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Background: Thyroid hormone (TH) plays a key role in the developing brain, including the cerebellum. TH
deficiency induces organizational changes of the cerebellum, causing cerebellar ataxia. However, the mecha-
nisms causing these abnormalities are poorly understood. Various animal models have been used to study the
mechanism. Lacking dual oxidase (DUOX) and its maturation factor (DUOXA) are major inducers of con-
genital hypothyroidism. Thus, this study examined the organizational changes of the cerebellum using knockout
mice of the Duoxa gene (Duoxa–/–).
Methods: The morphological, behavioral, and electrophysiological changes were analyzed in wild type (Wt) and
Duoxa-deficient (Duoxa–/–) mice from postnatal day (P) 10 to P30. To detect the changes in the expression levels of
presynaptic proteins, Western blot analysis was performed.
Results: The proliferation and migration of granule cells was delayed after P15 in Duoxa–/– mice. However, these
changes disappeared by P25. Although the cerebellar structure of Duoxa–/– mice was not significantly different
from that of Wt mice at P25, motor coordination was impaired. It was also found that the amplitude of paired-pulse
facilitation at parallel fiber–Purkinje cell synapses decreased in Duoxa–/– mice, particularly at P15. There were no
differences between expression levels of presynaptic proteins regulating neurotransmitter release at P25.
Conclusions: These results indicate that the anatomical catch-up growth of the cerebellum did not normalize its
function because of the disturbance of neuronal circuits by the combined effect of hypothyroidism and functional
disruption of the DUOX/DUOXA complex.

Introduction

Thyroid hormone (TH) is essential for the normal
development of the brain (1). TH deficiency during the

postnatal period causes congenital hypothyroidism in hu-
mans. The typical findings in cretinism are mental retarda-
tion, ataxia, and deafness, together with impaired body
growth (2,3). TH deficiency in developing rodents induces
organizational changes of the cerebellum, causing cerebellar
ataxia (4). However, the mechanisms causing this abnor-
mality are poorly understood.

Perinatal hypothyroidism causes various anatomical chan-
ges of the rat cerebellum such as reduction of growth and
dendritic arborization of Purkinje cells (5,6), reduction of sy-
naptogenesis between Purkinje and granule cells (6,7), delayed
myelination (8), and changes in synaptic connections between
cerebellar neurons and afferent neuronal fibers (9). These ab-
errant phenotypes can be rescued only if TH replacement is
instituted by postnatal week 2 in rats (5).

Some of the rate-limiting steps of TH synthesis take place
at the apical cell membrane of the thyroid follicular cell. To
generate hydrogen peroxide (H2O2), dual oxidase (DUOX) 2
requires the maturation factor (DUOXA) (10,11). To iodinate
thyroglobulin (TG), thyroid peroxidase (TPO) requires H2O2

as the final electron acceptor in two steps (12–14). The first
step is oxidation of iodide, which is then covalently linked to
selected tyrosine residues of TG (12–14). The second step is
coupling of two iodotyrosine residues to form iodothyronines
(12–14). A defect of DUOX2 or DUOXA2 decreases TH
synthesis, causing congenital hypothyroidism in both humans
and mice (15–17).

To evaluate the effect of dyshormonogenesis caused by the
absence of DUOXA in cerebellar development, the study
used Duoxa gene knockout mice (Duoxa–/–), in which part of
both Duoxa1 and Duoxa2 exons were deleted (10). Duoxa+/–
mice were used as dams. Since the TH status of Duoxa+/–
mice is euthyroid (10), the involvement of an altered ma-
ternal TH status on fetal or neonatal development can be
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excluded. Duoxa–/– mice showed delayed disappearance of
the external granule cell layer (EGL) followed by a catch-up
cerebellar growth, whereas no morphological alteration of
Purkinje cells was observed. An electrophysiological study
revealed that the amplitude of paired-pulse facilitation at
parallel fiber–Purkinje cell synapses decreased at postnatal
week 2 but was improved at postnatal week 3. On the other
hand, the function of climbing fiber–Purkinje cell synapses
was not affected in Duoxa–/– mice. Nevertheless, a severe
motor coordination defect due to cerebellar ataxia was seen
even at postnatal week 3. Daily thyroxine (T4) replacement
reversed aberrant growth and motor coordination in Duoxa–/–
mice. These data indicate that Duoxa regulates cerebellar de-
velopment mainly through the regulation of TH synthesis. It
should be noted, however, unlike previous drug-induced
congenital hypothyroid models, that alterations of Purkinje
cell morphology and electrophysiological properties of
climbing fiber–Purkinje cell synapses were not seen. Thus, the
cerebellar dysfunction in Duoxa–/– mice may be caused by the
combined effect of congenital hypothyroidism and functional
disruption of the DUOX/DUOXA complex in the brain.

