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Summary

Studies of long-lived individuals have revealed few genetic mechanisms for protection against age-

associated disease. Therefore, we pursued genome sequencing of a related phenotype – healthy 

aging – to understand the genetics of disease-free aging without medical intervention. In contrast 

with studies of exceptional longevity, usually focused on centenarians, healthy aging is not 

associated with known longevity variants but is associated with reduced genetic susceptibility to 

Alzheimer and coronary artery disease. Additionally, healthy aging is not associated with a 

decreased rate of rare pathogenic variants, potentially indicating the presence of disease-resistance 

factors. In keeping with this possibility, we identify suggestive common and rare variant genetic 

associations implying that protection against cognitive decline is a genetic component of healthy 

aging. These findings, based on a relatively small cohort, require independent replication. Overall, 

our results suggest healthy aging is an overlapping but distinct phenotype from exceptional 

longevity that may be enriched with disease-protective genetic factors.
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The genomic characterization of humans that age without developing diseases suggests that 

healthy aging is a distinct phenotype from exceptional longevity, and that it may be enriched with 

disease-protective genetic factors, such as resistance against cognitive decline.

Introduction

Age-associated diseases account for two-thirds of human deaths globally and 90% of all 

deaths in industrialized nations. Management of age-related disease is a major source of 

disability and health care costs, and thus management of age-associated disease is a major 

driver of medical research and health policy (Goldman et al., 2013). Age-standardized death 

rates for the leading causes of death have declined substantially over the past half century 

due to improved understanding of behavioral risks and more effective medical interventions 

(Ma et al., 2015). However, as average life expectancy improves, a shift in increased death 

due to frailty and chronic degenerative disease has been observed (Lozano et al., 2012). 

Thus, overall longevity is likely due to the avoidance of multiple vulnerabilities such as 

death due to infectious disease and severe early onset genetic diseases, mid-life death due to 

chronic and potentially sporadic diseases, and late-life death due to degenerative diseases 

and frailty – each of which is differentially influenced by the interplay of genetics and 

environment. Moreover, technologic progress with pharmacotherapy for cancer and with 

implantable devices, such as defibrillators and prosthetic joints, can promote longevity as a 

function of medical interventions per se.

Age at death in adulthood has a moderate genetic component overall, with a heritability of 

approximately 25% (Murabito et al., 2012). Heritability of longevity increases with age, 

with a negligible genetic contribution to survival up to approximately 60 years of age, after 

which an increasing genetic component to survival is observed (Brooks-Wilson, 2013; 

Christensen et al., 2006). Most genetic studies of aging have focused on long-lived 

individuals, typically defined as centenarians 100 years or older, who may have had 

exceptional survival due to medical interventions (Murabito et al., 2012). A number of 
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genetic associations with exceptional longevity have been made (Atzmon et al., 2006; 

Bojesen and Nordestgaard, 2008; Hurme et al., 2005; Kuningas et al., 2007; Melzer et al., 

2007; Pawlikowska et al., 2009; Sanders et al., 2010; Suh et al., 2008; Willcox et al., 2008), 

with only markers at APOE and FOXO3A being well replicated (Murabito et al., 2012). 

Overall, the results of genetic and epidemiological longevity studies suggest aging is a 

complex trait, and that achievement of exceptional longevity may not best capture the 

genetics of resistance to or delay of age-associated disease (Christensen et al., 2006).

In this light, we pursued a genomic study of an alternate but related aging phenotype – 

healthy aging – in order to expose its potential to uncover genetic factors for protection 

against age-associated disease. It is important to differentiate longevity from our healthy 

aging phenotype, which as we have defined it for our healthy aging cohort (Wellderly), 

attempts to understand the genetics of disease-free aging in humans, without medical 

interventions. Towards this end, we performed whole genome sequencing (WGS) of the 

Wellderly and compared their genetic characteristics to an ethnicity-matched population 

control. Our findings suggest that healthy aging is associated with a disease-protective 

genetic profile that overlaps with but differs from that observed in exceptional longevity 

cohorts. These findings include no enrichment of true longevity variants, a lower genetic risk 

from common susceptibility alleles for Alzheimer and coronary artery disease, and no 

decrease in the rate of rare pathogenic variants. We identify suggestive common and rare 

variant genetic associations which implicate genetic protection against cognitive decline in 

healthy aging. Our data is made available for the discovery of additional disease protective 

genetic factors by the research community.

Results

Wellderly Cohort Definition and Demographics

The Wellderly phenotype is defined as individuals who are >80 years old with no chronic 

diseases and who are not taking chronic medications. Individuals with any of the following 

phenotypes were excluded from enrollment: autoimmune disease, blood clots, cancer 

(except basal and squamous cell carcinoma), type I or II diabetes, dementia, myocardial 

infarction, renal failure, and stroke. The enrollment procedure is described in Experimental 
Methods, and the specific ICD code, CPT code, lab value, and medication status exclusion 

criteria are provided in Supplemental Text.

