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Abstract

Cortical surface atlases, equipped with anatomically and functionally defined parcellations, are of 

fundamental importance in neuroimaging studies. Typically, parcellations of surface atlases are 

derived based on the sulcal-gyral landmarks, which are extremely variable across individuals and 

poorly matched with microstructural and functional boundaries. Cortical developmental 

trajectories in infants reflect underlying changes of microstructures, which essentially determines 

the molecular organization and functional principles of the cortex, thus allowing better definition 

of developmentally, microstructurally, and functionally distinct regions, compared to conventional 

sulcal-gyral landmarks. Accordingly, a parcellation of infant cortical surface atlas was proposed, 

based on the developmental trajectories of cortical thickness in infants, revealing regional 

patterning of cortical growth. However, cortical anatomy is jointly characterized by biologically-

distinct, multidimensional cortical attributes, i.e., cortical thickness, surface area, and local 

gyrification, each with its distinct genetic underpinning, cellular mechanism, and developmental 

trajectories. To date, the parcellations based on the development of surface area and local 

gyrification is still missing. To bridge this critical gap, for the first time, we parcellate an infant 

cortical surface atlas into distinct regions based solely on developmental trajectories of surface 

area and local gyrification, respectively. For each cortical attribute, we first nonlinearly fuse the 

subject-specific similarity matrices of vertices' developmental trajectories of all subjects into a 

single matrix, which helps better capture common and complementary information of the 

population than the conventional method of simple averaging of all subjects' matrices. Then, we 

perform spectral clustering based on this fused matrix. We have applied our method to parcellate 

an infant surface atlas using the developmental trajectories of surface area and local gyrification 

from 35 healthy infants, each with up to 7 time points in the first two postnatal years, revealing 

biologically more meaningful growth patterning than the conventional method.
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1 Introduction

Magnetic resonance imaging (MRI) allows for an unparalleled in vivo study of early 

dynamic development of the human brain. In MRI studies, cortical surface atlases, encoding 

anatomical structures and other reference information of the cortex, play fundamental roles 

in normalization, analysis, visualization, and comparison of results across subjects and 

studies [1]. Parcellations, defined in cortical surface atlases, help localize structural and 

functional regions, and partition individuals into regions of interest (ROIs), for region-based 

and network-based analyses [2]. Typically, these parcellations are defined based on sulcal-

gyral landmarks [2], which are actually extremely variable across individuals and poorly 

matched with microstructurally, functionally, and developmentally defined boundaries [3]. 

Therefore, there is increasing interest to parcellate surface atlases into distinct regions based 

on other sources of information, e.g., the functional connectivity derived from fMRI [4] and 

the genetic correlation of surface area and cortical thickness derived from twin MRI studies 

[5]. However, owing to the dynamic development of cortical size, shape and folding in early 

postnatal stages, existing surface atlases and their parcellations created for adult brains are 

not suitable for infant brain studies [6]. For precise charting dynamic developmental 

trajectories of infant brains, the infant-dedicated surface atlases with parcellations, based on 

cortical developmental trajectories, are more appropriate. This is because cortical 

developmental trajectories in infants reflect underlying changes of microstructures, which 

essentially determine molecular organization and functional principles of the cortex [3], thus 

allowing for better definition of developmentally, microstructurally, and functionally distinct 

regions on surface atlases, compared to conventional sulcal-gyral landmarks. Accordingly, 

the first infant surface atlas, equipped with a parcellation based solely on the developmental 

trajectories of cortical thickness, has been recently created, revealing intriguing and 

meaningful regional patterning of cortical development [6].

Although promising, the parcellation based on cortical thickness trajectories has two major 

limitations. First, cortical thickness only reflects one aspect of the multidimensional nature 

of the cortex. Essentially, cortical structural development is jointly characterized by 

biologically-distinct, multidimensional cortical attributes, i.e., cortical thickness, surface 

area, and local gyrification, each with its distinct genetic underpinning, cellular mechanism, 

and developmental trajectories [7–9]. For example, in the first postnatal year, the cortex 

increases 31% in cortical thickness, 76% in surface area [8], and 17% in local gyrification 

[9]. Moreover, these cortical attributes are differently correlated with cognitive functioning, 

and differentially affected in a variety of brain disorders [8]. To date, parcellations of infant 

cortical surface atlases based on the developmental trajectories of surface area and local 
gyrification are still critically missing. Second, the existing method simply averages the 

subject-specific similarity matrices of vertices' developmental trajectories of all individuals 

as a population-mean similarity matrix for parcellation [6]; however, it ignores remarkable 

individual variability in terms of growth patterns and uneven distribution of time points, thus 

failing to fully capture common and complementary information of individuals.