Materials and Methods

All experiments were performed in accordance with the
guidelines and protocols approved by the Animal Care and
Experimentation Committee, Gunma University. All efforts
were made to minimize the suffering and number of animals
used in this study.

Animals and treatment

Duoxa–/– mice were generated as described previously
(10). Animals were bred in the Animal Facility of Gunma
University Graduate School of Medicine. All mice were
housed with food and water provided ad libitum under con-
trolled temperature (25 – 5�C), humidity, and illumination
(12:12 light–dark cycle; lights on at 7:00 a.m.) conditions.
Adult heterozygotes (Duoxa+/–) were mated for a suitable
reproduction period. Between one and three pups per litter
were used in each genotype. Pups from at least three dams
were used in each experiment. Some mice received daily
subcutaneous injection of 20 lg/kg body weight (BW)
levothyroxine (LT4 sodium salt pentahydrate; Sigma, St,
Louis, MO) starting at postnatal day (P) 3. This amount is
sufficient to correct the hypothyroidism of Duoxa–/– mice
(18). Pups were weighed and killed at P10, P15, and P25 by
decapitation after induction of anesthesia with ketamine/xy-
lazine (22.5 mg/mL ketamine and 1 mg/mL xylazine in 0.9%
NaCl, intraperitoneally; 5 mL/kg BW). Their tails were cut to
extract DNA to determine their genotype by polymerase
chain reaction (PCR) in accordance with the protocol de-
scribed previously (10). The vermis of the cerebellum was
dissected out, rapidly frozen in liquid nitrogen, and stored at
-80�C for Western blot analysis. For histological analysis,
some brains were fixed in 4% paraformaldehyde in phosphate-
buffered saline (PBS) before dissection and cryoprotected in
10%, 20%, and 30% sucrose in PBS (pH 7.4) at 4�C. Cerebella
were embedded in the O.C.T. compound (Sakura, Tokyo, Ja-
pan), cut at a thickness of 10–20 lm using a cryostat (Microm
HM 525; Thermo Scientific, Walthman, MA), and placed on
slides for staining with cresyl violet or immunohistochemistry

(see below). Tissues were analyzed under a BZ-9000 micro-
scope (Keyence, Osaka, Japan).

Quantitative real-time reverse transcription PCR

Total RNA was extracted at P25 from the cerebellar ver-
mis, cortex, liver, and thyroid using RNeasy (Qiagen, Hilden,
Germany). A total of 2 lg of total RNA was used for cDNA
synthesis using a High Capacity RNA-to-cDNA kit (Applied
Biosystems, Foster City, CA). Specific primers for Duox1,
Duox2, Duoxa1, Duoxa2, brain-derived neurotrophic factor
(Bdnf), hairless (Hr), Krüppel-like factor 9 (Klf9), deiodinase
iodothyronine type I (Dio1), nuclear receptor subfamily
1, group D, member 1 (Nr1d1), and glyceraldehyde 3-
phosphate dehydrogenase (Gapdh) as internal controls were
used (Duox1: Mm01328685_m1; Duox2: Mm01326247_m1;
Duoxa1: Mm01269312_m1; Duoxa2: Mm01275445_m1;
Bdnf: Mm04230607_s1; Hr: Mm00498963_m1; Klf9:
Mm00495172_m1; Dio1: Mm00839358_m1; Nr1d1: Mm00
520708_m1; and Gapdh: Mm99999915_g1; Applied Bio-
systems). The context sequences for all assays are shown in
Supplementary Table S1 (Supplementary Data are available
online at www.liebertpub.com/thy). Real-time reverse tran-
scription PCR (RT-PCR) was carried out as described in the
instruction manual of the TaqMan Fast Advanced Master mix
kit (Applied Biosystems) and the StepOne Real-Time PCR
System (Applied Biosystems). The real-time RT-PCR pro-
tocol for all genes was 95�C for 20 sec, followed by ampli-
fication using 95�C for 1 sec and 60�C for 20 sec (40–80
cycles). Levels of mRNA shown above were normalized by
Gapdh mRNA level.

