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Identification of cancer-driver 
genes in focal genomic alterations 
from whole genome sequencing 
data
Ho Jang1, Youngmi Hur2 & Hyunju Lee1

DNA copy number alterations (CNAs) are the main genomic events that occur during the initiation 
and development of cancer. Distinguishing driver aberrant regions from passenger regions, which 
might contain candidate target genes for cancer therapies, is an important issue. Several methods 
for identifying cancer-driver genes from multiple cancer patients have been developed for single 
nucleotide polymorphism (SNP) arrays. However, for NGS data, methods for the SNP array cannot be 
directly applied because of different characteristics of NGS such as higher resolutions of data without 
predefined probes and incorrectly mapped reads to reference genomes. In this study, we developed a 
wavelet-based method for identification of focal genomic alterations for sequencing data (WIFA-Seq). 
We applied WIFA-Seq to whole genome sequencing data from glioblastoma multiforme, ovarian serous 
cystadenocarcinoma and lung adenocarcinoma, and identified focal genomic alterations, which contain 
candidate cancer-related genes as well as previously known cancer-driver genes.

DNA copy number alterations (CNAs) have been studied as important genomic events involved in the initiation, 
development, and progression of cancer, and reported in most types of cancer1–5. Analysis of multiple cancer 
samples in various types of cancer has revealed that the patterns of CNAs differ depending on the types of cancer, 
such as deletions in chr 10 and amplifications in chr 7 in glioblastoma multiforme (GBM) and 1q amplifications 
in breast cancer6. Although such general patterns have been observed, aberrant genes may vary depending on 
patients with the same cancer. This might be either because pathways related to a particular cancer might be 
disturbed by different combinations of genes for each patient or because some genomic aberrations are random 
events that co-occur with driver genes7. Thus, it is important to distinguish driver alterations from passenger 
alterations. To solve this issue, previous approaches attempted to locate recurrently aberrant genomic regions in 
multiple patients. However, because many passenger alterations are often located in broadly aberrant recurrent 
regions, several algorithms such as GISTIC (Genomic Identification of Significant Targets in Cancer)7 and WIFA 
(Wavelet-based Identification of Focal genomic Alterations)8 considered amplitude of alterations as well as the 
recurrence7–16. In these algorithms, recurrent focal alterations in a relatively narrow region were distinguished 
from broad alterations because focal regions are more likely to contain driver alterations.

For integrating multiple samples, some algorithms require segmentation results from individual patients while 
others directly use raw copy number log2 ratios as the inputs17. Because GISTIC employed the former approach, 
potential signals might be lost during segmentation, and focal aberrations from a small number of samples 
might be buried by other samples with no change. To address such problems, WIFA and ADMIRE (Analytical 
Multi-scale Identification of Recurring Events) exploited the latter approach, where measurement noises were 
removed and then focal aberrant regions were identified after log2 ratios from single samples were summed8,16.

DNA copy numbers have been typically measured using comparative genomic hybridization arrays or single 
nucleotide polymorphism (SNP) microarrays. Due to the recent advance in next-generation sequencing (NGS) 
technologies, CNAs can be more precisely detected from sequencing data. By exploiting CNAs from NGS data, 
there is a chance that novel driver alterations can be discovered. Although several computational algorithms 
for detecting CNAs from an individual sequencing sample have been proposed18–20, accurate identification of 
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CNAs from NGS data is a still incomplete task. It was recently reported21 that in a large fraction of whole genome 
sequencing (WGS) data for GBM samples from The Cancer Genome Atlas (TCGA)22, genomes consist of frac-
tured regions with excessive read-depth changes and these regions in the WGS data do not seem to be replicated 
in the matched SNP array data. Many segmentation algorithms have falsely predicted CNAs due to these frac-
tured regions. Combined with the difficulty in the individual data, identification of driver alteration regions from 
multiple samples is even more challenging. Most of the conventional algorithms for detecting focal genomic alter-
ations based on array platform control false discoveries by permuting probes or segmentation results. However, 
in the case of NGS data, the resolution is too high to permute them.

We previously developed a WIFA method8 for the SNP array, which is a focal copy number alteration detec-
tion algorithm based on a wavelet transform. Wavelet transforms have been used in various applications, espe-
cially for removing noise and recovering original signals. WIFA takes the log2 ratios of SNP arrays instead of 
segmented results of individual samples and measures the differences between alterations in neighboring wavelet 
coefficients obtained by the wavelet transform. WIFA removes noise by thresholding the coefficients and locates 
focal regions by clustering altered regions in multiple samples. Because WIFA uses approximation of the local 
(high-frequency) behavior of the genomic data, it can distinguish focal aberrant regions from broad aberrations.

In this study, we developed a wavelet-based method for sequencing data, referred to as WIFA-Seq. Because 
NGS data have a higher resolution than SNP data and do not have predefined probes, it is challenging to test the 
statistical significance. In some regions, reads aligned to the reference genome are very sparse, and as a result, 
spurious CNAs may be detected. In addition, some NGS data have excessive read-depth changes compared to 
copy number changes in SNP array data. We addressed these issues in WIFA-Seq by improving WIFA. When we 
applied WIFA-Seq to whole-genome sequencing (WGS) data for GBM, ovarian serous cystadenocarcinoma (OV) 
and lung adenocarcinoma (LUAD) obtained from TCGA22–24, we found several well-known focal alterations as 
well as novel alterations. In addition, we compared CNA regions from WGS using WIFA-Seq with those from 
SNP array data using GISTIC 2.014, and identified common and distinct regions.

Materials and Methods
Overview of the WIFA-Seq procedure.  To measure somatic CNAs from DNA sequencing data, tumor 
and normal blood samples were used. Because the total numbers of reads in the tumor sequencing data and nor-
mal sequencing data were differed, the depth of coverage (DOC) of each patient was normalized, and then the 
log2 ratio values between cancer and normal samples were calculated. Figure 1 illustrates the procedure of the 
WIFA-Seq method. First, log2 ratio values for an individual patient were converted into signals called yHIGH that 
measure differences in the CNA values of neighboring regions. By applying a simple post-processing step to yHIGH 
for removing artificial signals obtained during wavelet transform, ⁎yHIGH is generated. Note that because yHIGH 
signals represent local behavior of the data, it can detect focal aberrant regions among broad aberrant regions (e.g. 
Sample i in Fig. 1). Second, individual ⁎yHIGH values from all patients in the same genomic locations were summed 
into a single value, called ⁎YHIGH, representing the extent of CNAs across multiple patients. Third, the genomes 
were divided into a smaller number of regions comprised of non-zero values of ⁎YHIGH, which were called clusters. 
Finally, the statistical significance of each cluster was determined using several false discovery control (FDC) 
options, and only statistically significant clusters were suggested as focal regions.