To date, a total of 1,354 Wellderly individuals ranging from 80 to 105 years old have 

enrolled in our study. Demographic characteristics of these Wellderly individuals were 

compared with the characteristics of the general US population of 70+ or 80+ year old 

individuals (depending upon availability) utilizing data from the US 2010 Census data or the 

National Health and Nutrition Examination Survey (Table 1). The Wellderly cohort 

individuals differ from these age-matched controls in the following ways: 1) they are 

comprised of a slightly but significantly higher proportion of male individuals overall, 2) 

they contain a small but significantly elevated rate of male smokers, 3) they exercise 

significantly more frequently, 4) they are leaner on average but not significantly so due to a 

wide weight distribution (Figure 1C), and 5) they have attained a significantly higher level of 

education relative to the general population. The majority of individuals were enrolled 
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between the age of 80 and 85 with similar overall age distributions for female and male 

Wellderly individuals (Figure 1A and 1B).

Healthy Aging vs. Longevity

It is possible that the Wellderly phenotype simply represents the tail end of a stochastic age-

related disease incidence process – in which the Wellderly individuals are simply “lucky” 

and by chance do not develop disease. If this were true, one would expect that the siblings of 

Wellderly individuals should live no longer than the average individual, and that no shared 

factor, whether genetic or environmental, should have an influence on Wellderly sibling 

survival.

To address this possibility, we performed survival analysis comparing the US Social Security 

1920s birth cohort life table vs. Wellderly siblings – the majority being deceased individuals 

who were obviously genetically similar to the Wellderly individuals. Survival analysis was 

initiated at 10 years of age to eliminate a significant excess of childhood death in the 1920s 

birth cohort life table (Bell and Miller, 2005) relative to that reported by the Wellderly 

individuals. Survival analysis demonstrated significant increased survival (log-rank test p-

value = 3.67 × 10−8) in Wellderly siblings relative to the 1920s birth cohort (Figure 1D). 

Inspection of the survival curve reveals a strong survival advantage in middle age to middle 

old age (40–79 years), a limited survival advantage from 80–90 yrs of age, and no survival 

advantage after 90+ yrs of age. 83% of Wellderly siblings survive to age 70 yrs whereas 

75% of the 1920s birth cohort survives to 70 yrs. This suggests Wellderly individuals avoid 

or delay the onset of middle-age onset diseases through some shared factor. This analysis 

cannot differentiate between genetic, environmental, or behavioral characteristics shared by 

Wellderly individuals and their siblings, but indicates the phenotype is not simply due to 

chance.

Genome Sequencing and Variant Filtration

To determine whether genetic factors underlie the Wellderly phenotype, WGS of 600 

Wellderly individuals was performed using the Complete Genomics platform (Complete 

Genomics Inc., Mountain View, CA) (see Experimental Methods). These genomes were 

compared to 1,507 adult members of the Inova Translational Medicine Institute (ITMI) pre-

term birth cohort also sequenced on the Complete Genomics platform (Bodian et al., 2014). 

Individuals from these cohorts were filtered to retain only individuals of 95+% European 

ancestry and a maximum relatedness of 12.5% (see Experimental Methods). After cohort 

filtration, 511 Wellderly individuals and 686 ITMI individuals were carried forward to 

downstream analyses. Variants were combined within and across cohorts and filtered 

stringently for downstream statistical analyses (see Experimental Methods). Genomic 

variant filtration resulted in reduction of the initial ~57 million total raw variants to 

24,205,551 variants after filtration. Supplemental Table S1 displays the number of variants 

removed by each filtration step. The count of variants by type and coding impact is 

presented in Supplemental Table S2. Our variant filtration strategy was reinforced by 

observing no evidence of genomic inflation in the genome-wide association results (see 

below – λ = 0.98) (Reich and Goldstein, 2001).
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Genetic Longevity and Disease Risk

First, we explored whether previously reported longevity variants may underlie the 

Wellderly phenotype (Atzmon et al., 2006; Bojesen and Nordestgaard, 2008; Hurme et al., 

2005; Kuningas et al., 2007; Melzer et al., 2007; Pawlikowska et al., 2009; Sanders et al., 

2010; Suh et al., 2008; Willcox et al., 2008). No deviation in allele frequency of longevity 

variants was observed between the Wellderly cohort and the ITMI cohort or the 1000 

Genomes European individuals (Sudmant et al., 2015) (Table 2). No trend in allele 

frequency deviations implying even minimal enrichment of longevity variants was observed, 

suggesting the Wellderly healthy aging phenotype is likely distinct from traditionally defined 

longevity.

