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Abstract

We characterized the full-length genomes for nine novel variants of HCV genotype 4 (HCV-4), 

representing a new subtype 4s and eight unclassified lineages. They were obtained from patients 

who resided in Canada but all had origins in Africa. An extended maximum clade credibility 

(MCC) tree was reconstructed after the inclusion of 30 reference sequences. It differentiated 18 

assigned subtypes and 10 unclassified lineages within HCV-4. Similar analysis of 102 partial 

NS5B sequences resulted in another MCC tree that revealed 22 assigned subtypes (4a–4t, 4w, and 

4v) and 30 unclassified lineages at the subtype level. Our study shows that HCV-4 is 

taxonomically complex and it displays high genetic diversity to support an African origin.
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Introduction

Hepatitis C virus (HCV) is a blood-borne pathogen that infects an estimated 115 million 

people worldwide or approximately 1.3–2.1% of the global population (Gower et al., 2014). 

HCV infection is characterized by the establishment of chronic hepatitis in about 70–85% of 

the infected individuals among whom many develop hepatocellular carcinoma, liver 

cirrhosis, and liver failure (Hoofnagle, 2002; Zoulim et al., 2003). Eventually, these end-

stage liver diseases cause substantial morbidity and mortality (Razavi et al., 2014).

HCV possesses a single stranded, positive-sense RNA genome of about 9600 nucleotides in 

length. HCV is classified into the Hepacivirus genus of the Flaviviridae family and has a 
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high degree of genetic diversity (Thiel et al., 2005). Accordingly, HCV can be divided into 

seven genotypes and each genotype, excluding genotypes 5 and 7, is further divided into a 

number of subtypes. Currently, 82 subtypes of HCV have been confirmed. Each have at least 

one full-length ORF sequence characterized and encompass a minimum of three 

epidemiologically unrelated isolates. Among them, genotype 4 (HCV-4) represents one of 

the most complex lineages for which 21 subtypes have been designated in addition to a 

number of variants that remain unclassified (Smith et al., 2014) (http://talk.ictvonline.org/

ictv_wikis/w/sg_flavi/56.hcv-classification.aspx). The HCV genotypes have different 

geographic distribution patterns and respond in a different way to antiviral therapy. 

Generally, subtypes 1a, 1b, 2a, 2b, and 3a are globally distributed. In contrast, most other 

subtypes are restricted to certain regions (Simmonds et al., 2005). Clinically, genotypes 2 

and 3 have shown better responses than genotypes 1 and 4 to interferon-α and ribavirin 

standard combination therapy (Feld and Hoofnagle, 2005; Manns et al., 2006). Although the 

advent of direct-acting antivirals (DAAs) may show improved genotype coverage and 

response, their approval remain restricted to specific genotypes (Delang et al., 2013).

Based on full-length genome sequence data from our previous study, a total of 17 HCV-4 

subtypes (4a–4d, 4f, 4g, 4k–4r, 4v, 4w) are now confirmed (Li et al., 2009; Smith et al., 

2014). Two distinct HCV-4 variants not assigned to a subtype also have had their genomes 

completely sequenced. However, there remain a number of HCV-4 variants that show a 

considerable degree of genetic diversity from the other known HCV-4 lineages based on 

partial genome sequences (Murphy et al., 2007). In the present study, we determined the 

full-length genome sequences for nine such variants further revealing the extensive diversity 

and complexity of HCV-4.

Results

Analysis of the full-length genomes

The full-length HCV-4 genome was characterized for nine isolates represented by QC108, 

QC127, QC132, QC147, QC215, QC253, QC352, QC361, and QC58, each from 16–20 

overlapping fragments (data not shown). These genomes were 9426–9563 nucleotides (nt) in 

length, starting from the extreme 5′-UTR through to the variable region of the 3′-UTR 

(Table 1). For a more comprehensive analysis of the nine full-length genome sequences, a 

maximum clade credibility (MCC) tree was reconstructed with the inclusion of 30 reference 

sequences (Fig. 1). Genotype 4, the major cluster, is represented by a total of 33 sequences 

and the remaining 6 genotypes are each represented by a solitary branch (genotypes 1–3 and 

5–7). In the MCC tree, the genotype 4 cluster was supported with a clade probability of 0.99 

and proved more closely related to genotype 1 than to the other five genotypes. Within this 

cluster, a total of 28 taxonomic lineages could be differentiated including 18 confirmed 

subtypes (4a–4d, 4f, 4g, 4k–4t, 4v, and 4w), two unclassified lineages represented by P025 

and BID-G1253, and eight other unclassified lineages represented by the genomes 

characterized in this study. Among the 18 confirmed subtypes, 4s represented by QC361, 

was newly assigned in this study. Analysis of Core-E1 and NS5B genome sequences 

revealed that QC361 showed a high degree of genetic similarity to three other QC-isolates 

(QC348, QC409, and QC547) thus meeting current criteria for subtype assignment (see Fig. 
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S1 and Fig. 2). Fig. 1 shows that the HCV-4 cluster can be divided into three major subsets. 