Immunohistochemistry

The cerebellar sections were washed with PBS and incu-
bated with 5% normal horse serum in 0.3% Triton X-100
in PBS for 30 min at room temperature. Then, the sections
were incubated with a mouse anti-calbindin-D28K antibody
(1:3000; Sigma) overnight at 4�C. Next, the sections were
incubated with biotinylated horse anti-mouse immunoglob-
ulin G (IgG; 1:200 dilutions) for 45 min. After rinsing in PBS,
the sections were incubated with avidin-biotin complex for
1 h and visualized by 3,3¢-diaminobenzidine (0.5 mg/mL
Tris-HCl containing 0.01% H2O2). Sections were then im-
mersed in 0.5% cresyl violet for 1–3 min, dehydrated by
graded series of ethanol, cleared in xylene, and placed under
coverslips.

Morphometric analysis

Cerebellar areas were measured in cresyl violet-stained
midsagittal sections using ImageJ software v1.47 (NIH, Be-
thesda, MD). All areas of the EGL and molecular layer in one
section were measured. Quantitative data were obtained from
three sections per mouse, and four mice per genotype and age
group were evaluated. The morphology of Purkinje cells was
analyzed using midsagittal sections immunostained for cal-
bindin with cresly violet staining. The lengths of the cell body
to the first branch point and the sizes of the soma were mea-
sured. Quantitative data were obtained from seven to eight
cells from one section per mouse, and four mice per genotype
were evaluated.
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Thyroid function tests

The serum thyrotropin (TSH) concentration was deter-
mined by enzyme-linked immunosorbent assay (Rodent
Thyroid Stimulating Hormone ELISA test kit ERKR7015;
Endocrine Technologies, Inc., Newark, CA). Samples were
measured in triplicate. Free T4 (fT4) and free triiodothyro-
nine (fT3) concentrations were measured on a single auto-
mated analyzer using the ARCHITECT system (Abbott
ARCHITECT i2000; Abbott Laboratories, Maidenhead,
United Kingdom). The lowest detectable limits were 0.40 ng/
dL and 1.00 pg/mL for fT4 and fT3, respectively. Serum
samples from Duoxa–/– mice for determining fT4 and fT3
concentrations were collected in one tube from four mice, and
five tubes were used for measurement. Twenty Duoxa–/–
mice from 10 different dams were used for detection of TH
status. Sensitivity threshold values were fitted when the
concentration was below the sensitivity limits.

Rotarod test

The accelerating rotarod test (model LE8500; Panlab,
Barcelona, Spain) was performed at P25 to assess motor
coordination. Five rotarod trials with increasing speed from
4 rpm to 40 rpm in 5 min were performed. The time on the
rotarod in the last three trials was recorded. Average scores
were used for analysis.

Open field test

All mice were tested individually in an open field appa-
ratus at P25. The unit for detecting the motor activity in mice
consisted of a 45 cm · 45 cm · 20 cm frame containing a total
of 16 · 16 crossed infrared beams at intervals of 2.5 cm, lo-
cated on the sides (LE 8811; Panlab, S.L.U., Barcelona,
Spain). Locomotor activity was assessed on the basis of the
analysis of the position and frequency with which the mice
crossed the infrared beams. Data were analyzed using the
Acti-Track program (Panlab, S.L.U.). Locomotor activity
was monitored for 30 min.

Electrophysiology

Experiments were conducted using Wt and Duoxa–/– mice
aged P10–P30. The methods used for the preparation of thin
slices and patch-clamp recordings from visually identified
Purkinje cells in cerebellar slices were similar to those de-
scribed previously (19). Briefly, whole-cell patch-clamp re-
cordings of Purkinje cells were performed under an upright
microscope (Axioscope; Zeiss, Oberkochen, Germany). The
slices were superfused with an external solution containing
120 mM of NaCl, 2.5 mM of KCl, 2 mM of CaCl2, 1 mM of
MgCl2, 26 mM of NaHCO3, 1.25 mM of NaH2PO4, and
25 mM of glucose, bubbled with 95% O2 and 5% CO2. The
solution was adjusted to pH 7.4 with HCl and bubbled with
100% O2. The pipette solution contained 150 mM of Cs
gluconate, 8 mM of NaCl, 2 mM of MgATP, 10 mM of
HEPES, and 0.1 mM of spermine, and was adjusted to pH 7.2
with gluconic acid. Patch pipettes had resistances of 3–5 MO
when filled with the pipette solution. Series resistance (5–
10 MO) was routinely compensated by 70%. To evoke
climbing/parallel fiber–excitatory postsynaptic currents

