrillation record were at least as long as the 

duration of the required analysis segment, that repetition was excluded from the analysis. 

Also, for the KS method, if the full range of mean RR intervals was not represented in the 

training set, that repetition was excluded. Sensitivity and specificity were reported based on 

the results over all the possible records and trials.

Results

Analysis of algorithm features

Table 1 shows the results of removing various features of the AFD algorithm. Each of the 

distinguishing features of AFD were necessary to achieve the highest discrimination, as 

demonstrated by the progressive reduction in the AUC with removal of each feature.

Comparison with other algorithms

Figure 3a and in table 2 show the results of the comparison of AFD with the other 

algorithms, excluding the wavelet algorithm.

The AFD algorithm had a consistently higher AUC than the other methods, and was able to 

maintain this higher AUC even at smaller analysis segment sizes. The KS method could not 

be tested at the higher analysis segment sizes of 33 and 101 because the full range of mean 

RR intervals was not represented in the training data set, resulting in empty histograms for 

some heart rate ranges. In order to compare this algorithm, which appeared to be doing 

better than some others at highest segment size tested (21 RR intervals), the described 25-

fold cross-validation was used. The results are shown in Figure 3b and table 3.

AFD had a significantly higher AUC at all analysis segments sizes of 19 beats or smaller 

than all of the other methods, with both methods of validation (p = 0.004 vs KS at 19 

intervals, p < 0.0001 for all others). For the cross-validation method, although the KS 

method had a lower AUC than AFD at 21, 33 and 101 RR intervals, the difference was not 

statistically significant.

The wavelet method yielded a sensitivity of 94.5% and a specificity of 97.0% with an 

analysis segment size of 256 RR intervals. For comparison, selected values of sensitivity and 

specificity for each algorithm with a segment size of 15 are shown in Table 4. Even at this 

much smaller ssegment size, the AFD and KS algorithms outperform the wavelet method.

Per-record specificity

The procedure described resulted in identical sensitivity for all the methods, which was the 

goal. For all of the test conditions and each method, there was only one fold that resulted in 

a false negative result, for a sensitivity of 96% (95% CI 79.6–99.9%). The specificity results 
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are shown in Figure 4 and table 5. There were no false positives with AFD in any of the test 

conditions on any of the folds, while the best results for any other method was for KS at a 

segment size of 101, with an average of 5.3% false positives.

Discussion

Asymptomatic, paroxysmal atrial fibrillation may require extended periods of monitoring for 

detection. Practical and cost effective screening would benefit from highly accurate 

algorithms for detection of atrial fibrillation to avoid costly and time-consuming manual 

review.

Numerous algorithms have been developed for the automated detection of atrial fibrillation. 

Most have been tested in isolation, often on proprietary databases of recordings. Larburu et 

al[13] compared nine different algorithms on two publicly available databases. In their test, 

which included the baseline version of the AFD algorithm[4] without correction for mean 

heart rate, they found that version of the AFD algorithm to have the highest sensitivity of all 

the algorithms tested, with a much shorter analysis window length. The highest specificity 

was obtained with the KS algorithm. Methods which incorporated analysis of the atrial 

activity were less robust than methods which relied exclusively on RR interval variability, 

and did not significantly improve accuracy. In their testing, the KS algorithm had the highest 

overall accuracy.

In their analysis, the method of choosing the threshold was not explained, and they reported 

sensitivity and specificity for a single analysis window length for each algorithm. An 

analysis based on AUC, as used in the current study, allows us to compare algorithms 

without choosing a specific threshold, and giving a single result value rather than two. As 

long as the receiver operating characteristic curves of two algorithms do not cross each 

other, the AUC gives a useful summary of the relative accuracy of the two methods.

Another issue in testing is how to define the analysis segments used. Many studies allow the 

segments to overlap areas of normal and abnormal rhythms, classifying the rhythm as 

whatever is present in > 50% of the window. This means that there are in fact three 

populations of segments being tested, those that are normal, those with atrial fibrillation, and 

a third population which has both rhythms in variable amounts, and may be classified as 

normal or atrial fibrillation depending on the proportion. For the current study, only 

segments that were entirely classified as atrial fibrillation or normal sinus rhythm were 

included in the analysis. This gives a clearer picture of the ability of the algorithms to 

discriminate the rhythms being tested. If the ability to discriminate windows with multiple 

rhythms is of interest, this could be the subject of a different analysis.

The AFD method of detection of atrial fibrillation incorporates several critical steps to 

improve discrimination. Direct use of the RR interval can lead to underdetection of atrial 

fibrillation at higher heart rates, since the degree of variability becomes less, a phenomenon 

known as pseudo-regularization. Using the reciprocal of the RR interval (Step A) reduces 

this problem, since smaller variations in RR interval will have a larger effect on the 

reciprocal if the RR is shorter. A linear change in the heart rate such as what happens with 
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respiratory sinus arrhythmia can affect variability measures, so removing it (Step B) reduces 

that effect. Calculating a mean value when there is considerable variability can be 

inordinately influenced by the outliers, which can be mitigated by using the median value 

(Step C). Measures of heart rate variability may be correlated with the mean heart rate, but a 

compensation for this effect can be applied (Step D). Finally, the prime characteristic of the 

pulse during atrial fibrillation is its random nature, which can result in misclassification of a 

segment due to a randomly low value. The procedure in Step E reduces this problem. 