Data sets.  We obtained WGS data for patients with GBM, OV and LUAD from TCGA after acquiring author-
ization from the database of Genotypes and Phenotypes (dbGaP). For GBM, 37 cancer and normal paired sam-
ples were collected. The average genomic coverage of reads for somatic chromosomes was 49.6 for the cancer 
BAM files and 43.7 for the normal BAM files. For OV, a set of 47 cancer and normal paired samples were col-
lected. The average genomic coverages of tumor and normal reads were 65.2 and 39, respectively. For LUAD, a 
set of 28 cancer and normal paired samples in a high read coverage, and another set of 70 paired samples in a low 
read coverage were collected. The average genomic coverages of reads for the cancer and normal samples were 
47.8 and 44 for the high read coverage set and 10.4 and 10.9 for the low read coverage set, respectively.

In addition, to assess the proposed WIFA-Seq method, we manually examined recurrently altered genes in the 
WGS samples used in this study with the following process. First, we collected 34 known GBM driver genes from 
three articles1,22,25, which were located in CNA regions from at least one of the three articles. The 34 genes are 
listed in Supplementary Table 1. Second, we applied the BIC-seq segmentation method (a bin size =  100 bp and 
λ =  2.0)18 to each WGS sample and then manually checked whether the 34 genes were altered in the 37 GBM sam-
ples. In the manual inspection, segmented regions with an absolute log2 ratio greater than or equal to 0.4 and the 
length of a segment less than or equal to 25% of the chromosome arm were considered altered regions. Although 
some regions containing known GBM-related genes were altered compared to their neighbors, their absolute 
log2 ratio values were less than 0.4. In addition, for some regions with the absolute log2 ratios greater than or 
equal to 0.4, the relative differences with their neighbors were not high enough to be focal regions. We excluded 
several known GBM genes in these regions. Finally, we obtained 18 GBM genes, MDM4, FGFR3, PDGFRA, 
PARK2, QKI, EGFR, CDK6, MYC, CDKN2A/B, PTEN, FGFR2, CCND1, CCND2, CDK4, MDM2, RB1, and 
GRB2, which were altered in more than one sample in the WGS data. We refer to these genes as silver standard 
for the GBM WGS data. We call them the silver standard instead of the gold standard because previous studies 
showed that commonly altered regions do not necessarily contain cancer driver genes7. Supplementary Table 1 
shows the alteration status of the samples.

Using a similar process applied to GBM, we have collected candidate ovarian cancer driver genes from 
one article2. Then, for the given 47 OV samples, 16 silver standard genes (MYCL, MCL1, MECOM, TACC3, 
ANKRD17, TERT, ID4, SOX17, MYC, PTEN, ALG8, KRAS, RB1, METTL17, NF1, and CCNE1) were collected 
(Supplementary Table 2). We also collected candidate lung cancer driver genes from two articles23,24. Then, for the 
high read coverage set of 28 LUAD samples, 12 silver standard genes (MCL1, TERT, PDE4D, CCND3, AUTS2, 
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MYC, PTPRD, CDKN2A, CCND1, MDM2, NKX2-1, and CCNE1) were collected (Supplementary Table 3). For 
the low read coverage set of 70 LUAD samples, three silver standard genes (CDK4, CDKN2A, and MYC) were 
collected (Supplementary Table 4).

Data pre-processing.  We downloaded BAM files of WGS from the Cancer Genomics Hub (CGHub), where 
reads were mapped to a human genome reference sequence. We counted the aligned read in a one-base pair bin 
from the BAM files and remove outliers using the method from18 with the sliding window of 200 bp and the quan-
tile of 0.95. We then divided the genomic regions into consecutive 100 bp bins and recalculated read count within 
these bins. Next, we calculated the log2 ratio for the somatic copy number alteration signal as follows: 
= −y log logi

Tumor
Normal

Tumor
Normal2 2

i

i

chr

chr
, where Tumori is the number of aligned reads within 100 bp bin i in the tumor 

BAM files, Normali is the number of aligned reads within 100 bp bin i in the corresponding normal BAM files, and 
Tumorchr and Normalchr are the total number of aligned reads in the chromosome where the bin i belongs to, 
respectively.

Figure 1.  Overview of the WIFA-Seq procedure. The figure shows the detection of the recurrently altered 
region around EGFR indicated by the green vertical bars. (a) The log2 ratios of the copy number values with 
noise (shown in gray) from the tumor and normal WGS data were transformed into (b) yHIGH signals (in blue) 
based on the wavelet coefficients, which represent copy number differences with neighbors. (c) After parts of 
signals that appear during the wavelet transform were removed, ⁎yHIGH signals were obtained (in black). (d) All 
of the ⁎yHIGH signals of individual samples were summed to a single signal called ⁎YHIGH. (e) Genomic regions 
were divided according to ⁎YHIGH values with the same sign, and these regions are called clusters (blue 
rectangles). (f) Only clusters with statistical significance are suggested as recurrently altered regions.
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Wavelet transform for an individual patient.  Wavelet transform is used to convert original log2 ratio 
copy number signals that are 2J long into scaling coefficients and wavelet coefficients. We used the Haar wavelet 
and obtained wavelet coefficients by computing the difference between the neighboring signals and scaling coeffi-
cients by computing the average of the neighboring signals. Scaling coefficients were transformed into lower-level 
of wavelet coefficients and scaling coefficients. Starting from level J, one continues this process recursively until one 
reaches the level M. Stationary wavelet transform was used because conventional discrete wavelet transform lacks 
translation-invariance property. The lengths of the chromosomes are not given as a perfect power of 2, in general. 
To solve the problem of wavelet transform on the boundaries of the chromosome, the signals were extended by 
duplicating the original signals symmetrically and concatenating them. After the wavelet transform was applied to 
these extended signals, we can get yHIGH by extracting the values within the range of the original signals.