(EPSCs) in Purkinje cells, square pulses (0.1 ms, 10–100 lA)
were applied through a tungsten concentric bipolar electrode.
The signals were filtered at 3 kHz and digitized at 10 kHz for
EPSCs. Current responses were recorded with an EPC-8
amplifier (HEKA, Darmstadt, Germany), and a pCLAMP
system (v7, Axon Instruments, Foster City, CA) was used for
data acquisition and analysis. During ESPC recording,
100 lM of picrotoxin was added to the external solution. All
experiments were performed at 30–32�C. The changes in the
amplitude and decay time constant (19) of EPSCs in climb-
ing/parallel fiber–Purkinje cell synapses were also examined.
The amplitudes of paired-pulse facilitation and depression
were calculated using the peak amplitude of each EPSC (20).
The decay time constant (sw) of ESPCs was calculated as
previously reported (19), and 100 nM cyclothiazide (CTZ)
was applied to prevent the desensitization of the a-amino-3-
hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type
glutamate receptor (21).

Western blot analysis

The dissected cerebella were homogenized in lysis buffer
containing 10 mM of Tris-HCl (pH 7.8), 150 mM of NaCl,
1 mM of EDTA, 1% Nonidet P40, and protease inhibitors.
The expression levels of postsynaptic membrane proteins
(mGluR4, Munc18-1, calmodulin, syntaxin1a, VAMP2, and
SNAP25) were extracted from the vermis using a Pro-
teoExtract native membrane protein extraction kit (Calbio-
chem, San Diego, CA) in accordance with the manufacturer’s
instruction. The expression levels of proteins were deter-
mined by Western blot analysis, as described previously
(22,23). Briefly, after boiling for 5 min, protein samples
(30 lg) were subjected to 15% SDS-polyacrylamide gel
electrophoresis, and separated products were transferred to
nitrocellulose membranes. The membranes were blocked
with 5% nonfat dry milk in Tris-buffered saline containing
0.1% Tween 20, followed by overnight incubation with the
appropriate diluted primary antibodies for mGluR4 (1:1000;
Millipore, Billerica, MA), Munc18-1 (1:1000; Cell Signal-
ing, Danvers, MA), calmodulin (1:1000; Cell Signaling),
syntaxin1a (1:10000; Abcam, Cambridge, United King-
dom), VAMP2 (1:1000; Cell Signaling), SNAP25 (1:1000;
Cell Signaling) and b-actin (1:1000; Cell Signaling).
After washing with Tris-buffered saline containing 0.1%
Tween 20, the membranes were incubated with a horse-
radish peroxidase-conjugated anti-rabbit IgG secondary
antibody for 1 h at room temperature and detected using an
ECL detection system. b-actin was used as a loading
control.

Statistical analysis

Statistical comparisons were performed by Student’s t-test
or analyzed by one-, two-, or three-way analysis of variance
(ANOVA), followed by the Tukey’s test (after one-way
ANOVA) or the Bonferroni test (after two- and three-way
ANOVA) for post hoc analysis. Differences were consid-
ered significant at p < 0.05. All values are presented as
mean – standard error of the mean. GraphPad Prism v6.0 for
Windows (GraphPad Software, San Diego, CA) or SPSS
Statistics for Windows v22 (IBM Corp., Armonk, NY) were
used for statistical analysis and graphing data.
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Results

Growth and TH concentrations

The body weight of Duoxa–/– mice during postnatal weeks
2–3 tended to be lower compared with that of Wt mice
(Table 1). A two-way ANOVA showed significant effects
of genotype (male: F(2, 69) = 39.9, p < 0.001; female:
F(2, 80) = 38.1, p < 0.001) and age (male: F(2, 69) = 71.0,
p < 0.001; female: F(2, 80) = 51.3; p < 0.001). Post hoc
analysis by Bonferroni test showed that the body weights of
male and female Duoxa–/– mice were significantly lower
compared with those of Wt mice at P25 (male: t20 = 11.5,
p < 0.001; female: t27 = 11.2, p < 0.001). The increase in body
weight of T4-replaced Duoxa–/– mice was similar to that of
Wt mice. These findings are consistent with those in a pre-
vious report (10).

