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ABSTRACT

MicroRNAs (miRNAs) are small endogenous noncoding RNAs that play an instru-
mental role in post-transcriptional modulation of gene expression. Genes related
to osteogenesis (i.e., RUNX2, COLIAI and OSX) is important in controlling the
differentiation of mesenchymal stem cells (MSCs) to bone tissues. The regulated
expression level of miRNAs is critically important for the differentiation of MSCs
to preosteoblasts. The understanding of miRNA regulation in osteogenesis could be
applied for future applications in bone defects. Therefore, this study aims to shed light
on the mechanistic pathway underlying osteogenesis by predicting miRNAs that may
modulate this pathway. This study investigates RUNX2, which is a major transcription
factor for osteogenesis that drives MSCs into preosteoblasts. Three different prediction
tools were employed for identifying miRNAs related to osteogenesis using the 3’UTR of
RUNX2 as the target gene. Of the 1,023 miRNAs, 70 miRNAs were found by at least two
of the tools. Candidate miRNAs were then selected based on their free energy values,
followed by assessing the probability of target accessibility. The results showed that
miRNAs 23b, 23a, 30b, 143, 203, 217, and 221 could regulate the RUNX2 gene during
the differentiation of MSCs to preosteoblasts.

Subjects Cell Biology, Computational Biology, Computational Science
Keywords miRNAs, MicroRNAs, Osteogenesis, Mesenchymal stem cells, Bioinformatics, RUNX2

INTRODUCTION

Osteogenesis is a complex multistep process that includes proliferation, maturation and
matrix mineralization from the development of mesenchymal stem cells into bone tissue.
Mesenchymal stem cells (MSCs) are a type of adult stem cell that can be isolated from
bone marrow and various tissues, such as muscle, adipose tissue, placenta and umbilical
cord (Erices, Conget & Minguell, 2000). MSCs are multipotent stem cells that have the
ability to self-renew or differentiate into mesodermal-derived cells, such as osteoblasts,
chondrocytes and adipocytes (Deans ¢~ Moseley, 2000; Pittenger et al., 1999). MSCs have
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high potential for use in cell therapy due to their special properties: proinflammatory,
immunoprivilege, and multi-differentiation. Most importantly, the use of pluripotent stem
cells derived from embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs)
is still limited because of ethical issues, technical problems and teratoma formation of
these cells. Transplantation of these MSCs has clear advantages for the future treatment
of bone defects, bone fractures, osteoporosis and osteoarthritis according to both in vitro
studies and clinical trials. The potential of treatment showed a low outcome due to many
unknown mechanisms of MSCs, particularly the osteogenic regulatory system of MSCs.
There are many signaling pathways, such as the Wnt signaling pathway and BMP pathway,
that play an integrative role for bone development (Jarmes, 2013). These signaling pathways
ultimately affect major transcription factors, such as runt-related transcription factor2
(RUNX2) and osterix (OSX) (Komori, 2006). RUNX2 is a major transcription factor that
regulates the differentiation of MSCs to preosteoblasts, and osterix plays a significant role
in the development of the preosteoblast stage into osteoblasts. In this work, the regulatory
system of osteogenesis is extensively discussed, including not only the signaling pathway
but also epigenetic control, such as DNA methylation, histone modification and miRNAs.

MicroRNAs (miRNAs) are small endogenous non-coding RNAs, and their length
is approximately 21-24 nucleotides. MiRNAs regulate gene expression at the post-
transcription level through the degradation of mRNA or inhibition of protein synthesis (He
& Hannon, 2004). Their function is through specific binding of miRNA and the 3> UTR
of the target gene. MiRNAs are associated with stem cell differentiation and tissue
development, including bone development. The regulation of miRNAs in osteogenesis
has been studied, particularly in the expression of RUNX2. In the studies of Huang et al.
(2010) and Tome et al. (2011), miR-204 and miR-335 exhibited an inhibitory mechanism
through binding at the 3’ untranslated region of RUNX2. In addition, miR-103a inhibited
bone formation by binding the RUNX2 target under both physiological and pathological
mechanical conditions during in vitro and in vivo studies (Zuo et al., 2015). Zhang et
al. (2011) found that the osterix gene was regulated by miR-637. MiR-637 enhanced
adipogenesis and inhibited osteogenesis.