The observed copy number alteration signal yi is represented as yi =  f(xi) +  ei, where xi is the genomic location, 
ei is noise, and f(xi) is the true copy number change in xi location. The goal of conventional wavelet denoising is to 
remove ei and to restore f(xi). The original signal yi is transformed into wavelet coefficients and scaling coeffi-
cients, the noises can be estimated with the following formula λ σ= C n2 logj j , where σj

2 is the noise variance 
estimate from the wavelet coefficients in level j, and nj is the number of coefficients in level j. C is a customized 
argument that a user can adjust. Hard thresholding by setting wavelet coefficients ≤ λ as zero is used to modify 
the wavelet coefficients. Let us denote s scaling coefficients, wHIGH wavelet coefficients, and ′wHIGH wavelet coeffi-
cients after hard thresholding. Then, the transform that produces the thresholded wavelet coefficients is repre-
sented as ′

T s w w: { , } {0, }HIGH HIGH HIGH . To make yHIGH signals for every individual patient, we used the 
following modified wavelet transform and inverse-transform procedures
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where W is the Haar wavelet transform, and S is the shifting operator. Thus, yHIGH is the measure of the difference 
of copy numbers with their neighbors. yHIGH always generates opposite-signed values next to the true difference 
values. Thus, regions with yHIGH values whose signs are different from the log2 ratio of these regions are set to zero, 
and this modified signal is called ⁎yHIGH. (See Fig. 2 in8 for details.) Figure 1(c) shows the final profiles for individ-
ual patients with GBM.

To apply the wavelet-based approach to WGS data, some genomic regions that might be attributed to false 
CNA regions should be removed in advance. One type of abnormal region is the ‘N’ sequence region. Because 
reads were not mapped to the reference sequence regions of centromeres and heterochromatins (set to ‘N’ bases), 
we reduced the effect of these gaps by concatenating all of the regions with non-‘N’ bases before we applied wave-
let transform (Supplementary Fig. 1(a)). Another type of abnormal region is the region without aligned normal 
reads. There were few reference sequence regions, to which sequencing reads were mapped very sparsely. In some 
cases, none of reads were mapped (Fig. 2(a)). Because these genomic regions can be mistakenly considered to be 
copy number deletions (Fig. 2(b)), these regions should be removed. Thus, we applied the wavelet transform to 
find these genomic regions (Supplementary Fig. 1(b)). For a normal sample, the average number of reads mapped 
on these regions is usually smaller than that on other regions (Fig. 2(c)). We applied K(= 2)-means clustering to 
these genomic segments. If the segment belonged to the class of a smaller average number of mapped reads and 
the length of the segment was greater than or equal to a pre-specified length (3 KB), we removed these segments. 
After we removed these genomic regions, we applied the wavelet transform again (Supplementary Fig. 1(d)).

Integrating CNA regions for multiple patients.  ⁎yHIGH signals from individual patients were aggregated 
into ⁎YHIGH for multiple samples. ⁎YHIGH is a signal representing alterations in multiple patients by adding the ⁎yHIGH 
values of the same genomic location of all patients (Fig. 1(d)). Then, genomic regions were divided into 
sub-regions called clusters using ⁎YHIGH as described in8. Briefly, regions with continuous nonzero-values ⁎YHIGH 

Figure 2.  A region unmapped to the reference sequence in EGFR. (a) An integrative genome viewer plot of 
normal samples around EGFR shows a region unmapped to the reference genome. (b) This region can be falsely 
considered to have copy number changes. The gray signal represents the log2 ratios, the blue line yHIGH signals, 
and the black line ⁎yHIGH signals. (c) When we collected the segments with the nonzero ⁎yHIGH values and drew 
the distribution of the number of normal reads per its size, it usually showed a bimodal-like shape and the 
falsely identified segments were close to the left-side peak. We excluded these false segments and re-ran the 
wavelet procedure.
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were grouped if the regions were located within the distances d. The regions with nonzero values in the same 
group were subgrouped if they are within the distance r. The score of each subgroup is calculated by adding the 

⁎YHIGH values. For each group, one subgroup with the highest absolute score was considered a focal altered region, 
and called a cluster. Only clusters with statistical significance are suggested as focal regions, and we made several 
options to determine the statistical significance of the clusters, as described in the next subsection.

False discovery control (FDC) options.  We determined the statistical significance of the clusters by calcu-
lating p-values using different false discovery control options. The statistical significance of the cluster was tested 
under the null hypothesis that genomic regions in patients are independently altered. For this task, for each 
patient, regions with consecutive nonzero values were randomly reallocated across the chromosome. Then, ran-
dom clusters from multiple patients were generated by 1,000 independent random allocations. To determine the 
statistical significance of the observed clusters, the FDCs were measured in five different ways. In FDC1, a score of 
the observed cluster was compared to the maximum score of random clusters in the i-th permutation 
= i( 1 1,000). The number of cases that the maximum score of each permutation was greater than the observed 

cluster score was counted and the p-value was calculated by dividing it by 1,000. In FDC2, the score of the observed 
cluster was compared to the maximum score of random clusters, the length of which was less than or equal to the 
length of the observed cluster. In FDC3, the score of the observed cluster was compared to the maximum score of 
random clusters, where the length of random clusters was less than or equal to the length of the observed cluster, 
and the number of patients with alterations in the random cluster was less than or equal to the number of patients 
with alterations in the observed clusters. In FDC4, linear regression coefficients were estimated from the relation-
ship between the lengths of the random clusters and their scores, and the score of the observed cluster was com-
pared to the randomly estimated score from the linear regression function. In FDC5, another variable representing 
the number of patients in the observed cluster was added for the estimation of the linear regression coefficients.