As shown in Table 2, a one-way ANOVA showed no sig-
nificant differences between three groups for the whole brain
weight. However, a one-way ANOVA showed significant
differences for the cerebellar weight (male: F(2, 12) = 21.4,
p < 0.001; female: F(2, 15) = 3.18; p < 0.05). Post hoc analysis
by Tukey’s test indicated that cerebellar weights were sig-
nificantly lower in Duoxa–/– male mice compared with that
of Wt male mice ( p < 0.01). Thus, the cerebellum may be
more severely affected than other brain regions. Interestingly,
T4 replacement could not fully rescue the decrease in cere-
bellar weight in Duoxa–/– mice.

To confirm the presence of hypothyroidism in Duoxa–/–
mice, serum TSH, fT3, and fT4 concentrations were deter-
mined. A one-way ANOVA showed significant differences in
TSH and fT4 (TSH: F(2, 27) = 21.4, p < 0.001; fT4: F(2,
15) = 6.59, p < 0.01) but not in fT3 (F(2, 15) = 3.59, p = 0.06).
Post hoc analysis by Tukey’s test showed that Duoxa–/– mice
had significantly elevated TSH concentrations ( p < 0.001),
indicating that the mice were hypothyroid at P25 (Table 3).
The serum fT4 concentration in two of five Duoxa–/– groups
and the fT3 concentration in all Duoxa–/– mice were below
the detectable range. On the other hand, no significant dif-
ferences in hormone levels between Wt and T4-replaced mice
were observed.

Expression levels of Duox/Duoxa family

The expression levels of the Duox/Duoxa family members
vary among tissues (10). The expression levels of these
mRNAs in the cerebellum have not yet been studied. Low
expression levels of the Duox/Duoxa family mRNAs were
found in the Wt mice cerebellum compared with those in the
thyroid (Supplementary Fig. S1). On the other hand, the ex-
pression level of Duox1 was upregulated in Duoxa–/– mice
cerebellum, as determined by Student’s t-test ( p < 0.001;
Supplementary Fig. S1). Thus, the expression pattern of Duox1
and Duox2 mRNAs in Duoxa–/– mice was different compared
with other extrathyroidal tissues such as the colon (10).

Changes of expression levels of TH-responsive genes
in Duoxa–/– mice

Several TH-responsive genes are expressed in the brain.
Among such genes, Bdnf plays an important role in cerebellar
development (18). Hr is also well known as a direct target of
TH in brain (24). Both Bdnf and Hr mRNA expressions were
lower in both the cerebellum and the cortex of Duoxa–/–
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mice, as determined by Student’s t-test (cerebellum: Bdnf
p < 0.05, Hr p < 0.001; cortex: Bdnf p < 0.05, Hr p < 0.001;
Supplementary Fig. S2). Dio1, which converts T4 to T3, is
highly expressed in the liver, and its expression is regulated
by TH (25,26). The Dio1 mRNA level in the liver was ex-
tremely low in Duoxa–/– mice, as determined by Student’s t-
test ( p < 0.05; Supplementary Fig. S2). On the other hand, the
expression levels of Klf9 and Nr1d1, which are also known as
a TH-responsive gene, were not significantly changed when
evaluated by Student’s t-test (25,27). These results indicate
that Duoxa–/– mice are generally hypothyroid in both the
brain and the liver. Klf9 and Nr1d1 might be regulated by not
only TH but also other factors in Duoxa–/– mice.

Behavioral analysis

The rotarod test was performed at P25 to examine motor
coordination. As shown in Figure 1A, a one-way ANOVA
showed significant effects on the duration of remaining on the
rotarod (male: F(2, 19) = 27.9, p < 0.001; female: F(2, 23) =
34.8, p < 0.001). Post hoc analysis by Tukey’s test indicated
that Duoxa–/– mice had a significantly shorter remaining time
than Wt and T4-replaced Duoxa–/– mice ( p < 0.001; Fig. 1A).
The open field test was also performed for 30 min to measure
the locomotor activity in a novel environment (Fig. 1B). The
activity was not significantly different between three groups,
as determined by a one-way ANOVA (male: F(2, 11) = 1.37,
p = 0.29; female: F(2, 17) = 1.25, p = 0.31).