RUNX2 is a master transcription factor that controls osteogenesis. RUNX2 or
CBFA-1 knockout mice showed a complete defect of bone formation because of
osteoblast maturational arrest (Komori et al., 1997). The activation of RUNX2 in
osteogenesis is regulated by several signaling pathways (i.e., Wnt and bone morphogenic
protein) (Hayrapetyan, Jansen & Van den Beucken, 2015). The epigenetic regulation of
osteogenesis has been widely discussed but it is not well characterized, particularly, the
mechanism of miRNAs. Recently, Kang ¢~ Hata (2015) proposed that the major mechanism
of the regulatory function of miRNAs can be attributed to its controlling of the osteogenesis
process via the cell fate determination of stem cells. Moreover, the functions of miRNAs
are complex and remain unclear; thus, more studies on the role of miRNAs in osteogenesis
are needed for future applications in clinical trials and diagnoses because previous studies
cannot clearly describe the multiple steps of osteogenesis. Microarrays and direct cloning
are typically used for predicting miRNAs, but these approaches are time consuming
and expensive. Therefore, the objective of this study is to apply bioinformatics tools
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for predicting the miRNAs involved in osteogenesis, which is performed using the 3’
untranslated region (3’'UTR) of RUNX2 gene and miRNA database.

MATERIALS AND METHODS

Data collection

The workflow implemented for miRNA prediction is shown in Fig. 1. The human 3’UTR
sequence of RUNX2 was obtained from the NCBI database (www.ncbi.nlm.nih.gov).
Using the nucleotide database and keywords including homo sapiens, RUNX2, and mRNA
for searching nucleotide sequences, the results showed 122 nucleotide sequences. Homo
sapiens runt-related transcription factor 2 (RUNX2), transcript variant 1, mRNA (accession
number NM_001024630) was selected. It is a 5,553 bp linear mRNA. The structure of
human protein coding mRNA includes a 5’cap, 5’UTR, coding sequence, 3’'UTR, and a
poly-A tail. The 3’UTR sequence of the RUNX2 gene is located downstream from the
coding sequence region and is composed of 3,777 nucleotide bases (Table S1).

Prediction of miRNAs
The prediction of miRNAs was investigated using 3 different algorithms that are the most
widely used in the updated version as follows: miRanda, RegRNA and TargetScan.

The miRanda software (Betel et al., 2010) has a miRNA prediction function that uses an
algorithm called mirSVR. The mirSVR algorithm learns to predict mRNA target sites on
mRNA expression changes from a panel of mRNA transfection experiments and displays
the scores and ranks the efficiency of the miRanda-predicted miRNAs. mirSVR used 3
main features: (1) duplex structure of the target site and miRNA at the seed region, (2)
composition flanking the target site, and (3) secondary structure accessibility of the site
and conservation to calculate and display the mirSVR score. To predict miRNAs, the name
of the target mRNA and species were used as the input. The lower mirSVR scores are
correlated with down-regulation at the mRNA or protein levels and can be interpreted as
a probability of target inhibition, leading to candidate miRNA selection.

RegRNA version 2.0 (Huang et al., 2006; Chang et al., 2013) is an integrated web server
for miRNA prediction. This software database was retrieved from a literature survey of
experimentally validated miRNAs, namely, miRBase. The miRBase database provides
extensive miRNA sequence data, annotations and predicted gene targets. To predict
miRNAs, the mRNA target sequence was used as the input. The prediction results are
presented via both textual and graphical interfaces. The minimum free energy (MFE)
of the miRNA-target site duplex and score are determined by miRanda and RegRNA
integrated tools. The known miRNA genes in three mammalian genomes, including
human, mouse and rat, were obtained from miRBase. Therefore, the RegRNA currently
has 21,643 known miRNA sequences. During the miRNA prediction, the lower MFE values
reveal the energetically more probable hybridizations between the miRNAs and target
genes.

TargetScanHuman version 6.2 (Lewis, Burge ¢ Bartel, 2005; Grimson et al., 2007) is a
web server for predicting miRNAs by searching for the presence of conserved sites that
match the seed region of each miRNA. In mammals, predictions are ranked based on the
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Figure 1 Schematic representation of the workflow for the identification of miRNAs involved in
osteogenesis.

predicted efficacy of targeting as calculated using the context + scores of the sites and
their probability of conserved targeting. TargetScanHuman considers matches to annotate
human UTRs and their orthologs, as defined by UCSC whole-genome alignments. To
predict miRNAs, the name of the target mRNA and species were used as the input. The

Seenprachawong et al. (2016), PeerJ, DOI 10.7717/peerj.1976 414


https://peerj.com
http://dx.doi.org/10.7717/peerj.1976

Peer

lower context + score and higher probability of conserved target reveal more probable
candidate miRNAs.