Parameters in WIFA-Seq.  WIFA-Seq has five parameters: J, M, C, d and r. J represents the exponent of the 
binary logarithm of the signal length to be analyzed. To analyze about 3.2 billion base (MB) pairs of human 
genomes, we divided the genome into consecutive 32,000,000 bins, where the size of a bin was 100 base pairs. 
Thus, J was fixed as =⌈ ⌉log 32,000,000 252 . Because WIFA-Seq measures the difference between neighboring 
signals, we needed to decide the length of genomic regions for the differences with neighbors. For example, to 
incorporate the difference of neighbors up to 3 MB, which is 30,000 bins, wavelet transform was applied up to 

=⌈ ⌉log 30, 000 152  levels. In this case, M was set as 25 −  15 =  10. C controlled the degree of thresholding and was 
adjustable depending on the noise level in the data. d and r controlled the size of the candidate focal regions called 
clusters. After trying different values for M, C, d and r using the GBM data set, we fixed the parameters at M =  10, 
C =  2.0, d =  0.3 MB and r =  0.3 MB. To show that these parameter values can be used for other data sets, we used 
the same values for the OV and LUAD data sets. These parameters were used in the WIFA method8 as well, and 
more details about the parameters can be found there.

Results
The number of segments in 37 patients with GBM.  Because a subset of TCGA GBM samples has frac-
tured regions with excessive read-depth changes21, we examined whether WIFA-Seq contolled these excessive 
changes by comparing them with BIC-seq18 and TCGA SNP array data22. When we applied BIC-seq to WGS data 
for 37 GBM samples with a parameter λ ranging from 1.0 to 5.0, the total numbers of segments significantly vary 
among samples (1,000 ~ 500,000) (Fig. 3(a)). On the other hand, for matched level 3 SNP array data from TCGA, 
most of the samples have less than one thousand segments and the difference of the number of segments among 
samples was less than four times (Fig. 3(b)). Figure 3(c) shows the number of segments from ⁎yHIGH signals with 
parameters of J =  25, M =  10 and C ranging from 1.0 to 2.0. Note that although WIFA-Seq is not a segmentation 
algorithm for a single sample, we here define a segment in ⁎yHIGH signals as a consecutive genomic region with the 
same sign for ⁎yHIGH values, only to check whether WIFA-Seq contolled these excessive read-depth changes in the 
NGS data. Although the total numbers of ⁎yHIGH segments at the noise threshold C =  1.0 were high, the increase was 
not rapid compared to those in Fig. 3(a). When we gradually increase the threshold C, the numbers of segments 
were dramatically reduced and fluctuations of the numbers of segments among samples were not significant.

Focal copy number alterations in 37 patients with GBM.  WIFA-Seq was applied to the 37 patients 
with GBM. To investigate the effect of various parameters, WIFA-Seq was conducted using parameters M ranging 
from 8 to 17, C ranging from 0.5 to 3.0, a group distance d taken from a set of several different values, and a clus-
ter distance r taken from another set of several different values. Table 1 shows 25 statistically significant clusters 
(a significant level of 0.1 in FDC1) with the parameters of J =  25, M =  10, C =  2.0, d =  0.3 MB and r =  0.3 MB 
ordered by the cluster scores. Out of 18 silver standard genes, 10 genes, including EGFR, CDKN2A/B, CDK4, 
MDM4, PDGFRA, MDM2, PTEN, PARK2, and QKI, were identified. These genes were located in highly ranked 
clusters, showing that clusters with high scores might contain cancer driver genes. All genes included in the clus-
ters are shown in Supplementary Table 5.

Although neuronal PAS domain protein 3 (NPAS3) was not included in the silver standard, it was identified in the 
deleted regions of two GBM samples with statistical significance on FDC1 (Fig. 4). In astrocytomas, NPAS3 is reported 
as a tumor suppressor, which is involved in cell cycles, apoptosis, and cell migrations26. When we compared the expres-
sion levels of this gene using RNA-seq from the TCGA data, the expression levels of the two samples with deletions 
were lower than those of other samples (Supplementary Table 6). In Catalogue Of Somatic Mutations In Cancer 
(COSMIC) database27, we also found focal deletions harboring NPAS3 in other four TCGA GBM samples, which were 
not included in our GBM WES data set. It may show that deletions around NPAS3 did not occur by chance.
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Figure 3.  The number of segments from depth coverage of the sequencing data. (a) The numbers of 
segments from WGS data for 37 GBM samples are shown when BIC-seq was applied with a parameter λ ranging 
from 1.0 to 5.0. Each bar represents the number of segments of an individual sample and samples are ordered by 
the numbers of segments with λ =  1.0. Because the numbers of segments increase when values for λ decrease, 
bars are segmented with the numbers of segments with λ =  5.0 (dark blue) and the increased numbers of 
segments with the changes of λ from 5.0 to 4.0 (blue), from 4.0 to 3.0 (sky-blue), from 3.0 to 2.0 (orange), and 
from 2.0 to 1.0 (red). (b) The numbers of segments of level 3 SNP array data from TCGA for the same samples 
are shown, sorted in the same order as (a). (c) The numbers of segments for the same samples are shown when 
WIFA-Seq was applied to WGS data. When the noise threshold C increases, the numbers of segments for all the 
samples dramatically decreased.