The first subset is the most complex, containing 13 assigned subtypes (4a down to 4t) and 

five unclassified variants represented by QC352, QC215, QC127, QC132, and QC147. 

Among the latter five, QC352 and QC127 each showed a relatively shorter branch, with 

QC352 positioned between subtypes 4a and 4c and QC127 between subtypes 4v and 4q. In 

contrast, QC215, QC132, and QC147 each showed a relatively longer branch, with QC215 

adjacently grouped with subtype 4s and QC132 and QC147 grouped around subtype 4l. The 

second subset contained two assigned subtypes, 4b and 4w, and four unclassified variants 

represented by QC253, QC108, QC58, and P026. Among the latter four, the three QC-

genomes determined in this study grouped closest to subtype 4b. P026 was initially 

classified as subtype 4b (Koletzki et al., 2009), but has later been recategorized as an 

unclassified variant (Smith et al, 2014). In contrast to the above two subsets, the third subset 

contained no isolates from this study. Phylogenies based on the maximized parsimony 

method and the maximum likelihood method were also reconstructed, which showed 

topologies consistent to that in Fig. 1. For simplicity, these phylogenies are not shown in this 

paper.

Pairwise nucleotide similarities were calculated for the full-length HCV-4 genome 

sequences. When the nine genomes determined in this study were compared to each other, 

the largest similarity of 86.2% was observed between QC108 and QC253, while the smallest 

similarity of 77.5% was seen between QC132 and QC58. When these nine genomes were 

compared with the 24 reference HCV-4 sequences, the highest similarity of 86.5% was 

shown between QC352 and QC381/4c, while the lowest similarity of 77.3% was seen 

between QC58 and ED43/4a. Smith et al. (2014) recently observed that members of the 

same subtype almost exclusively displayed nucleotide differences of <13% while members 

of different subtypes virtually displayed differences of >15%. In this study, however, we did 

identify nucleotide differences that fell into the 13–15% gap. When QC127 was compared 

either to QC262/4q or to BID-G1248, a nucleotide difference of 14.1% was observed. When 

QC352 was compared to QC429/4a and QC381/4c, the nucleotide differences were 14.1% 

and 13.5%, respectively. Similarly, comparing QC429/4a to QC381/4c, QC139/4p to 

QC155/4t, and QC262/4q to BID-G1248/4v, nucleotide differences of 14.9%, 14.7%, and 

14.0%, respectively, were observed. Because these intermediate results do not arise from 

technical problems or a recent recombination event, they would reflect the actual variation as 

recently discussed (Li et al., 2015). Pairwise comparison of four subtype 4s isolates was also 

performed in their partial Core-E1 and NS5B regions that showed nucleotide similarities of 

7.6–9.6% and 4.6–7.7%, respectively, confirming members of the same subtype.

Analysis of partial sequences

A segment of the NS5B region, corresponding to the nucleotides numbered 8276-8615 in 

H77 genome has been found to reliably differentiate HCV genotypes and subtypes (Murphy 

et al., 2007). For a better understanding of the genetic variation and epidemiological 

distribution patterns relating to the nine isolates characterized in this study, we also analyzed 

the above NS5B sequence from 102 isolates representing each of the 22 assigned subtypes 

(counting subtype 4s designated in this study) and all unassigned variants of HCV-4. This 

resulted in the second MCC tree shown in Fig. 2, which differentiated 52 lineages at the 
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subtype level. Among these lineages, 22 assigned subtypes 4a–4t, 4v, and 4w are well 

separated (Koletzki et al., 2009; Simmonds et al., 2005; Smith et al., 2014). Of the nine 

genomes we determined in this study, excluding QC361 that we assigned as a new subtype 

4s, the other eight each represent one unassigned lineage. Each of these unassigned lineages 

contained no more than two individual isolates, indicating their low frequencies in the 

populations that were sampled (Fig. 2). We are now unable to assign these eight isolates new 

subtypes, because they do not meet the presently recommended criteria. These criteria 

suggest that future subtype assignments will be only made for lineages containing sequence 

data from three or more isolates and for which the coding region sequence of at least one 

must be complete or nearly complete (Smith et al., 2014).