In this paper, we unprecedentedly parcellate an infant cortical surface atlas into distinct 

regions, based on dynamic developmental trajectories of surface area and local gyrification 

in infants, respectively. To address the limitations of using population-mean similarity 
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matrix for parcellation [6], we propose to first nonlinearly fuse the similarity matrices of 

vertices' developmental trajectories of all subjects into a single matrix and then perform 

spectral clustering based on this fused matrix. This strategy accounts for individual 

variability of growth patterns and the uneven distribution of time points, thus making full use 

of both common and complementary information across individuals. Based on 202 

longitudinal MRI of 35 typical infants, each with up to 7 time points in the first two 

postnatal years, we reveal hitherto unseen, biologically meaningful surface atlas 

parcellations that capture the distinct patterns of developmental trajectories of surface area 

and local gyrification, respectively.

2 Method

2.1 Dataset and Cortical Surface Mapping

We adopted a longitudinal infant MRI dataset, including 35 healthy infants, each with up to 

7 scans in the first two postnatal years [6]. For each infant, T1-, T2-, and diffusion-weighted 

MRI were acquired using a Siemens 3T head-only scanner every 3 months in the first year 

since birth, and then every 6 months in the second year. Any scans with strong motion 

effects, leading to poor quality of tissue segmentation, were discarded. T1 images were 

acquired with the parameters: TR/TE = 1900/4.38 ms, flip angle = 7, resolution = 1 × 1 × 1 

mm3. T2 images were acquired with the parameters: TR/TE = 7380/119 ms, flip angle = 

150, resolution = 1.25 × 1.25 × 1.95 mm3. Diffusion-weighted images (DWI) were acquired 

with the parameters: TR/TE = 7680/82 ms, resolution = 2 × 2 × 2 mm3, 42 non-collinear 

diffusion gradients, and diffusion weighting b =1000s/mm2. Data distribution included 8 

infants each with 7 scans, 15 infants each with 6 scans, 8 infants each with 5 scans, and 4 

infants each with 4 scans.

Infant cortical surfaces reconstruction and mapping were performed by an infant-dedicated 

computational pipeline [6]. Briefly, first, non-cerebral tissues were removed, and 

longitudinally-consistent tissue segmentation, using multimodal information of T1, T2 and 

FA images, were performed [10]. Second, each brain was divided into left and right 

hemispheres after filling of non-cortical structures. Third, inner and outer surfaces for each 

hemisphere were reconstructed by first tessellating the topology corrected white matter as a 

triangular mesh representation and then deforming the mesh using a deformable model [11]. 

Fourth, for each infant, all longitudinal inner surfaces were mapped to a standard sphere and 

groupwisely aligned to establish within-subject cortical correspondences and generate 

within-subject mean cortical folding using Spherical Demons [12]. Fifth, within-subject 

mean cortical folding maps of all subjects were groupwisely aligned to establish 

longitudinally-consistent inter-subject cortical correspondences, for construction of infant 

cortical surface atlases [6], and each surface was then resampled to a standard mesh 

tessellation. Finally, for each vertex of each resampled surface, both surface area (SA) and 

local gyrification index (LGI, Fig. 1(a)) were computed using an infant-specific method [9].

2.2 Atlas Parcellation Using Cortical Developmental Trajectories

To perform cortical surface atlas parcellation based on the developmental trajectories of 

cortical attributes, we adopted the spectral clustering method, which projects the data into 
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the eigenspace of the similarity matrix (encoding the similarity between each pair of data 

points) to better capture distributions of original data points [13]. To this end, we first 

defined for each subject a subject-specific similarity matrix of the developmental trajectories 

for each cortical attribute (i.e., SA and LGI) between each pair of vertices in the surface 

atlas, using Pearson's correlation (Fig. 1(b)). Of note, as each subject had a different number 

and different temporal distribution of time points owing to missing scans, the subject-

specific similarity matrix naturally solved this issue. For each cortical attribute of each 

subject, we computed its subject-specific similarity matrix As as: As(i, j) = (1 + rs(i, j))/2, 

where rs(i, j) is Pearson's correlation coefficient between the developmental trajectories of a 

cortical attribute between each pair of vertices i and j. One intuitive method to perform 

surface atlas parcellation is to first simply average similarity matrices of all subjects as a 

population-mean matrix and then perform spectral clustering based on this mean matrix [6]. 