Next, we considered whether the Wellderly have decreased genetic risk of common disease 

by calculating genetic risk scores for the Wellderly and ITMI individuals for the top 5 

leading causes of death with a genetic component – heart disease, cancer, stroke, Alzheimer 

disease, and diabetes (CDC Vital Statistics) – using genetic loci identified from the latest 

large genome-wide association studies and/or meta-analyses (Al-Tassan et al., 2015; 

Consortium et al., 2013; Kilarski et al., 2014; Lambert et al., 2013; Michailidou et al., 2015; 

Replication et al., 2014; Seshadri et al., 2010; Timofeeva et al., 2012; Wolpin et al., 2014; 

Zheng et al., 2008) (Table 3). The 5 most common and deadly cancer types were considered; 

breast, colon, lung, pancreatic, and prostate – comprising over 75% of cancer deaths in the 

USA. We observed no difference in cancer, stroke, or type 2 diabetes genetic risk. On the 

other hand, the Wellderly have a significantly lower genetic risk for Alzheimer disease (p-

value = 9.84 × 10−4) and coronary artery disease (p-value = 2.54 × 10−3). Individual marker 

level differences are presented in Supplemental Table S3.

The difference in Alzheimer disease genetic risk is strongly influenced by APOE-ε4 marker 

(rs2075650; p-value = 7.02 × 10−4), though a trend for marginal differences in allele 

frequency, in the direction consistent with decreased Alzheimer risk, can be observed for the 

majority of the 18 Alzheimer disease risk variants (Supplemental Table S3). The next most 

significant single marker (rs11218343; p-value = 2.96 × 10−2) was also the next strongest 

genetic risk marker for Alzheimer disease in the published GWAS meta-analysis – at the 

SORL1 locus – suggesting the magnitude of the deviation in allele frequency between the 

Wellderly and ITMI cohort is related to the strength of the genetic risk locus in mediating 

disease (correlation between −log10 single marker p-value and genetic risk weight = 0.89, p-

value <0.0001).

Similarly, 83 of the 141 previously identified markers for coronary artery disease variants 

displayed allele frequency differences consistent with decreased genetic risk for coronary 

artery disease in the Wellderly (p-value = 0.043). The correlation between deviation in allele 

frequency between the Wellderly and ITMI cohort and the strength of the genetic risk locus 

was again significant, though not as strong as that observed for Alzheimer disease (r = 0.15, 

p-value = 0.04). The strongest differences were observed at APOE (rs2075650; p-value 

=7.02 × 10−4), PECAM1 (rs2070783; p-value = 1.26 × 10−2), SMG6 (rs2281727; p-value = 

1.35 × 10−2), and SCARB1 (rs11057841; p-value = 1.69 × 10−2).
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Correspondingly, the single strongest risk markers for Alzheimer disease (APOE above), and 

coronary artery disease (9p21 rs1333049; p-value =3.57 × 10−2) (Wellcome Trust Case 

Control, 2007), demonstrated deviations in allele frequency between the Wellderly and ITMI 

cohorts, whereas no significant difference was observed for the strongest risk markers for 

diabetes or cancer: FTO (rs9939609; p-value = 0.809) (Wellcome Trust Case Control, 2007), 

TCF7L2 (rs7903146; p-value = 0.728) (Wellcome Trust Case Control, 2007), 8q24 

(rs6983267; p-value = 0.421) (Wokolorczyk et al., 2008).

Common Variant Genome-Wide Association Study

Next, we globally considered whether any common variants (minor allele frequency > 5%) 

were associated with the Wellderly phenotype. We performed a WGS-based genome-wide 

association study (GWAS) using a logistic model with principal component correction 

(Figure 2A) to account for any remaining population stratification after restriction to 

individuals with 95+% European ancestry – though inspection of the principal component 

plots demonstrates the cohorts are well balanced (Figure 2A). The quantile-quantile (QQ) 

plot of association results demonstrates no genomic inflation (λ = 0.98) (Figure 2B). No 

associations were observed at the genome-wide significance level (p-value < 5 × 10−8, 

Figure 2C), though a number of interesting marginally significant peaks were observed. The 

full list of top hits is provided in Supplemental Table S4.

The top region is a large linkage block at MHC locus 6p22.1 containing lead SNPs 

rs13217620 (chr6:27,653,120) (p-value = 6.1 × 10−7) (Figure 3A) and rs41266839 

(chr6:26,409,890) (p-value = 4.1 × 10−6) (Figure 3B). This region contains a handful of 

SNPs that have been replicated and confidently associated with cognitive traits including 

rs1056667; associated with cognitive performance (Rietveld et al., 2014; Rietveld et al., 

2013), rs13194053; associated with schizophrenia and bipolar disorder (International 

Schizophrenia et al., 2009; Shi et al., 2009). The two lead SNPs (rs13217620 and 

rs41266839) from our study are in perfect disequilibrium (D′ = 1.0) with the aforementioned 

cognitive trait associated SNPs (rs1056667 and rs13194053 respectively) (Figure 3A and 

3B).