Except for those characterized in the NS5B region, a number of HCV-4 isolates 

characterized only in other genomic regions were also analyzed. However, none of them 

grouped with the eight unclassified variants we determined in this study (data not shown). 

The results suggest that all the unclassified HCV-4 lineages lack sufficient numbers of 

closely related isolates for allowing their assignment to new subtypes.

Similarity plotting

To exclude the possibility of viral recombination, pairwise nucleotide similarity curves were 

plotted along HCV genomes. Upon comparison of the nine genomes from this study with 

each other, and with the 49 reference sequences shown in Fig. 1, no such evidence was 

detected (data not shown).

Discussion

In this study, the full-length genomes were characterized for nine HCV-4 isolates. Excluding 

QC361 assigned to subtype 4s, the other eight genomes each represent an unclassified 

lineage differentiable at the subtype level. This was supported not only by the analysis of 

full-length genome sequences but also by the analysis of partial sequences in both Core-E1 

and NS5B regions. In previous reports, two other unclassified variants of HCV-4 each 

representing a distinct lineage, also had their full-length genomes determined (Newman et 

al., 2013; Smith et al., 2014). With the inclusion of these two variants, there are now a total 

of 10 unclassified lineages for which a complete genome sequence is available further 

indicating the high genetic complexity of HCV-4. Analysis of partial NS5B sequences 

revealed many additional unclassified lineages of HCV-4 at the subtype level. Such a finding 

implies that HCV-4 is far more complex than that presently sampled. However, if these 

variants are not highly prevalent, their assignment to a new subtype has a little meaning.

Although sampled in Canada, the nine new genomes were all from patients that had their 

origins in Africa (Table 1). Likewise, the majority of sequences in both Figs. 1 and 2 also 

showed an African origin. The ancestral origin of HCV-4 in Africa is supported by studies 

from sub-Saharan African countries that showed high HCV seroprevalences and local 

epidemics in association with multiple HCV-4 lineages. For example, 11.2% of people 

screened in rural Gabon were positive for HCV, among whom 92% were infected with 

HCV-4 strains (Njouom et al., 2012). In Cameroon, HCV seroprevalence was 11% in a 

group of high-HIV risk individuals and 16% of the isolates were classified as HCV-4 
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(Ndjomou et al., 2003). In another study from Cameroon on individuals aged >60, about 

56% of the infections were due to HCV-4 strains (Pépin et al., 2010). In a recent study based 

on 1999 members of the uniformed services in the Democratic Republic of Congo, the 

seroprevalence of HCV was 3% and all the classified HCV sequences belonged to genotype 

4, comprising subtypes 4c, 4k, 4h and 4r, as well as a potential new subtype candidate (Iles 

et al., 2014). In each of these studies, however, the seroprevalence of HCV was associated 

with patient age and multiple HCV lineages were detected, indicating the indigenous and 

long-term endemic circulation of HCV-4. Diverse HCV-4 isolates are also common in 

Europe. However, this could have resulted from the historical roles played by the European 

explorers in Africa (Markov et al., 2012) and the fact that many immigrants from Africa are 

now residing in Europe. In addition, there has been rapid growth in the prevalence of HCV 

subtypes 4a and 4d in Europe in recent decades, particularly among IDUs (Ciccozzi et al., 

2012; de Bruijne et al., 2009; van Asten et al., 2004). Subtypes 4a and 4d have also been 

found in North America among the local population likely acquired through injection drug 

use (Murphy et al., 2007).
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Materials and methods

Subjects and specimens

In the Canadian province of Quebec, serum samples from patients, who were positive for 

HCV, are generally submitted from hospital laboratories or private clinics to the Laboratoire 

de Santé Publique du Québec for routine HCV genotyping. This resulted in a large 

collection of samples that had their partial HCV sequences determined and classified into 

various genotypes and subtypes (Murphy et al., 2007). Among them, nine samples, QC108, 

QC127, QC132, QC147, QC215, QC253, QC352, QC361, and QC58, collected from 2003–

2009 were found to contain unique HCV-4 strains and were selected for further 

characterization in this study. Detailed information about the patients’ gender, geographic 

origin and HCV viral load are shown in Table 1.