Chr Start End Score # of patients P-values Genes

7 53982101 56449401 504208.00 25 0.00 EGFR

9 19626001 29431601 − 156930.60 26 0.00 CDKN2A|CDKN2B

12 56919201 59971201 119463.40 11 0.00 CDK4

1 203277901 205825501 110989.60 7 0.01 MDM4

4 52663201 56488401 97355.73 7 0.00 PDGFRA

12 69038101 69416901 52436.32 6 0.01 MDM2

6 106784301 108840801 49466.33 4 0.04

10 88984001 90359501 − 13045.48 14 0.06 PTEN

18 25736501 27397901 − 10002.23 9 0.01

19 34288701 39415601 9068.60 7 0.00

12 16587901 21884101 − 8619.56 8 0.07

6 162272701 164169001 − 7932.19 3 0.03 PARK2|QKI

2 233933901 235859501 − 7083.54 2 0.00

15 35156501 37062401 − 6761.21 14 0.06

11 66176001 67434201 6164.80 2 0.01

16 4027401 5129501 6045.22 2 0.02

16 84363801 85714601 5984.56 4 0.02

14 33407901 35914401 − 5872.19 3 0.04 NPAS3*

21 9411001 11188101 − 5284.48 23 0.00

7 153749801 156394701 − 4123.94 5 0.02

8 1902201 2776501 − 3727.91 3 0.01

4 49095601 49660001 − 3547.28 4 0.02

20 58229601 58514701 − 2890.01 16 0.00

20 3684901 4517301 2882.16 2 0.04

8 43027601 43838801 1316.54 2 0.01

Table 1.   Statistically significant clusters (FDC1) from WIFA-Seq for 37 patients with GBM. Clusters are 
ordered by cluster scores. Among the genes in the clusters, some genes related to GBM are specified. Previously 
known GBM genes in the silver standard are shown without asterisks.
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Although WIFA-Seq identified only some of the genes in the silver standard, which is obtained by a manual 
inspection, WIFA-Seq might suggest shorter genome regions than a manual inspection for identifying cancer 
driver genes. As described in the Data sets section, prior knowledge from the literature was used to find silver 
standard genes. If we do not have such prior knowledge about a given cancer, we needed to inspect the seg-
mented region sorted by the log2 ratio until the genes were found. Thus, we compared the manual inspection 
with WIFA-Seq by comparing the length of the genomes for identifying known GBM genes in the silver standard. 
To measure the length, for WIFA-Seq, the accumulated length of clusters sorted by their scores was used, and for 
manual inspection, the accumulated length of segments sorted by the log2 ratio values of the segments was used. 
Figure 5 shows that the length required to discover known GBM genes with manual inspection is larger than that 
by WIFA-Seq, where WIFA-Seq used the FDC5 option to detect statistically significant clusters and identified 
13 genes out of 18 silver standard genes. For identifying 13 genes, the manual inspection and WIFA-Seq require 
searching about one MB pairs and about 13 MB pairs, respectively, (Supplementary Table 7), showing that if we 
have no prior knowledge about these genes, the validation costs for a manual inspection dramatically increase 
compared to those for WIFA-Seq.

We compared cancer driver genes identified from two platforms of the SNP array and WGS using the same 37 
patients with GBM. For the SNP array, GISTIC 2.0 (a FDR q-value <  0.25 and a confidence level =  90) was used 
to identify the focal aberrant regions, and peaks whose length were greater than 25% of the arm length were 
regarded as broad alterations and excluded. All focal regions and genes identified by GISTIC 2.0 are shown in 
Supplementary Table 8. Because we used two different platforms, we chose 14 genes (MDM4, FGFR3, PDGFRA, 
QKI, EGFR, CDK6, CDKN2A/B, PTEN, FGFR2, CCND2, CDK4, MDM2, GRB2) as another silver standard set 
whose recurrent occurrence was manually confirmed from TCGA level 3 segments in the SNP array and the 
segments obtained by applying the BIC-seq method (a bin size =  100 bp and λ =  2.0)18 to WGS. Table 2 shows the 
genes identified from WIFA-Seq clusters and/or GISTIC peaks. WIFA-Seq found 12 genes out of a total of 14 
genes while GISTIC 2.0 found nine genes. FGFR3 in chr 4, EGFR in chr 7, and CDKN2B in chr 9 were identified 
only by WIFA-Seq. Note that FGFR3, CDK6, and CCND2 could be found with the FDC4 and/or FDC5 options, 
which requires inspections for longer genomic regions than FDC1. For EGFR, the peak from GISTIC was too 
narrow so it did not intersect with EGFR. For CDKN2B, it was closely located to CDKN2A in chr 9, and CDKN2A 
and CDKN2B were included in the same cluster in WIFA-Seq. However, in GISTIC, only CDKN2A was included 
in a narrow peak. Although we confirmed significant alterations around FGFR3 in both segments from the SNP 
array and segments in WGS, no peaks intersected with FGFR3 in GISTIC 2.0. In WIFA-Seq, the cluster around 
FGFR3 was statistically significant only in FDC5. Figure 6(a) shows the sum of the segmented regions of three 
samples from the SNP array, and Fig. 6(b) shows the ⁎YHIGH signals around the FGFR3 regions. Amplifications 
around FGFR3 are more clearly identifiable in the ⁎YHIGH signals than in the sum of the individual segmentations. 
We also confirmed copy number amplifications around FGFR3 in the three GBM samples using individual ⁎yHIGH 
signals (Fig. 6(c)).

Figure 4.  Copy number deletions in NPAS3. (a) Individual profiles of two samples that have copy number 
deletions. Gray signals represent log2 ratios of the copy numbers, and the black line represents ⁎yHIGH signals. 
NPAS3 is located between green vertical bars. (b) Boxplots of expression levels of samples with NPAS3 deletion 
and samples without copy number changes.
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We further compared CNA regions identified with four methods: CNAs obtained by manual inspection of 
the SNP array data from TCGA level 3 data, where segments were obtained with a circular binary segmentation 
algorithm, CNAs by applying GISTIC 2.0 to the SNP array data, CNAs by the manual inspection of the WGS 
data after segmentation by BIC-seq (λ =  2.0), and CNAs by applying WIFA-Seq to the WGS data. Even though 
the total inspection length by WIFA-Seq with the FDC5 option is larger than that by GISTIC 2.0, WIFA-Seq 
found three more genes than GISTIC 2.0 (Fig. 7). In addition, the length required to find up to 12 silver standard 
genes by manual inspection after the BIC-seq segmentation was about four times larger than that with WIFA-Seq 
(Supplementary Table 9).

Focal alterations in 47 patients with OV.  We have applied WIFA-Seq to the 47 patients with OV. Table 3 
shows 34 statistically significant clusters (a significant level of 0.1 in FDC1) with the parameters of J =  25, M =  10, 
C =  2.0, d =  0.3 MB and r =  0.3 MB, ordered by the cluster scores. Out of 16 silver standard genes, ten genes, 
including MYCL, MECOM, TACC3, ANKRD17, MYC, PTEN, ALG8, KRAS, METTL17, and CCNE1, were iden-
tified. All genes included in the clusters are shown in Supplementary Table 10.