This, however, ignores the remarkable individual variability in terms of growth patterns and 

scan distributions, thus failing to fully capitalize on both common and complementary 

information across individuals, leading to less meaningful parcellations.

To fully integrate both common and complementary information of individuals, we propose 

to first nonlinearly fuse their similarity matrices into a single matrix (Fig. 1(c)) and then 

perform spectral clustering based on this fused matrix (Fig. 1(d)). Our central idea was to 

iteratively update every matrix by diffusing information across subjects, making it more 

similar to others, until convergence [14]. To achieve this, for each subject-specific similarity 

matrix As, we first computed a full kernel matrix Ps and a sparse kernel matrix Ms 

respectively as:

(1)

Herein, Ps encoded full similarity information among vertices and Ms captured reliable, 

high-similarity neighbors for each vertex [14]. Ni represented K nearest neighbors of vertex 

i. Given N subjects, Ps of each subject at iteration t was then updated as: 

, s, k ∈ {1, …, N}. In this way, the isolated weak 

similarities disappeared, while the strong similarities were added to others. Meanwhile, the 

weak similarities supported by all matrices were retained, depending on their neighborhood 

connections across subjects. After T iterations, the fused matrix (average of all subjects' ) 

was used for parcellation based on spectral clustering.

3 Results

We performed developmental trajectories based surface atlas parcellation using surface area 

and local gyrification, by utilizing a total of 202 MRI scans from 35 healthy infants. In all 

results, we set K as 30 experimentally. The left panel of Fig. 2 shows the parcellation results 

based on the trajectories of surface area with different numbers of clusters from 2 to 12, 

using the proposed method of nonlinear fusion of individuals' similarity matrices, in 

comparison to simple averaging of individuals' similarity matrices [6]. For direct comparison 
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with parcellations based on the trajectories of cortical thickness [6] and genetic correlation 

of surface area [5], we set the maximum cluster number as 12 as in [5, 6]. As shown, the 

proposed method led to biologically much more meaningful parcellations. For example, at 2-

cluster parcellation, the proposed method revealed an anterior-posterior division to partition 

the unimodal motor, somatosensory, visual, and auditory cortices from the high-order 

prefrontal, inferior temporal, and insula cortices. In contrast, the averaging-based method 

grouped high-order frontal pole area with unimodal cortices, thus leading to less meaningful 

results. Of note, the anterior-posterior division revealed by the proposed method was 

generally consistent with the genetic patterning of surface area in adults [5]. More 

importantly, the proposed method revealed a naturally hierarchical organization of 

developmental patterning of surface area, in line with the findings of hierarchical 

organization of genetic patterning of surface area [5]. This means that, when increasing the 

cluster numbers, a new region is created largely without changing existing boundaries of 

parcellation. For example, the boundaries between the prefrontal cortex and motor cortex 

(indicated by the blue arrows) and the boundaries between visual cortex and temporal cortex 

(indicated by the green arrows) were well-preserved from 4-cluster to 12-cluster parcellation 

using the proposed method, while the corresponding boundaries, by the averaging-based 

method, were quite unstable across different numbers of clusters. In addition, as highlighted 

by the gray arrows, the cluster of the auditory cortex was well-preserved from 4-cluster to 

12-cluster parcellation by the proposed method, whereas this cluster disappeared from 8-

cluster to 10-cluster parcellation, when using the averaging-based method [6]. Moreover, as 

indicated by the red arrows, the averaging-based method led to many isolated fragments in 

its parcellations. To further verify the parcellation, we performed seed-based analysis as in 

[5, 6]. Specifically, for each of the 26 uniformly distributed seeds on the atlas, its correlation 

with all other vertices, based on the population mean correlation maps, was shown by a 

respective color-coded small surface map. As shown in Fig. 3(a), seeds in the same cluster 

yielded largely the similar correlation patterns, while seeds across the boundaries of clusters 

(purple curves) led to quite different patterns. For example, the seed in the cluster of the 

auditory cortex had a unique correlation map, in comparison with the nearby seeds, 

confirming the rationality of our parcellation.