The second sub-significant region included lead SNP rs156033 (p-value = 1.7 × 10−6), in the 

5q31.1 region, which contains SLC22A4 and multiple variants (rs7727544, rs419291, 

rs11950562, rs273914, rs272889, rs272869, rs274567) strongly associated with carnitine, 

and carnitine-related metabolite levels (Shin et al., 2014) (Figure 3C). Again, our lead SNP 

displays strong disequilibrium with all of these previously associated SNPs, especially 

rs11950562 (D′ = 1.0) (Figure 3C), which was specifically associated with 

isovalerylcarnitine levels (p-value = 2 × 10−41) (Shin et al., 2014).

Finally, our third sub-significant region included lead SNP rs10209741 (p-value = 7.0 × 

10−6) in the 2q36.1 region containing KCNE4, and nearby (11.4kb) rs895767, which was 

previously associated with cognitive decline (Zhang and Pierce, 2014) (Figure 3C). Again, 

rs10209741 and rs895767 are in perfect disequilibrium (D′= 1.0).

While no individual locus is genome-wide significant, the observation that at least two of 

three of our top GWAS hits are associated with cognitive function is unlikely to be due to 
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chance. With the cautious assumption that ~100 loci have been previously associated with 

cognitive function via GWAS, the probability that two of our three top GWAS hits land 

amongst these ~100 cognitive function loci by chance is p-value = 3.0 × 10−8. This 

observation is also consistent with the finding that the Wellderly have a lower overall genetic 

risk for Alzheimer disease and cognitive decline (above), a lower APOE-ε4 rate (rs429358 

p-value = 7.6 × 10−5), and a greatly reduced frequency of the Alzheimer disease-associated 

rare coding variant rs145999145 in PLD3 as previously reported (Cruchaga et al., 2014).

High Penetrance Pathogenic Variants

Next, we explored the contribution of rare monogenic disease variants to the Wellderly 

phenotype. We considered monogenic disorders that are the most prevalent and relevant to 

the Wellderly phenotype – hereditary dementia, cancer, and common monogenic diseases as 

defined by the American College of Medical Genetics secondary findings (Green et al., 

2013). No difference in the rate of rare pathogenic variants in the Wellderly vs. ITMI cohorts 

was observed for any gene set (chi-square p-values 1.0, 0.39, 0.80 respectively) (Figure 4A), 

nor at the individual gene level (Supplemental Table S5). The full list of genes per disease 

category is presented in Supplemental Text.

Rare Variant Genome-Wide Association Study

Finally, we considered whether rare coding variants in any gene (minor allele frequency < 

1%) were associated with the Wellderly phenotype using the SKAT-O method (see 

Experimental Procedures). The QQ plot of gene-level association results demonstrates no 

genomic inflation (genomic inflation factor = 0.99) (Figure 4B). No genome-wide 

significant associations (p-value < 4.8 × 10−6 for Bonferroni correction of 10,447 individual 

gene tests) were observed. However, the top hit, COL25A1 (p-value = 1.56 × 10−5), is of 

major interest. The full list of top hits is provided in Supplemental Table S6.

COL25A1 contained 9 ultra-rare coding variants carried by 10 distinct Wellderly 

individuals, where 8 variants were observed as singletons and one variant was observed in 

two distinct individuals (Figure 4C). No COL25A1 variants were observed in any ITMI 

individual (variants provided in Supplemental Table S7, Sanger validation traces displayed 

in Figure S1). Five of these nine variants have been previously observed in the Exome 

Aggregation Consortium Database. COL25A1 is a brain-specific, secreted collagenous 

protein that associates with amyloid plaques (Soderberg et al., 2005). The distribution of the 

observed coding mutations relative to the various functional domains and elements of 

COL25A1 is displayed in Figure 4C. No clustering in any particular region of COL25A1 

was observed, though many of the mutations result in highly non-conservative amino acid 

substitutions (p.S48F, p.G225C, p.R402C, p.P520L), or are nearby critical regions for 

plaque association (p.S116L being nearby the cleavage site at amino acid 113 and p.N171S 

being in the NC2 domain which interacts with Aβ).

Discussion

We identified no major, singular contributor to healthy aging. Instead, healthy aging appears 

to demonstrate characteristics similar to other complex polygenic phenotypes. Further, our 
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results suggest that healthy aging is a genetically overlapping but divergent phenotype from 

exceptional longevity, and that the healthy aging phenotype is potentially enriched for 

heritable components of both reduced risk of, as well as resistance to, age-associated 

disease.

First, we observe minimal and non-significant enrichment of the previously identified 

FOXO3A longevity allele in the Wellderly (Willcox et al., 2008). In contrast, we observe a 

significant depletion of APOE-ε4 alleles, which is associated with longevity but considered 

to be ‘frailty’ allele for late onset disease rather than a true longevity allele (Christensen et 

al., 2006; Gerdes et al., 2000).