Figure 5.  Comparison between manual inspection and WIFA-Seq for GBM. The x-axis represents the 
number of known GBM genes, and the y-axis represents the length of the genomes for identifying the genes. 
For the y-axis, the accumulated length of clusters sorted by their scores was used for WIFA-Seq, and the 
accumulated length of the segments sorted by the log2 ratio values of the segments was used for the manual 
inspection. The red and blue lines represent the costs of manual inspection and WIFA-Seq, respectively.

Chr Genes

WIFA GISTIC

cluster.start cluster.end cluster.length FDC peak.start peak.end peak.length

1 MDM4 203277901 205825501 2547601 1|2|3|4|5 204334766 204529807 195042

4 FGFR3 737301 2108301 1371001 5

4 PDGFRA 52663201 56488401 3825201 1|2|3|4|5 55140876 55218386 77511

6 QKI 162272701 164169001 1896301 1|2|3|4|5 163767962 165698161 1930200

7 EGFR 53982101 56449401 2467301 1|2|3|4|5

7 CDK6 91140201 92642101 1501901 4|5 92240329 92427373 187045

9 CDKN2A 19626001 29431601 9805601 1|2|3|4|5 21959052 21976869 17818

9 CDKN2B 19626001 29431601 9805601 1|2|3|4|5

10 PTEN 88984001 90359501 1375501 1|2|3|4|5 89617158 90034038 416881

12 CCND2 3257601 4622101 1364501 4|5 4374374 4436676 62303

12 CDK4 56919201 59971201 3052001 1|2|3|4|5 58125396 58162738 37343

12 MDM2 69038101 69416901 378801 1|2|3|4|5 69178021 69260755 82735

Table 2.   Comparison between GISTIC and WIFA-Seq for GBM. For both methods, genes were included 
in clusters/peaks. Thus, start and end positions and the length of clusters/peaks are specified. A column FDC 
indicates FDCs that identified the given genes.
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For comparison with the SNP array data, GISTIC 2.0 (a FDR q-value <  0.25 and a confidence level =  90) 
was applied to the same 47 patients with OV. All focal regions and genes identified by GISTIC 2.0 are shown in 
Supplementary Table 11. For comparison of the CNAs identified from two different platforms, we used the 16 

Figure 6.  Copy number alterations in FGFR3. (a) Sum of the log2 ratios in the segments from the SNP array 
data. FGFR3 is located between green vertical bars. (b) The focal aberrations identified by WIFA-Seq are clearly 
distinguished from its neighbors in the ⁎YHIGH signal compared to the SNP array. (c) Individual profiles of three 
samples that have copy number amplification in FGFR3. The gray signals are log2 ratios, and the black line is 

⁎yHIGH.

Figure 7.  Comparison between the SNP array and WGS in GBM. The x-axis represents the number of known 
GBM silver standard genes for the SNP array and WGS, and the y-axis represents the length of the genomes 
for identifying these genes. Manual inspection and GISTIC 2.0 for the SNP array, and manual inspection and 
WIFA-Seq for WGS were compared.



www.nature.com/scientificreports/

1 0Scientific Reports | 6:25582 | DOI: 10.1038/srep25582

silver standard genes that were used in the WGS data analysis and were also identified in SNP array data by the 
manual inspection. Table 4 shows the genes identified from WIFA-Seq clusters and/or GISTIC peaks. WIFA-Seq 
found 15 genes with a significant level of 0.1 in FDC4 and FDC5 (MYCL, MCL1, MECOM, TACC3, ANKRD17, 
TERT, SOX17, MYC, PTEN, ALG8, KRAS, RB1, METTL17, NF1, and CCNE1) out of total 16 silver standard 
genes while GISTIC 2.0 found five genes (MYCL, MYC, PTEN, RB1, and CCNE1). Because the range of the peaks 
containing SOX17 was too broad in GISTIC 2.0 (about 61 MB), these peaks were not regarded as focal altera-
tions. The comparisons among the manual inspection of the SNP array data and the WGS data, GISTIC 2.0, and 
WIFA-Seq are shown in Fig. 8 and Supplementary Table 12. WIFA-Seq located more genes than GISTIC 2.0 and 
the similar number of genes as the manual inspection in the shorter genomic regions.

Focal alterations in 28 patients with LUAD.  WIFA-Seq was applied to WGS data from 28 LUAD 
patients. We used the same WIFA-Seq parameter values (J =  25, M =  10, C =  2.0, d =  0.3 MB and r =  0.3 MB) as 
those used in the patients with GBM. Table 5 shows 23 clusters with a statistically significant level of 0.1 with the 
FDC1 option. When we compared the identified clusters with the 13 silver standard genes, CDKN2A and CCNE1 
were identified. All genes included in the clusters are shown in Supplementary Table 13.

WIFA-Seq identified amplifications of CDK8. Figure 9 shows two samples with amplifications in CDK8, and 
these samples have the highest expression level in CDK8 (Supplementary Table 6). Previous studies showed that 
in colorectal cancers, the region around CDK8 is known to be recurrently altered, and the gene is reported to 
be a oncogene because it modulates beta-catenin activity28. In addition, we observed two amplifications around 
ZNF521. ZNF521 is listed in the COSMIC Cancer Gene Census (CGC) database29, and it was reported that over-
expression of ZNF521 is closely related to the growth and proliferation of medulloblastoma cells30.