The right panel of Fig. 2 shows the surface atlas parcellations based on the developmental 

trajectories of local gyrification with different numbers of clusters. At 2-cluster parcellation, 

both methods identified a dorsal-ventral division to separate frontal and parietal cortices 

from temporal, insula, and visual cortices. However, with the number of clusters increasing, 

the proposed method revealed a more meaningful hierarchical organization of the 

developmental patterning of local gyrification. For example, the boundaries between 

prefrontal and insula cortices (green arrows), the boundaries between supramarginal gyrus 

and insula cortex (yellow arrows), and the boundaries between occipital and temporal 

cortices (blue arrows) were well-preserved from 4-cluster to 12-cluster parcellation by the 

proposed method, while the corresponding boundaries, by the averaging-based method, were 

quite variable across different numbers of clusters, showing unstableness of these clusters. 

As performed in verifying surface area based parcellation, we also performed seed-based 

analysis of the population mean correlation patterns of developmental trajectories of local 

gyrification, by using 26 uniformly distributed seeds on the atlas. As shown in Fig. 3(b), 
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seeds in the same cluster yielded largely the similar correlation patterns, while seeds across 

the boundaries of clusters (purple curves) led to quite different patterns.

Fig. 4 shows a comparison of our parcellations with the parcellation based on genetic 

correlation of surface area of adults [5] and cortical thickness trajectories of infants [6]. In 

our 12-cluster parcellations based on developmental trajectories, all clusters largely 

corresponded to functional specializations, with their names provided in leftmost and 

rightmost columns. In general, surface area, local gyrification, and cortical thickness each 

exhibited distinct parcellation patterns based on its developmental trajectories, in line with 

the reports that each has distinct genetic underpinning, cellular mechanism, and 

developmental trajectories [7–9]. Interestingly, parcellations based on trajectories of surface 

area and local gyrification revealed several similar clusters, e.g., superior parietal (cluster 2), 

inferior parietal (cluster 3), and precuneus regions (cluster 6). In addition, parcellations 

based on trajectories of surface area and cortical thickness (Fig. 4(d)) [6] identified several 

similar clusters, e.g., perisylvian (cluster 4), visual (cluster 5), and medial temporal cortices 

(cluster 9). Moreover, several clusters in the parcellation based on trajectories of surface area 

and the genetic correlation of surface area (Fig. 4(c)) [5] appeared similar, e.g., visual 

(cluster 5), precuneus (cluster 6), and superior parietal cortices (cluster 2).

4 Conclusion

This paper has two major contributions. First, based on the work in [6], we propose a novel 

method to parcellate surface atlases, using cortical developmental trajectories, through 

nonlinear fusion of individuals' similarity matrices, which better capitalizes on both common 

and complementary information across subjects. Second, leveraging this new method, we 

derived the first infant cortical surface atlas parcellations based solely on dynamic 

developmental trajectories of surface area and local gyrification, respectively, revealing their 

distinct and biologically meaningful growth patterning. As there is no ground truth for 

developmental trajectories based parcellations, we validate our results by 1) using existing 

neuroscience knowledge, 2) performing seed-based analysis, and 3) comparing with the 

results using the existing method. In the future work, we will investigate the different 

numbers of clusters in parcellations and find the optimal cluster number, according to 

silhouette coefficient [5]. We will further comprehensively and quantitatively compare our 

parcellations with existing parcellations [4–6], and apply them to early brain development 

studies. As each cortical attribute defines a distinct parcellation, to study a specific attribute, 

its corresponding parcellation would better be adopted, as this encodes unique growth 

patterning.
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Fig. 1. 
Flowchart of developmental trajectories based parcellation of infant surface atlases.
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Fig. 2. 
Surface atlas parcellations based on the developmental trajectories of surface area (left 

panel) and local gyrification (right panel), respectively, by (a) and (c) fusion of individuals' 

similarity matrices, and (b) and (d) averaging of individuals' similarity matrices.
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Fig. 3. 
Seed-based analysis of population mean correlation patterns of (a) surface area 
developmental trajectories and (b) local gyrification developmental trajectories from 35 

infants, for verifying the parcellations in Fig. 2. For each of 26 seeds, its correlations with all 

other verices are shown as a respective color-coded small surface map.

Li et al. Page 10

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2016 May 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Comparison with parcellation based on genetic correlation of surface area of adult [5] and 

parcellation based on cortical thickness trajectories of infants [6].
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