Second, and again in contrast to exceptional longevity cohorts, where no overall reduction in 

common disease genetic risk is generally observed (Beekman et al., 2010; Fortney et al., 

2015; Sebastiani et al., 2012), we observe a significant decrease in genetic risk for 

Alzheimer disease and coronary artery disease genetic risk in the Wellderly. Importantly, 

these results reflect an overall decrease in genetic risk scores, a result not observed in 

exceptional longevity cohorts (Beekman et al., 2010; Sebastiani et al., 2012), possibly due to 

the indirect and/or a mixed relationship between individual genetic disease risk loci and 

exceptional longevity (as discussed by (Fortney et al., 2015)) vs. the potentially more direct 

relationship between aging in the absence of disease and overall genetic disease risk.

On the other hand, no difference in genetic risk is observed for type 2 diabetes genetic risk 

and cancer. Some of these findings (type 2 diabetes, colon and lung cancer) can be explained 

by the fact that risk for these diseases are strongly modulated by behavioral and 

environmental risk factors. However, we also observed no difference in genetic risk for more 

heritable cancer types (breast and prostate especially) neither via common variant risk nor 

rare pathogenic variant burden. The lack of a difference in rare pathogenic variant burden, 

for cancer as well as hereditary dementia and other common monogenic disorders, could be 

indicative disease resistance via behavioral or other genetic characteristics.

In fact, while no individually genome-wide significant associations were observed, both our 

rare and common variant genetic associations implicate protection against cognitive decline 

as a potential molecular mechanisms governing healthy aging and longevity – an area where 

genetic associations have been notoriously difficult to identify despite reasonably high 

heritability estimates. Perhaps most interestingly, mutation of COL25A1 may disrupt 

Alzheimer disease pathogenesis due to the critical role soluble COL25A1 plays in regulating 

the buildup of Aβ fibrils (Kakuyama et al., 2005; Osada et al., 2005). This finding provides 

potential genetic support for the targeting of COL25A1 for the prevention or treatment of 

Alzheimer disease.

This work represents one of the first combined rare and common variant genome-wide 

association studies utilizing whole genome sequencing data, and highlights some of the 

opportunities and challenges associated with WGS-based case-control analysis. For complex 

polygenic phenotypes, achieving genome-wide significance is improbable without much 

larger sample sizes, which will take years to accrue for rare phenotypes such as healthy 

aging. It should be re-emphasized that the Wellderly phenotype is a narrowly defined 
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phenotype likely with fewer eligible individuals than those who would be eligible for an 

exceptional longevity cohort. Thus, we acknowledge that, due to the relatively small size of 

our cohort, independent replication is needed to confirm our preliminary findings. In the 

meantime, it is important to discern patterns that hint at underlying molecular and 

physiological pathways that may inform follow-up studies. While the patterns in our 

unbiased analysis highlight the role of genetic resistance to cognitive decline in healthy 

aging, due to the global absence of disease in the cohort, we suggest that the Wellderly are 

likely to be enriched with other genetic factors for disease resistance. These factors will 

likely be gleaned only via more detailed analyses of the Wellderly dataset via interaction 

with individual genetic risk factors, or as a result of more detailed analyses of genes of 

interest. Moreover, the Wellderly dataset can act as independent replication and validation of 

candidate disease protective genetic factors identified in other cohorts. The identification of 

genetic factors protective against disease is of paramount importance to understanding 

disease biology and a proven means for drug target identification. Thus, we make the 

Wellderly genomic data available broadly for further mining by the research community.

Experimental Procedures

Healthy Elderly Active Longevity Cohort Study (IRB-13-6142) was approved by the Scripps 

Institutional Review Board in July 2007.

Data Availability

Aggregate unfiltered annotated Wellderly variants and their allele and genotype frequencies 

are available via Scripps Translational Science Institute Variant Browser (http://

genomics.scripps.edu/browser). Variant presence is also queryable via a Global Alliance for 

Genomics and Health Beacon (http://genomics.scripps.edu/browser/ga4gh). Individual level 

variant data are available from Complete Genomics Inc. under terms determined by 

Complete Genomics Inc., from Scripps Genomic Medicine for scientific collaboration with 

not for profit entities, and will be deposited in dbGAP under similar data use restrictions.

Wellderly Cohort Recruitment

The Wellderly cohort (1,354 individuals) was collected over the course of eight years. 

Individuals with no chronic diseases and not taking chronic medications were screened for 

enrollment. Specific inclusion/exclusion criteria are provided in Supplemental Text. The 

study and inclusion criteria were advertised to the public, for example, via the Scripps 

newsletters, radio announcements, newspaper articles in various cities around the country 

and in senior community newsletters. Participants volunteered and were self-referred. 

Research staff did not recruit individuals who had not already contacted the study staff 

expressing interest in participating. Potential study participants were then interviewed in 

order to assess health history according to the inclusion criteria.