Chr Start End Score # of patients P-values Genes

11 65642401 85427201 121563.30 21 0.00 ALG8

19 60001 8897001 − 72426.36 40 0.03

08 29425301 37553301 − 61860.36 22 0.02

19 12527301 19504701 47407.00 15 0.01

05 43229501 46405601 46521.06 17 0.00

03 160721001 178997301 45477.40 23 0.00 MECOM

10 85985501 91954501 − 41721.05 17 0.02 PTEN

19 27731701 31299201 41154.68 19 0.05 CCNE1

04 52677801 61329601 40437.16 12 0.00

15 89927001 95429901 37962.78 14 0.02

18 18510801 24550601 37554.03 20 0.03

14 20540801 23461401 37395.16 14 0.08 METTL17

08 124682001 137671301 35951.00 18 0.00 MYC

03 145312501 152115001 33691.04 15 0.02

04 1743701 10725801 30664.76 20 0.02 TACC3

12 68439201 75601101 30556.17 7 0.03

05 12795301 24076601 29573.97 23 0.00

12 22892501 27931501 28443.16 13 0.05 KRAS

18 24550701 29219001 − 28392.48 3 0.01

03 110285601 116082001 27154.97 9 0.07

01 38952601 41868301 26322.47 7 0.03 MYCL

03 115817701 117085401 − 26257.95 9 0.05

12 59901 7041901 25886.15 20 0.10

14 65361901 75819301 − 25236.16 26 0.00

07 132300701 139244001 25116.75 9 0.06

04 69261001 75913501 24782.67 8 0.09 ANKRD17

02 26158601 30486201 24553.85 8 0.02

03 86256201 90504801 − 24254.03 11 0.09

04 49133401 49660001 − 21703.25 17 0.10

05 32915101 37315001 20138.94 8 0.07

07 3488201 9166901 − 16591.00 25 0.05

16 10807101 18842701 15730.08 17 0.04

14 90263501 94255601 − 14860.60 4 0.10

20 53261001 57941101 − 14597.54 11 0.03

Table 3.   Statistically significant clusters (FDC1) from WIFA-Seq for 47 patients with OV. Clusters are 
ordered by cluster scores. Among the genes in the clusters, some genes related to OV are specified.
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For comparison with the SNP array data, GISTIC 2.0 (a FDR q-value <  0.25 and a confidence level =  90) was 
applied to the same 28 patients with LUAD. All focal regions and genes identified by GISTIC 2.0 are shown in 
Supplementary Table 14. For comparison of the CNAs identified from two different platforms, we chose six silver 
standard genes (TERT, PDE4D, PTPRD, CDKN2A, MDM2 and CCNE1). Table 6 shows the genes identified from 
WIFA-Seq clusters and/or GISTIC peaks. WIFA-Seq found four genes (TERT, PTPRD, CDKN2A and CCNE1) 
while GISTIC 2.0 found two genes (CDKN2A and MDM2). Because the ranges of the peaks containing PDE4D, 
TERT and CCNE1 were too broad in GISTIC 2.0 (more than 50 MB), these peaks were not regarded as focal alter-
ations. However, WIFA-Seq located regions containing CCNE1 more precisely than GISTIC 2.0. The comparison 
between the SNP data and the WGS data using manual inspection, GISTIC 2.0, and WIFA-Seq for the LUAD data 
is shown in Supplementary Table 15.

In addition, we applied WIFA-Seq to WGS data with a low read coverage obtained from 70 patients with 
LUAD. Only three silver standard genes (CDK4, CDKN2A and MYC) were confirmed by the BIC-seq segments 

Chr Genes

WIFA GISTIC

cluster.start cluster.end cluster.length FDC peak.start peak.end peak.length

1 MYCL 38952601 41868301 2915701 1|2|3|4|5 39231800 41878565 2646766

1 MCL1 147794101 151448201 3654101 4|5

3 MECOM 160721001 178997301 18276301 1|2|3|4|5

4 TACC3 1743701 10725801 8982101 1|2|3|4|5

4 ANKRD17 69261001 75913501 6652501 1|2|3|4|5

5 TERT 9901 1850001 1840101 4|5

8 SOX17 54155101 55670501 1515401 4|5

8 MYC 124682001 137671301 12989301 1|2|3|4|5 126952807 132241106 5288300

10 PTEN 85985501 91954501 5969001 1|2|3|4|5 84746048 100217807 15471760

11 ALG8 65642401 85427201 19784801 1|2|3|4|5

12 KRAS 22892501 27931501 5039001 1|2|3|4|5

13 RB1 47517901 49138401 1620501 2|3|4|5 48833767 53194688 4360922

14 METTL17 20540801 23461401 2920601 1|2|3|4|5

17 NF1 29302301 29948501 646201 2|3|4|5

19 CCNE1 27731701 31299201 3567501 1|2|3|4|5 30258695 30343163 84469

Table 4.   Comparison between GISTIC and WIFA-Seq for OV. For both methods, genes were included in 
clusters/peaks. Thus, start and end positions and the length of clusters/peaks are specified. A column FDC 
indicates FDCs that identified the given genes.

Figure 8.  Comparison between the SNP array and WGS in OV. The x-axis represents the number of known 
OV silver standard genes for the SNP array and WGS, and the y-axis represents the length of the genomes 
for identifying these genes. Manual inspection and GISTIC 2.0 for the SNP array, and manual inspection and 
WIFA-Seq for WGS were compared.
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Chr Start End Score Patients P-value Gene

09 21028101 26141501 − 19044.30 7 0.00 CDKN2A

05 26805201 30914501 18988.18 2 0.07

08 113293301 118827401 − 17228.32 4 0.04

13 26627701 30384101 17073.60 2 0.00 *CDK8

19 29745001 36307301 14855.75 5 0.00 CCNE1

18 21903601 23631001 13671.30 2 0.04 *ZNF521

16 46385601 49388501 10241.17 4 0.06

16 28991501 32062401 8451.53 4 0.08

03 73849601 75930501 − 6981.06 5 0.00

17 19462601 22262901 − 6924.59 13 0.09

10 42354701 44696901 6398.16 6 0.04

07 109434901 111629601 − 5673.43 5 0.00

04 49078801 49660001 − 5172.21 8 0.00

03 88609201 90504801 − 5069.68 6 0.02

05 131850601 134327701 − 4491.72 3 0.10

13 113517701 114976401 − 4183.84 2 0.02

15 48327301 53049801 − 4101.93 3 0.00

07 6633201 9254801 − 4007.58 3 0.05

21 22192401 23674201 3641.44 3 0.06

10 55440801 57178101 − 3532.84 3 0.01

17 25265201 27720401 3511.43 3 0.04

12 37880101 38436701 − 2300.26 4 0.02

02 89614801 89888601 − 2257.03 4 0.01

Table 5.   Statistically significant clusters from WIFA-Seq for 28 patients with LUAD. Clusters are ordered by 
the cluster scores. Among the genes in the clusters, some genes related to lung cancer are specified. Previously 
known lung cancer-related genes in the silver standard are shown without asterisks.