Cerebellar morphology

In normal mice, the EGL usually disappears by P15. As
shown in Figure 2, the EGL persisted at P15 in Duoxa–/–
mice, indicating delayed proliferation and migration of
granule cells. The EGL disappeared by P25 (Fig. 2A and B).
The branching of dendrites and the sizes of the somas of

Purkinje cells at P15 were not significantly different in
Duoxa–/– compared to those of Wt mice (Fig. 3B; Student’s
t-test, p = 0.52). As reported previously, the length of den-
drites from the soma to the first branch is shorter in drug-
induced hypothyroid mice (18). However, in the present
study, the length was not statistically different between Wt
and Duoxa–/– mice (Fig. 3B; Student’s t-test, p = 0.32).

Short-term plasticity of parallel
fiber–Purkinje cell synapses

To evaluate the synaptic function in the cerebellum, an
electrophysiological study was performed on parallel fiber–
Purkinje cell synapses and climbing fiber–Purkinje cell
synapses. When a pair of pulses was delivered in close suc-
cession, EPSCs evoked by the second pulse tended to in-
crease compared with EPSCs evoked by the first pulse in
parallel fiber–Purkinje cell synapses. Such a phenomenon is
called paired-pulse facilitation, which reflects presynaptic
plasticity (20). As shown in Figure 4B, the paired-pulse fa-
cilitation was recorded in both Wt and Duoxa–/– mice. The
ratio of the second response over the first response was lower
in Duoxa–/– mice than that of Wt mice after P14 (Fig. 4D; two-
way ANOVA: group · interval between two pulses, F(5,
252) = 7.99; p < 0.001). Interestingly, significant differences
were detected at a short interval between two pulses of 20 msec
(Bonferroni test, t43 = 6.69; p < 0.001), 50 msec (t43 = 6.79;
p < 0.001), and 100 msec (t42 = 8.48, p < 0.001). These findings
indicate that the presynaptic plasticity at parallel fiber–Pur-
kinje cell synapses was altered in Duoxa–/– mice.

The plasticity of climbing fiber–Purkinje cell synapses was
also examined, which usually show depression by two pulses
delivered in close succession (paired-pulse depression). As
shown in Figure 5B, traces of EPSCs were not significantly
different between Wt and Duoxa–/– mice. The short-term

Table 2. Brain Weight of P25 Mice (mg)

Male Female

Whole brain Cerebellum

Percentage
of cerebellum/
whole brain Whole brain Cerebellum

Percentage
of cerebellum/
whole brain

Wt 384.8 – 14.3 (7) 46.0 – 1.0 (7) 12.0 – 0.5 (7) 382.6 – 13.5 (9) 45.1 – 2.2 (9) 11.9 – 0.6 (9)
Duoxa–/– 397.0 – 8.8 (4) 38.0 – 1.0 (4)** 9.6 – 0.4 (4)* 376.5 – 2.0 (4) 37.0 – 2.2 (4) 9.8 – 0.3 (4)
Duoxa–/– + T4 411.0 – 6.2 (4) 36.2 – 1.9 (4)*** 8.8 – 0.4 (4)** 401.3 – 3.5 (4) 37.5 – 2.8 (4) 9.3 – 0.7 (4)

Tissue weight data are presented as the mean – SEM. The number of samples is shown in parentheses.
*p < 0.05; **p < 0.01; ***p < 0.001 by Tukey’s test compared with Wt mice (same age).

Table 3. Thyroid Hormone Status at P25

TSH (ng/mL) fT3 (pg/ml) fT4 (ng/dl)

Wt 2.56 – 0.70 (14) 1.51 – 0.07 (5) 1.14 – 0.08 (5)
Duoxa–/– 131.6 – 9.60 (8)*** 1 – 0.00 (5 groups) 0.49 – 0.03 (5 groups)
Duoxa–/– + T4 1.22 – 0.55 (8) 2.09 – 0.37 (8) 2.49 – 0.53 (8)

Data are presented as the mean – SEM. The number of samples is shown in parentheses. The lowest detectable limits were 0.40 ng/dL and
1.00 pg/mL for fT4 and fT3, respectively. Serum samples from Duoxa–/– mice for determining fT4 and fT3 concentrations were collected
in one group from four mice, and five tubes were used for measurement.

***p < 0.001 by Tukey’s test compared with Wt mice.
TSH, thyrotropin; fT3, free triiodothyronine; fT4, free thyroxine.
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plasticity (Fig. 5C; 50 msec interval) and decay time of EPSCs
(Fig. 5D) were also not significantly different between the two
groups. CTZ, a positive allosteric modulator of AMPA-type
glutamate receptors (21), was also applied to reduce the effect
of desensitization of these receptors on the decay time constant
of EPSCs from climbing fiber–Purkinje cell synapses (21,28).
However, the decay time constant was also not significantly
different between the two groups (Fig. 5D). These findings
indicate that the function of climbing fiber–Purkinje cell syn-
apses was not affected in Duoxa–/– mice.