MiRNA selection criteria

The predicted miRNAs from the previous step followed by the selection criteria can provide
candidate miRNAs in the next step. The candidate miRNA selection criteria are as follows:
(1) exhibited greater than or equal to 2 in 3 prediction tools; (2) high negative free energy
that represented more probable hybridizations of miRNA-mRNA duplex; (3) high negative
mirSVR score showed a high probability of target inhibition; and (4) high negative context
+ score and high probability of conserved target revealed good candidate miRNAs for
target gene inhibition.

Target accessibility

The miRNAs that were qualified by the candidate miRNA selection criteria were assessed
in terms of target accessibility using Sfold. The Sfold software is a statistical sampling
algorithm for predicting the RNA secondary structure that is accessible for RNA-targeting
nucleic acids through base-pairing interactions. Target accessibility was predicted by
probability; sites with high probability are estimated to be a good accessible region for
miRNA binding (Ding & Lawrence, 2001; Ding e~ Lawrence, 2003; Ding, Chan & Lawrence,
2004). The miRNAs that can hybridize to target regions of mRNA were available as
candidates for target gene inhibition.

RESULTS
Prediction of RUNX2-specific miRNAs

Following the implementation of the workflow for miRNA prediction that was explained in
the materials and methods (Fig. 1), to identify the predicted miRNAs of the RUNX2 gene,
we computationally identified miRNAs using three prediction tools, namely, miRanda,
RegRNA and TargetScanHuman. The 3’'UTR sequence of RUNX2 was retrieved from the
NCBI database, which is 3,777 nucleotides in length. Then, miRNAs were predicted using
miRNA prediction tools. The results indicated that 922, 71 and 30 miRNAs were predicted
by RegRNA, miRanda and TargetScanHuman, respectively (Table S2).

Selection of RUNX2 miRNAs

The predicted miRNAs will be manually selected for further candidate miRNAs. Based
on the selection criteria that were explained in the materials and methods, we retrieved
only 27 miRNAs from all three prediction tools that satisfied all criteria. The selected
miRNAs that resulted from at least two prediction tools and that matched all remaining
criteria were used. The results showed 40 miRNAs from overlapping between RegRNA and
miRanda, 2 miRNAs from overlapping between RegRNA and TargetScan, and 1 miRNA
from overlapping between miRanda and TargetScan. The list of these selected miRNAs
and their respective MFE values are presented in Fig. 2A. Then, we categorized 70 miRNAs
in two tables: those that resulted from all three prediction tools (Table S3) and those that
resulted from 2 of 3 prediction tools (Table 54), which are sorted by their high negative
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as to derive the final set of 29 selected miRNAs (B) using MFE thresholds of <—10 (all three prediction
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Figure 3 Probability profile of 3’UTR RUNX2 target RNA. The target regions are indicated on the
histogram. Target structure features are essential for target binding by miRNA. The higher the probability,
the stronger the miRNA binding to the secondary structure of the target region.

free energies. Minimal free energy was further used for the determination of candidate
miRNAs based on the minimal free energy: <—10 and <—15 kcal/mol for miRNAs that
were predicted using all three prediction tools and those that were predicted using two
prediction tools, respectively. The list of 29 selected miRNAs and their respective values
(Fig. 2B) were further analyzed using the Sfold software.

RUNX2-specific miRNA candidates

Candidate miRNAs from the prediction were evaluated based on the probability of target
accessibility using the Sfold software. The analysis of the predicted target structural
accessibility also revealed cases of specific miRNA binding that is important for target
gene inhibition. A high probability will increase the chance of successful miRNA binding.
We input the 3’UTR of the RUNX2 sequence, and then we obtained a histogram of the
probability profile in each nucleotide position (Fig. 3). The positions of nucleotides with a
probability greater than 0.5 were designated to be an accessible region for miRNA binding.
Consequently, miRNAs 23b, 23a, 30b, 143, 203, 217, and 221 were selected as potential
RUNX2-specific miRNA candidates for target gene inhibition (Fig. 4).