ITMI Cohort

Individuals were enrolled in the ITMI research study titled “Molecular Study of Pre-term 

Birth,” as described in (Bodian et al., 2014). The sub-cohort for this study consists of adults 

who consented to research use of their genomic and clinical data. Demographic data were 
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obtained from self-report questionnaires. Of the individuals with European ancestry, 68.1% 

(467) were parents of a neonate born full term, and 31.9% (219) had a preterm infant. They 

range in age from 20–44 years. Collection of peripheral blood and sample processing for 

WGS were previously described (Bodian et al., 2014).

Survival Analysis

The number of living and deceased (with age of death) Wellderly siblings was determined 

by self-report. The number of at risk for death Wellderly siblings, starting at age 10 (3,024 

individuals total), and the number of deaths per 5-year interval was calculated based on these 

self-report data. Survival analysis was conducted by determining the expected number of 

deaths in a cohort of 3,024 individuals born in the 1920s, under the assumption of equal 

male and female individuals at 10 years of age, and calculating the expected number of 

deaths per 5-year interval based on the conditional probability of death (qx) as supplied in 

the Social Security Actuarial Study No. 120 (Bell and Miller, 2005) for the 1920s birth 

cohort. The significance of the difference in survival between Wellderly siblings and an 

equal-sized population born in the 1920s was then calculated via the log-rank test for 

survival analysis.

Genome Sequencing and Cohort Filtration

WGS of both the Wellderly cohort and ITMI cohort was performed by Complete Genomics 

Inc., Mountain View, CA – via their standard WGS service. Variant calling was performed 

via cgatools v2.0.1 through v2.0.4. A mean whole genome coverage of 56X per Wellderly 

individual and 55X per ITMI individual was achieved (Figure S2A and Figure S2B). An 

average of 98.8% and 98.9% of the protein coding portion of the genome was covered by 

>10 reads in the Wellderly and ITMI cohorts respectively (Figure S2C and Figure S2D).

Genetic ancestry estimation was defined via the ADMIXTURE algorithm (Alexander and 

Lange, 2011) using ~16,000 ancestry informative markers and a reference panel of 83 

populations around the world (Libiger and Schork, 2012). Individuals of 95+% European 

ancestry were retained for downstream association analyses. Related individuals were 

identified via pairwise identity by descent estimation in PLINK (Purcell et al., 2007).

Variant Filtrations

Variants were combined across the Wellderly and ITMI cohorts via GenomeComb and 

filtered using metrics based on optimized features selected based on concordance between 

monozygotic twins (Reumers et al., 2012) and refined based on observed GWAS genomic 

inflation. These filters excluded variants that were: 1) variants labeled as VQLOW in all 

individuals, 2) variants clustered in >10% of individuals from either cohort, 3) variants with 

>10% missingness in either cohort, 4) variants with median coverage <10 or >100 in either 

cohort, 5) variants in simple repeats, homopolymer repeats ≥ 6bp, segmental duplications, 

microsatellite repeats, or low complexity repeats, 5) variants out of Hardy-Weinberg 

Equilibrium (p-value < 1 × 10−5), and 6) variants in non-unique 36mers (Derrien et al., 

2012). VQLOW genotypes were set to missing. For common variant analyses, an additional 

filter for variants <5% minor allele frequency in either cohort was applied. For rare variant 

analyses, an additional filter for variants >1% minor allele frequency in either cohort was 
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applied, as well as a minimum allele depth filter, where if 20% of individuals with a rare 

variant alternate allele call had a minimum alternate allele depth of <25% of total reads or 

fewer than 3 supporting reads – the variant was considered a false positive and removed.

Genetic Risk Scores

Weighted genetic risk scores based on known susceptibility markers for the top 5 causes of 

death with a genetic component were calculated in both cohorts. Markers and corresponding 

weights used to construct the genetic risk scores included markers identified in the latest 

large-scale meta-analyses (when possible) of: Alzheimer disease replicated markers in Table 

2 of (Lambert et al., 2013) and APOE risk markers (Seshadri et al., 2010); breast cancer 

markers in Table 1 and Supplementary Table 3a of (Michailidou et al., 2015); colorectal 

cancer markers in Supplementary Table 3 of (Al-Tassan et al., 2015); coronary artery disease 

markers in Supplementary Table 9 of (Consortium et al., 2013); lung cancer markers in 

Supplemental Table S2 of (Timofeeva et al., 2012) that were presented in Figure 2A–G, 

using the fixed effect model for weights; pancreatic cancer markers in Supplemental Table 4 

of (Wolpin et al., 2014), using stage 1 odds ratios for weights; prostate cancer markers in 

Table 3 of (Zheng et al., 2008); stroke markers in Table e-2 of (Kilarski et al., 2014) with the 

All_IS phenotype and type 2 diabetes markers in Supplemental Table 3 and Supplemental 

Table 6 of (Replication et al., 2014), using the European weight estimates. Markers were 

coded additively, and the logarithms of the reported odds ratios were used as weights. All 

markers were pruned by pairwise linkage disequilibrium (R2 > 0.8) prior to constructing the 

genetic risk score. The full list of these markers, corresponding weights, allele frequencies in 

each of our cohorts, and our single marker association statistics are available in 

Supplemental Table S3.