Expression level of presynaptic proteins

Duoxa–/– mice showed attenuated paired-pulse facilitation
at parallel fiber–Purkinje cell synapses, indicating alteration
of presynaptic function. Thus, the expression levels of pre-
synaptic proteins were examined by Western blot analysis. A

large number of proteins are involved in presynaptic function.
The presynaptic group III metabotropic glutamate receptor
(mGluR) 4 is expressed in the presynaptic active zone and
reduces synaptic vesicle release. Munc18-1 and calmodulin
are proteins essential for neurotransmission, and they pro-
mote soluble NSF attachment protein receptor (SNARE)-
mediated vesicle fusion; for a review, see Mochida (29).
The expression levels of these representative proteins were
examined.

The expression levels of presynaptic proteins were ana-
lyzed by a three-way ANOVA (with age, genotype, and sex
as factors). A three-way ANOVA of the expression levels of
mGluR4, Munc18-1, VAMP2, and SNAP25 showed signif-
icant effects of age (mGluR4: F(2, 31) = 3.61, p < 0.05;
Munc18-1: F(2, 31) = 3.58, p < 0.05; VAMP2: F(2, 31) =
4.96, p < 0.05; SNAP25: F(2, 31) = 5.65, p < 0.01). However,
there were no differences in calmodulin and Syntaxin1a

FIG. 1. Behavioral characterization of Duoxa knockout mice on P25. (A) Duration on accelerating rotarod. Duoxa–/–
mice (8 male, 7 female) exhibited an impaired performance on the rotarod compared with Wt mice (10 male, 15 female) and
thyroxine (T4)-replaced Duoxa–/– mice (4 male, 4 female). (B) Locomotor activities of Wt (5 male, 11 female), Duoxa–/–
(5 male, 5 female), and T4-replaced Duoxa–/– (4 male, 4 female) mice in open field test for 30 min. There were no
significant differences in traveling distance. Data are presented as mean – standard error of the mean (SEM). ***p < 0.001
determined by Tukey’s test compared with Wt mice.

FIG. 2. Morphological alterations of the
cerebellum. (A) Midsagittal cerebellar sec-
tions (vermis) at P10, P15, and P25 stained
with cresyl violet. The normal lobulation in
the cerebellum is retained. Scale bar: 50 lm
(upper left) and 1 mm (middle). (B) The
ratio of the EGL/ML was measured in
all areas of midsagittal sections of the
cerebellum. Three sections were analyzed
per mouse (n = 4). Data are presented as the
mean – SEM. EGL, external granule cell
layer; ML, molecular layer; PL, Purkinje
cell layer; IGL, internal granule cell layer.
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(calmodulin: F(2, 31) = 0.92, p = 0.41; Syntaxin1a: F(2,
31) = 1.83, p = 0.18). There were no significant differences by
Bonferroni test post hoc analysis.

A three-way ANOVA did not show significant effects of sex
for the studied proteins, with the exception of SNAP25
(mGluR4: F(1, 31) = 2.77, p = 0.11; Munc18-1: F(1, 31) = 3.00,
p = 0.09; calmodulin: F(1, 31) = 0.98, p = 0.33; Syntaxin1a:
F(1, 31) = 0.58, p = 0.45; VAMP2: F(1, 31) = 2.79, p = 0.11;
SNAP25: F(1, 31) = 15.0; p < 0.01). However, post hoc analysis
by a Bonferroni test showed no significant differences.

A three-way ANOVA of the expression levels of presynaptic
proteins did not show differences between the genotypes
(mGluR4: F(1, 31) = 1.59, p = 0.22; Munc18-1: F(1, 31) = 1.58,
p = 0.22; calmodulin: F(1, 31) = 0.10, p = 0.75; Syntaxin1a:
F(1, 31) = 0.07, p = 0.80; VAMP2: F(1, 31) = 1.95, p = 0.17;
SNAP25: F(1, 31), p = 0.93).

Even though protein expression levels at the presynaptic
region of the cerebellum in Duoxa–/– mice before P15 was
not consistent with the alterations of electrical physiological
properties (Figs. 4 and 6), it is concluded that the presynap-
tic function in the developing cerebellum is impaired in
Duoxa–/– mice.