Comparison of the results as these features were removed shows how each contributed to 

achieve the best results.

The four algorithms that were chosen for comparison represent a variety of different 

strategies for detection, as well as including a method reported to have superior specificity 

and accuracy than an earlier version of the current algorithm. Comparison of the current 

method with the other algorithms shows that the per-segment accuracy is significantly better 

than all of the other algorithms at segment sizes less than or equal to 21 RR intervals. Higher 

numbers of RR intervals in the analysis segment caused problems with the KS algorithm 

training, requiring a cross-validation method of training and testing.

The cross-validation method results in a different weighting of the episodes of atrial 

fibrillation, since each record contributes equally, regardless of the amount of atrial 

fibrillation present. The number of observations is reduced as well since each recording 

provides only one value, increasing the variability, and therefore reducing the statistical 

power of the estimate. Based on this analysis, although the AUC of the AFD algorithm is 

higher than KS for segments sizes of 33 and 101, the difference is not significant.

All of the analyses above were based on the per-segment sensitivity and specificity. In the 

clinical screening application however, what is most important is the per-subject or per-

record sensitivity and specificity, since this relates the probability of a subject with atrial 

fibrillation being detected, and how many normal studies will require manual review.

For example, if an algorithm had a 97% per-segment specificity, as does the wavelet 

algorithm tested, then in a 7 day recording on a normal subject we would expect 5 hours of 

recording to be marked as possible atrial fibrillation and require review. In the current study, 

a cross-validation technique was used to choose a threshold and train each of the algorithms, 

and then test the resulting sensitivity and specificity. The technique was designed to produce 

an equal sensitivity for each of the algorithms, and this was in fact observed. There was a 

marked difference is specificity, however. No false positives were observed with the AFD 

algorithm, while numerous false positives were found with all of the other techniques, with 

the lowest (5.3%, 95% CI 3.4–7.9%) being with the KS algorithm and segment size of 101 

RR intervals.

In clinical screening of a 24 hour record, we would expect that roughly 5% of true normal 

records would have a false positive result with the KS algorithm, and higher numbers with 

the other algorithms. All of these would require manual review for correct diagnosis, adding 

time and cost to the screening procedure. For longer recording times of 7 days or greater, the 

expected false positive rate would be even higher.
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A limitation of the current study is that other rhythm disturbances which could cause false 

positives were not included. Rhythms other than atrial fibrillation, such as frequent 

premature ventricular contractions or atrial contractions, or even ECG artifact, could cause 

additional false positives. Further testing in other databases which include additional 

abnormal rhythms as well as artifact would be useful to explore.

The minimal duration of atrial fibrillation that is of clinical significance has not been 

determined. The preferred embodiment of the KS algorithm uses a segment length of 100 

RR intervals or longer, which would translate into an analysis segment potentially over 1.5 

minutes long. This would reduce the ability to detect and analyze shorter episodes. The AFD 

algorithm preserved its high sensitivity and specificity even at smaller analysis segment 

sizes.

The methods differ markedly in the storage and computational requirements. This can be of 

importance if the algorithm is intended for implementation in a battery-powered device, with 

limited computational and power resources. The Med algorithm was the computationally 

least complex, while the SD algorithm was most complex, requiring numerous 

multiplications. The KS and AFD algorithms were intermediately complex, requiring 

addition, subtraction and sorting. The few multiplications in the AFD algorithm are all by 

fixed factors, and can therefore be implemented as bit-shift and addition, saving 

computational complexity. The KS algorithm has the greatest storage requirement, needing 

16 stored histograms for different mean RR intervals, generated by the training. In addition, 

its performance is dependent on the particular training set that was used to create the 

histograms.

The novel method for automated detection of atrial fibrillation which was used has a per-

subject accuracy that is significantly higher than other published algorithms, and is 

computationally relatively simple. It could prove useful for screening for asymptomatic 

atrial fibrillation.
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Fig 1. 
Diagram of the steps in the algorithm. The letters denote specific steps that are key to the 

performance of the algorithm. See text for details
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Fig 2. 
Plot of the AFD metric versus mean heart rate per analysis segment for normal sinus rhythm 

(o, red) and atrial fibrillation (x, lilac) in the development data set. A linear relationship is 

evident for the normal sinus rhythm (a), which can be adjusted linearly (b), allowing a more 

accurate discrimination threshold of the resulting value
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Fig 3. 
AUC versus number of RR intervals in analysis segment in the test data set (a). The bars 

represent the 95% confidence intervals. The number of RR intervals is on a log scale. The 

panel b shows the mean AUC with 25-fold cross-validation, which allowed calculation of the 

KS method for large analysis segments. AFD - the current algorithm, KS - Kolmogorov-

Smirnov test of the histogram of differences in RR interval, SD - standard deviation of RR 

intervals, Med - Median difference of the RR intervals
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Fig 4. 
Average false positive records for each method, for analysis segment size of 7 RR intervals 

and 101 intervals. The bars represent the 95% confidence intervals. AFD - the current 

algorithm, KS - Kolmogorov-Smirnov test of the histogram of differences in RR interval, SD 

- standard deviation of RR intervals, Med - Median difference of the RR intervals
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