Figure 9.  Copy number amplifications in CDK8. (a) Individual profiles of two samples that have copy 
number amplifications. The gray signals represent the log2 ratios of copy numbers and the black line represents 
the ⁎yHIGH signals. CDK8 is located between green vertical bars. (b) Boxplots of the expression levels for samples 
with CDK8 amplification and samples without copy number changes.
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due to the low coverages of the data (Supplementary Table 4). When we applied WIFA-Seq with the same param-
eters M =  10 and C =  2.0 as those used in the GBM and the high coverage LUAD data, WIFA-Seq identified 
CDKN2A with the FDC1 option. WIFA-Seq also found a focal region that had HOXA9 with the FDC5 option. 
HOX is known to be related to the development of various human cancers, including LUAD31. All genes included 
in the clusters are shown in Supplementary Table 16. To discover more focal CNA regions, we can lower the 
threshold, although it might give false discoveries. Further analysis is required to increase the sensitivity for iden-
tifying focal regions when low coverage WGS data are used.

Discussion
We applied WIFA-Seq to the WGS data to identify recurrent focal CNAs and compared it with GISTIC 2.0, which 
uses SNP array data. WIFA-Seq found most of the genes identified by GISTIC 2.0 as well as novel candidate onco-
genes and tumor suppressor genes. Although the parameters M, C, d and r are adjustable in WIFA-Seq, we suggest 
default values of M =  10, C =  2.0, d =  0.3 MB and r =  0.3 MB. The value J =  25 was determined by the length of the 
genome and the resolution of the platform. We selected these values from the GBM data set after trying different 
values and then applied them to the OV and LUAD data sets. Using these default parametric values, we success-
fully recovered previously known cancer-related genes in the WGS data sets of the three different cancer types. 
We also suggested similar default values for the SNP array data of the previously developed WIFA method8. For 
the SNP array data, the actual length of genomes we considered to generate ⁎yHIGH values was about 1.6 MB (J =  17 
and M =  12 for GBM from the Affymetrix 100 K SNP array, and J =  18 and M =  11 for lung cancer from the 250 K 
Sty SNP array). For the WGS data sets, the actual length of neighboring genomes for focal aberrations was about 
3.2 MB (J =  25 and M =  10 for WGS GBM, OV and LUAD data sets. See the Parameters in WIFA-Seq section for 
details on the calculations). When we tested 1.6 MB for the length of neighoring genomes for the WGS data sets, 
the identified focal regions were similar when 3.2 MB was considered. For the SNP array, C =  1.94 was used, 
which was similar to the value we used for WGS. Taken together, the threshold value of C of around 2.0 and the 
length of neighboring genomic regions from 1.6 MB to 3.2 MB demonstrate robust performances regardless of 
tumor types and platforms.

We also developed various methods for assigning statistical significance to the candidate focal regions. We 
randomly reallocated non-zero ⁎yHIGH regions across the chromosome, produced random clusters, and compared 
the value of the observed cluster to the maximum value of the random clusters. It gave conservative p-values to 
the observed clusters (the FDC1 option). When we considered the length of focal altered regions and the number 
of samples (the FDC2, FDC3, FDC4, and FDC5 options), they gave less strict p-values, which generated more 
statistically significant clusters and have the potential to find novel focal altered regions.

In this study, we used only DNA copy number data to identify cancer driver genes. However, one study 
reported that genes with copy number amplifications and high gene expression levels are more likely to be cancer 
driver genes32. In that study, GISTIC 2.0 was applied to breast cancer cell lines and then genes within amplified 
peaks with a G-score >  0.3 and with expression levels that were within the top 50% of the expressed genes for the 
cell line were selected. Hence, we applied a similar approach of combining CNAs and gene expressions to identify 
cancer driver genes more accurately. In our study, we used 29 GBM samples and 47 OV samples in TCGA, which 
have RNA-seq, SNP array, and WES data. We first selected genes whose genomic regions were predicted as ampli-
fication or deletions by WIFA-Seq or GISTIC 2.0. Next, we selected genes with expression levels that were within 
the top 50% in all expressed genes of each sample (for amplified genes) or below the top 50% (for deleted genes) 
for at least half of the samples. Supplementary Fig. 2 shows the number of genes to be investigated for identifying 
cancer driver genes when WIFA-Seq (FDC5) and GISTIC 2.0 were applied with and without gene expression 
data. For both the WIFA-Seq (FDC5) and GISTIC 2.0 methods that were applied to the SNP array and WES 
data, respectively, the integration of gene expression data required fewer genes to be investigated for identifying 
cancer driver genes. However, some driver genes were not identified because their expression level changes were 
not significant. Overall, the integration of gene expression level data was helpful for discovering genomic regions 
related to cancer.

In this study, we evaluated the WIFA-Seq method by the number of previously known cancer driver genes the 
method had identified. However, because the number of known cancer type-specific genes was small compared 
to the number of genes included in the focal aberrant regions identified by WIFA-Seq, we performed a functional 
enrichment test to investigate whether the genes in the focal regions were enriched with functions related to can-
cer hallmarks. Among ten cancer hallmarks listed in Wang et al.33, we found that gene ontology biological process 
terms related to five cancer hallmarks (regulation of cell proliferation, resisting programed cell death, induction 

Chr Genes

WIFA GISTIC

cluster.start cluster.end cluster.length FDC peak.start peak.end peak.length

5 TERT 784401 3276601 2492201 2|3|4|5

9 PTPRD 7830301 9633501 1803201 4|5

9 CDKN2A 21028101 26141501 5113401 1|2|3|4|5 21959052 21977193 18142

12 MDM2 68758042 70379446 1621405

19 CCNE1 29745001 36307301 6562301 1|2|3|4|5

Table 6.   Comparison between GISTIC and WIFA-Seq for LUAD. For both methods, the genes were included 
in clusters/peaks. Thus, start and end positions and the length of clusters/peaks are specified. A column FDC 
indicates FDCs that identified the given genes.
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of angiogenesis, abnormal metabolic pathways, and evading the immune system) were enriched for the GBM, 
OV, and LUAD data sets (Supplementary Table 17). In addition, we found that many genes in the focal regions 
were included in the COSMIC CGC29 and that the numbers of genes in the CGC increased when we changed the 
FDC options (Supplementary Table 17), suggesting that these genes might be candidate cancer driver genes for 
each cancer type.
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