PCR amplification and sequencing

Full-length HCV-4 genomes were each determined from a 100 μl serum sample. Briefly, the 

RNA extraction (Qiagen Viral RNA extraction kit, Qiagen, Valencia, CA) and the cDNA 

synthesis (RevertAid First Strand cDNA Synthesis Kit, Fermentas Life Science, EU) were 

performed according to the manufacturer’s protocols. Genomic fragments overlapping the 

full-length HCV-4 genomes were amplified in conventional PCR using degenerate primers 

as previously described (Li et al., 2009) or in combination with those specific primers 

designed based on the obtained sequences. Standard procedures were adopted to avoid 

potential carryover contamination (Kwok and Higuchi, 1989). Amplicons were sequenced as 

previously described (Li et al., 2009).
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Sequence datasets and inspection

The obtained nine full-length genomes were annotated according to the standard nucleotide 

numbering in the H77 genome, from the extreme 5′-end through to the 3′-UTR (Kuiken et 

al., 2006). To determine the phylogenetic relationship, we retrieved 24 full-length HCV-4 

sequences representing subtypes 4a–4d, 4f–4g, 4k–4r, 4t, 4v–4w, the two HCV-4 unassigned 

variants BID-G1253 and P026 (Smith et al, 2014) and an additional six sequences 

representing each of the other six genotypes for a total of 39 full-length genome sequences.

To better explore the epidemiology and genetic relationship of HCV-4 variants related to our 

new isolates, an additional NS5B sequence dataset was assembled representing each 

assigned subtypes and all unassigned subtype variants of genotype 4 (http://hcv.lanl.gov/

content/index). As a result, 102 sequences of HCV-4 were included, each of which has 

approximately 323 nucleotides in length, corresponding to nucleotide positions 8288–8610 

in the H77 genome.

The two sequence datasets were then aligned using the BioEdit software (Tippmann, 2004) 

followed by visual inspection and manual adjustments. To exclude possible recent viral 

recombination events, the RDP3 software (Martin et al., 2010) was run with settings as 

previously described (Lu et al., 2007) for the full length sequence dataset.

Phylogenetic analyses

The BEAST software was used to analyze the two datasets under the combination of the 

GTR+I+Γ6 substitution model, uncorrelated lognormal clock model, and the Bayesian 

skyline model to reconstruct the maximum clade credibility (MCC) trees (Drummond and 

Rambaut, 2007). For this purpose, we selected a rate of 1.0 in the panel of “Clock Models”, 

which would result in the nodes and branches of the tree being estimated in units of 

substitution/sites based on the Markov Chain Monte Carlo (MCMC) algorithm. Except for 

that above mentioned, all the other BEAST procedures were the same as that we have 

recently described (Li et al., 2014).

Genbank accession numbers

The nucleotide sequences reported in this study were deposited in Genbank with the 

following accession numbers: JF735127, JF735129-JF735132, JF735134-JF735138.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at http://

dx.doi.org/10.1016/j.virol.2015.03.038.
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Fig. 1. 
MCC tree estimated using full-length genome sequences of HCV. Reference sequences from 

the confirmed subtypes of genotypes 1, 2, 3, 4, 5, 6, and 7 are included (black tips), together 

with the nine new genomes determined in this study (red tips) and two additional 

unclassified variants (blue tips). Each genotype is denoted with a single digit number on the 

major branches of the tree while all subtypes of genotype 4 are labeled with single lower 

case letters above the related branches in proximity to the right tips. Isolates are named using 

the following format: genotype or subtype.accession number.isolate name.sampling country. 

To simplify the tree, only the clade posterior probability supports of less than 1 are shown in 

italics, otherwise they are equal to 1 but are not shown. A scale bar at the bottom represents 

0.10 units of nucleotide substitution per site. Country codes: BI: Burundi; CA: Canada; CD: 

Congo; CF: Central Africa; CM: Cameroon; EG: Egypt; FR: France; GB: United Kingdom; 

HK: Hong Kong; JP: Japan, ME, Montenegro; NZ: New Zealand; PT: Portugal; RW: 

Rwanda; US: the United States.
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Fig. 2. 
MCC tree of HCV-4 estimated using 102 partial NS5B sequences corresponding to 

nucleotide positions 8288–8610 in the referenced H77 genome. Each subtype or subtype 

analogy is denoted by a half bracket at the right hand side of the tree. These brackets are 

vertically aligned and each is labeled with single digit number 4 if it refers to an unclassified 

lineage or is followed by a lower case letter if it refers to an assigned subtype. A purple 

vertical dash line in the middle of the tree delimits the genetic distance at which the 22 

assigned HCV-4 subtypes are separable from each other and for which an additional 30 
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unclassified lineages can be also differentiated. At the root of the tree, the outlier H77 is 

indicated. A scale bar at the bottom represents 0.075 units of nucleotide substitution per site. 

The nine genomes from this study are shown in red tips whereas those four sequences from 

the report by Iles et al. (2014) are indicated with blue tips. In addition to country codes 

indicated in Fig. 1, the other codes are: GA: Gabon; CY: Cyprus; ZA: South Africa; MA: 

Malaysia.
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