Variant Annotations and Pathogenicity

Variant annotation was performed by Cypher Genomics Inc. as described by the SG-

ADVISER annotation tool (Pham et al., 2015). High confidence known pathogenic variants 

are defined as any variant whose allele frequency is no greater than 0.5% in all 1000 

Genomes (Sudmant et al., 2015), NHLBI Exome Sequencing Project (Fu et al., 2013), and 

Exome Aggregation Consortium (http://exac.broadinstitute.org) populations and catalogued 

as pathogenic or likely pathogenic in ClinVar (Landrum et al., 2014) without any benign or 

likely benign assertions. Secondary finding variants were determined as defined by (Green et 

al., 2013). Analyses of rare pathogenic variants considered variant counts on the cohort level 

only; individual pathogenic variants and actionability at the individual level were not 

examined.

Genome-Wide Association Studies

Common variants, filtered as described above, were subject to a standard GWAS analysis via 

PLINK (Purcell et al., 2007) using a logistic model and corrected for the first ten principal 

components. The QQ plot was generated by pruning association results at a linkage 

disequilibrium threshold of 0.50. Chromosome positions are provided in GrCh37/hg19 

coordinates. Regional plots were generated with LocusZoom with modifications (Pruim et 

al., 2010). Pairwise linkage disequilibrium from 1000 Genomes (Sudmant et al., 2015) 

European individuals was calculated with SNAP (Johnson et al., 2008). For rare variants, 
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burden testing was performed with SKAT-O on all rare coding exonic variants (Lee et al., 

2012) adjusted for the first two principal components. A gene must have had 5 or more rare 

variants (as recommended by the SKAT authors) to be included in testing – 9,343 genes 

satisfied this requirement. The QQ plot was generated as one point per gene.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Healthy aging is complex polygenic trait related but distinct from longevity.

• Healthy aging is associated with decreased genetic risk for select diseases.

• Healthy aging is potentially linked to protection against cognitive decline.

• Genome data is made available for further analysis
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Figure 1. Wellderly Demographic Characteristics
A. The age distribution of Wellderly female individuals. B. The age distribution of male 

Wellderly individuals. C. The BMI distribution of Wellderly individuals for males (blue) and 

females (red). D. Survival curves for the Wellderly siblings (red) and the expected survival 

of a 1920s birth cohort (blue). A significant difference in survival was observed (log-rank 

test p-value = 3.67 × 10−8) in middle-age (40–79 years) but not overall longevity. 95% 

confidence interval is provided for the Wellderly siblings in red shading (only visible at the 

end of the survival curve).
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Figure 2. Common Variant Association Results
A. Principal component plot of the Wellderly (red) and ITMI (blue) cohort based on filtered 

and LD pruned (R2 > 0.5) common variants (allele frequency > 5%). B. QQ plot of expected 

−log10(P-values) (x-axis) vs. observed −log10(P-values) (y-axis) (one black point per 

variant). Expected vs. expected −log10(P-values) (red line) is along the diagonal. The λ value 

for this QQ plot is 0.98 – no genomic inflation observed. C. Manhattan plot of the unbiased 

GWAS results. Each point represents a single SNP P-value determined by a logistic model 

adjusted for the first ten principal components. Points are organized by chromosome and 

chromosomal coordinate (x-axis) and −log10(P-values) (y-axis). The blue line indicates P-

values < 10−5. Green highlighted SNPs correspond to the top most significant regions, 

plotted in Figure 3. See also Supplemental Table S4.
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Figure 3. Regional Association Plots
Regional plots for the top 3 most significant regions for GWAS comparing the Wellderly and 

ITMI cohorts. For all plots, each point represents a SNP, where the x-axis represents the 

position of the SNP and the y-axis (right) the −log10 p-value of the genome-wide 

association results. Each point is color coded with the D′ value as calculated within the 

Wellderly and ITMI cohorts. The D′ value within the 1000 Genomes European individuals is 

indicated by connecting lines. Recombination rate is also plotted at each genomic position 

with the rate indicated on the y-axis (left) A. Lead SNP rs13217620 (chr6:27,653,120) (p-

value = 6.1 × 10−7) is highlighted along with SNPs previously associated with schizophrenia 

(rs13194053 and rs17693963). B. Lead SNP rs41266839 (chr6:26,409,890) (p-value = 4.1 × 