DISCUSSION

RUNX2 is a transcription factor or master switch that controls osteogenesis, including
MSC condensation, osteoblast proliferation and differentiation, and osteoblast
maturation (Komori, 2002). There are multiple mechanisms that control RUNX2 activity,
including transcriptional regulation, translational modifications, alternative splicing,
subnuclear localization, and interactions with cofactors, among others (Stein et al.,
2004). RUNX2 is specifically expressed in the early stage of osteoblast differentiation
(Pratap et al., 2003). Overexpression of RUNX2 or Cbfa-1 (core binding factor «1) in
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Figure 4 Probability profile of the miRNA binding region of the RUNX2 target RNA. Binding regions

are shown by the orange shaded regions for miR-143 (A), miR-23a, b (B), miR-203 (C), miR-30b and
miR-217 (D) as well as miR-221 (E) at positions 558-578, 1044—1068, 2329-2352, 3343-3366 and

3371-3393, as well as 3497-3519, respectively. A probability over 0.5 in the complementary seed sequence

was denoted as the accessible region for miRNA binding.
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MC3T3-E1 preosteoblastic cells showed increased expression of bone marker genes,
including collagen type 1, osteopontin, and bone sialoprotein (Ducy et al., 1997). A recent
study showed that RUNX2 or Cbfa-1 null mice can induced a complete lack of bone
formation because of osteoblast maturational arrest, indicating a role of RUNX2 as an
osteoblast-specific transcription factor (Kormori et al., 1997). The process of osteogenesis
occurring depends on the expression of key transcriptional factors and changes in the
epigenetic mechanisms. Epigenetic regulation of osteogenesis consists of DNA methylation,
histone modification, and miRNA regulation, and they can influence gene expression
by turning on or off the specific regulatory genes. Villagra et al. (2002) have provided
evidence that the expression of the bone-specific rat osteocalcin gene can be regulated via
DNA methylation.

MiRNAs have an important role in several cellular processes, such as development,
cell proliferation, and cell death (Friedman ¢ Jones, 2009). The expression of miRNAs is
associated with several health problems, including osteoporosis (Van Wijnen et al., 2013).
Therefore, studying a functional miRNA to regulate gene expression in bone development
is still challenging for use in diagnostic and therapeutic approaches. MiRNAs showed a
regulatory role in the osteogenesis of MSCs by regulating various biological processes,
including inhibition of protein translation and promotion of mRNA degradation. Several
studies have used microarrays to characterize the genes and expression profiles of miRNAs
involved in osteogenesis.These studies identified the miRNA expression profile and their
targeted gene in differentiated and undifferentiated human MSCs. They reported that
miR-335 is downregulated in human MSC differentiation of adipogenesis and osteogenesis
(Tome et al., 2011). Huang et al. (2012) applied microarrays to analyze miRNA expression
profiles during adipogenic and osteogenic differentiation from human adipose tissue-
derived MSCs. The results from the microarray analysis revealed that miR-22 decreased
in adipogenesis but increased in osteogenesis, thus indicating a positive role of miR-22 in
the regulation of osteogenesis. Microarrays can be used to identify the expression levels
of thousands genes with high sensitivity and specificity, but it has limitations with respect
to expense and difficulty in data interpretation. Thus, bioinformatics tools are powerful
tools for investigating of genes and miRNA profiles. Effectively predicting miRNA-mRNA
interactions remains challenging due to the complex process and limited knowledge of the
interactions. Therefore, using bioinformatics tools is necessary for predicting miRNAs to
find possible miRNA-mRNA interactions.

A variety of miRNA prediction algorithms are available, as well as different approaches.
In this study, we used online bioinformatics tools, namely, RegRNA, miRanda, and
TargetScan, to predict miRNAs that mediate posttranscriptional control of RUNX2
expression involved in the process of osteogenesis. RegRNA is widely used for the
prediction of functional RNA motifs because the RegRNA database is always updated,
particularly the identification tool. This software also has a user-friendly interface, is easy
to use, and provides good graphical visualization. miRanda is an algorithm for finding
genomic targets of miRNAs by presenting mirSVR scores, which are calculated from 3
factors: binding energy of miRNA-miRNA interactions, conservation of the entire target
site and the 3’"UTR region. This algorithm is beneficial for predicting imperfect binding
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within the seed region, but it has low precision and many false positives as estimated
by experimental results (Alexiou et al., 2009; John et al., 2004). TargetScan is frequently
used for miRNA prediction because of its convenience. This algorithm predicts miRNAs
complementary with conserved sites of 3’UTR regions. The search result is limited only to
the sites that are perfectly complementary in the miRNA seed sequence and extended to
22 nucleotide-long sequences that represent true interactions. In addition, there are many
parameters for determining the outcome score, including seed match, complementary
outside the seed sequence and positioning contribution; however, sites with poor seed
pairing are missed (Lewis, Burge ¢» Bartel, 2005). We selected three prediction tools because
the combination of three prediction tools would be helpful in decreasing false positives and
false negatives and provide high accuracy and precision for the selection of specific miRNAs.
All miRNAs predicted to target the 3’UTR of RUNX2 mRNA are 23b, 23a, 30b, 143, 203,
217, and 221, and these might be potential miRNAs in osteogenesis from MSCs because
these miRNAs have high negative free energies, thus representing a high probability of
miRNA and mRNA interactions. Moreover, the positions of the target region that miRNAs
can hybridize have a probability greater than 0.5, indicating that these miRNAs potentially
play a regulatory role in osteogenesis. Interestingly, our candidate miRNAs have previously
been shown to have some association with osteogenesis. The expression of the miR-30
family was examined during osteogenesis using miRNA PCR arrays. They found that the
miR-30 family could repress RUNX2 mRNA by immediate reduction and rapid recovery
during osteogenic differentiation (Eguchi et al., 2013). MiR-221 was investigated using a
miRNA microarray, which regulated osteogenic lineage commitment. Down-regulation of
miR-221 using anti-miR-221 in hMSCs showed increased osteogenic marker genes but no
significant change in the translation of osteopontin and osteocalcin. The results of this study
revealed that miR-221 could play an important role in osteogenesis (Bakhshandeh et al.,
2012b; Bakhshandeh et al., 2012a). In addition, miR-204, miR-211 and miR-338-3p, which
were predicted in the 3 software packages, were correlated in a previous study. They found
that miR-204 and miR-211 were negative regulators of RUNX2, which inhibit osteogenesis
and promote adipogenesis of mesenchymal stem cells (Huang et al., 2010). Furthermore,
the role of miR-338-3p in human ovarian epithelial carcinoma (EOC) was reported
to inhibit ovarian cancer cell growth by targeting RUNX2 (Wen et al., 2015). However,
miR-204, miR-221 and miR-338-3p are not candidate miRNAs in this study because
they were excluded because of their low probability of target accessibility. A plausible
explanation could be that no single miRNA are deemed to be the sole driver for activating
a gene but that the orchestrated work amongst several miRNAs is crucial for modulating
the target gene. Particularly, Wu et al. (2010) found that 28 of 266 miRNAs inhibited the
expression of p21Cip1/Wafl, which is a master downstream effector of tumor suppressors.
In addition, Jiang, Feng ¢» Mo (2009) employed a resemble method in which luciferase
reporter assay was used to examine a number of miRNAs that inhibit the proto-oncogene,
cyclin DI1. They found that seven significant miRNAs could suppress the 3’UTR activity
of cyclin D1. Moreover, several factors such as Watson-Crick base pairing, energy and
seed region of miRNA, are essential for controlling the in vivo interaction of miRNA and
mRNA. In summary, in order to achieve a high confidence and accuracy set of candidate
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miRNAs which can affect the target gene, the strict selection criteria employed herein
should be applied, especially for further experimental validation. However, the criterion
could be made more or less stringent by the researcher depending on the circumstances
or purpose of an investigation of interest, which would directly determine the breadth of
miRNAs identified from the investigation.

Thus, the workflow for identifying miRNAs using bioinformatics tools is an alternative
approach that is highly useful for the prediction of novel miRNAs in osteogenesis rather
than using microarrays. This technique is convenient and inexpensive. For future studies,
gene-targeting miRNAs and miRNA expression in vitro and in vivo are highly needed to
evaluate the accuracy and precision of the identification of miRNAs.

CONCLUSION

Osteogenesis is a very important process in the human body, which encompasses several
cellular processes. The differentiation of MSCs to preosteoblasts is considered to be a
critical step in osteogenesis. This step is controlled by many regulatory mechanisms,
i.e., transcription factors, signaling pathways, and epigenetic mechanisms. MiRNAs showed
a regulatory role in osteoblastic differentiation by regulating gene expression during the
post-transcriptional process. A bioinformatics tool is a good choice for predicting candidate
miRNAs involved in osteogenesis. Using three miRNA prediction tools in combination with
selection criteria, we selected RUNX2 as a target because the RUNX2 transcription factor
acts as a master switch controlling osteogenesis. We retrieved seven candidate miRNAs,
including miR-23b, 23a, 30b, 143, 203, 217, and 221. The knowledge obtained from this
study can provide basic information regarding miRNAs in osteogenesis; however, further
studies are needed to evaluate miRNAs and target genes in vitro and in vivo for clarifying
the complex mechanism of osteogenesis.
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