10−6) is highlighted along with rs1056667, previously associated with cognitive 

performance. C. Lead SNP rs156033 (p-value = 1.7 × 10−6) is highlighted along with 

rs11950562, previously associated with isovalerylcarnitine levels. D. Lead SNP rs10209741 

(p-value = 7.0 × 10−6) is highlighted along with rs895767, previously marginally associated 

with cognitive decline.
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Figure 4. Rare Variant Burden
A. The rate of rare pathogenic cancer, hereditary dementia and common monogenic disease 

(secondary finding) variants is displayed for the Wellderly (red) and ITMI (blue) cohorts 

with standard error bars. No difference is observed between the cohorts. See also 

Supplemental Table S5. B. QQ plot of expected −log10(P-values) (x-axis) vs. observed 

−log10(P-values) (y-axis) (one black point per gene). Expected vs. expected −log10(P-

values) (red line) is along the diagonal. The λ value for this QQ plot is 0.99 – no genomic 

inflation observed. The point corresponding to the top gene, COL25A1 is labeled. See also, 

Supplemental Table S6. C. The location, impact, and count of COL25A1 coding variants are 

indicated along the COL25A1 protein. The COL25A1 protein and domains is displayed 

horizontally from the N-terminal to C-terminal amino acid (x-axis). The blue region 

indicates the cytoplasmic region of COL25A1, the maroon region indicates the 

transmembrane domain, green regions are collagen domains, and grey regions are 

intervening non-collagen stretches. The cleavage site for secretion of COL25A1 is indicated 

by the vertical dashed line. COL25A1 interacts with the amyloid beta protein at NC2. Each 

observed mutation position is indicated by a black pin with red head. The height of each pin 

corresponds to the number of alleles observed in the Wellderly cohort (all variants observed 

in a single individual except p.R402C). The coding impact of each variant is indicated next 

to each pin. Super-script daggers indicate variants that have been previously observed in the 

Exome Aggregation Consortium database. See also Supplemental Figure S1 and 

Supplemental Table S7.
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Table 1

Wellderly Demographic Data

Characteristic Wellderly Cohort U.S. Population ITMI Cohort

Median Age 84.2 yrs (±9.3 yrs) 70+yrsa or 80+yrsb 33.3 yrs

Gendera Male = 39.3% (±1.3%) Male = 36.3% Male = 52.7%

Female = 60.7% (±1.3%) Female = 63.7% Female = 47.3%

Median Heightb Male = 69″ (±5.0″) Male = 68″ Male = N/A

Female = 63″ (±5.7″) Female = 63″ Female = 66″

Median Weightb Male = 168lbs (±47lbs) Male = 190lbs Male = N/A

Female = 132lbs (±45lbs) Female = 160lbs Female = 142lbs

Ever Smokerb Male = 61% (±2.6%) Male = 54% Male = 31.5%

Female = 42% (±2.6%) Female = 43% Female = 26.2%

Exerciseb 66.8% (±2.5%) 44.1% N/A

Educationb

 No high school 0.5% (±0.4%) 24.6% 8.0%

 High school 16.8% (±2.0%) 56.2% 17.2%

 Bachelor’s 55.0% (±2.7%) 11.9% 38.7%

 Advanced 27.7% (±2.4%) 7.3% 36.1%

a
U.S. Population 80+ years,

b
U.S. population 70+ years. 95% confidence interval in parenthesis.
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Table 3

Genetic Risk For Leading Causes of Death with a Component.

Wellderly Genetic Risk ITMI Genetic Risk Wellderly Odds Ratio p-value

Alzheimer disease 0.0075 (±0.0418) 0.1060 (±0.0409) 0.906 (±0.051) 0.009

Breast Cancer 0.596 (±0.045) 0.600 (±0.045) 0.996 (±0.064) 1.0

Colorectal Cancer 1.11 (±0.030) 1.12 (±0.03) 0.992 (±0.032) 1.0

Coronary Artery Disease 8.27 (±0.035) 8.35 (±0.040) 0.922 (±0.047) 0.023

Lung Cancer 0.130 (±0.027) 0.142 (±0.022) 0.988 (±0.034) 1.0

Pancreatic Cancer 0.364 (±0.033) 0.387 (±0.026) 0.977 (±0.040) 1.0

Prostate Cancer 4.80 (±0.100) 4.75 (±0.090) 1.050 (±0.131) 1.0

Stroke 2.04 (±0.030) 2.09 (±0.030) 0.958 (±0.043) 0.66

Type 2 Diabetes 6.40 (±0.050) 6.39 (±0.04) 1.004 (±0.0580) 1.0

Mean genetic risk score is presented with 95% confidence interval in parenthesis. Wellderly odds ratio is the overall odds ratio of Wellderly 
individuals for the development of each disease relative to the general population – also with 95% confidence interval in parenthesis. p-values 
corrected for multiple testing are reported. See also Supplemental Table S3
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