Discussion

Duoxa–/– mice showed various morphological changes
(e.g., retardation of granule cell migration; Fig. 2). Motor
coordination function was also disturbed (Fig. 1) and parallel
fiber–Purkinje cell synaptic function (Fig. 4) was altered.
Interestingly, the abnormal phenotype in this mouse is not
entirely consistent with the findings in other congenital hy-
pothyroid animal models (e.g., Purkinje cell morphology,
brain size; Fig. 3 and Table 2). Thus, Duoxa–/– mice may be a
new animal model to study the combined effect of congenital
hypothyroidism and DUOXA functional disruption. How-
ever, the effect of DUOX/DUOXA on cerebellar development
may be smaller than that of TH because of limited expression
of Duox/Duoxa in the brain (Supplementary Fig. S1).

Phenotypic characteristics of Duoxa–/– mice

The morphogenesis of the rodent cerebellar cortex is com-
pleted in the early postnatal period after termination of external
granule cell migration, neuronal and glial growth, and sy-
naptogenesis. Multiple factors regulating this process are di-
rectly or indirectly regulated by TH. The Purkinje cells receive
excitatory inputs from parallel fibers of granule cells and
climbing fibers from the inferior olive. Parallel fiber–Purkinje
cell synaptic connection is established around P12 during
granule cell migration. The climbing fiber–Purkinje cell syn-
aptic connection is established much earlier (around P3) (30).
Because of such periodic differences, TH may affect them
through different pathways, causing different outcomes. The
parallel fibers convey the conditioned stimuli through multi
synapses, while the climbing fibers convey the unconditioned
stimuli through a single synapse (31). The parallel fiber–Pur-
kinje cell synapse may substantially contribute to cerebellar
motor learning (32,33). Thus, the disruption of parallel fiber–
Purkinje cell synapses (retardation of granule cell maturation)
impairs the motor coordination function in Duoxa–/– mice.

To study the effect of TH on cerebellar development,
several rodent models have been generated. Mice or rats can
be rendered hypothyroid by administering anti-thyroid drugs
such as propylthiouracil (PTU) or methylmercaptoimidazole
through food or drinking water (5,18). These drugs block TH
synthesis by inhibiting TPO, which oxidizes iodide and fa-
cilitates the iodination of tyrosine residues on TG (18). When
drugs are administered during pregnancy or lactation, the
fetus and newborn are rendered hypothyroid. However, such
treatment induces hypothyroidism in both pups and dams.
Maternal hypothyroidism may alter nursing behavior, which
may affect the development of the pups. On the other hand,
because Duoxa+/– mice are not hypothyroid (10), the effect
of altered maternal behavior can be eliminated. In this regard,
these mice can be a good model for studying the effects of
neonatal hypothyroidism.

Using drug-induced hypothyroid rats, Nicholson and Alt-
man showed a reduced cerebellar weight, a prolonged cell
proliferation in the EGL and retarded EGL disappearance, a
retarded cell differentiation in the molecular and internal
granule cell layers, terminal increases in the numbers of
granule cells and astrocytes, and a decrease in those of basket
cells (34). Legrand (5) and Clos et al. (35) showed a de-
creased dendritic arborization of Purkinje cells with twofold
longer primary dendrites, reduction of growth and branching

FIG. 3. The morphology of Purkinje cells was not affected
by knockout of the Duoxa gene. (A) Purkinje cells in mid-
sagittal sections were stained with cresyl violet and im-
munostained with calbindin on P15. Scale bar: 100 lm. (B)
Graph showing the lengths of cell body to the 1st branch
point and the sizes of the soma. These values were not
statistically different between Wt and Duoxa–/– mice by
Student’s t-test. Quantitative data were obtained from 30–36
cells from 15–20 sections per mouse, and four mice per
genotype were evaluated.
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of dendrites, and shorter parallel fibers with fewer synaptic
contacts with Purkinje cells. In Duoxa–/– mice, a retardation
of the EGL disappearance was also found in this study
(Fig. 2). However, the cerebellar catch-up growth motor
dysfunction was still detected on the rotarod at P25 when the
EGL no longer exists (Fig. 1A), indicating a functional defect

of the cerebellum, although an influence of the body weight
difference between the control and Duoxa–/– mice cannot be
excluded.

In the open field test, Duoxa–/– mice showed similar travel
distances as Wt mice (Fig. 1B). In previous studies, using
drug-induced hypothyroid or mutant rats, animals tended to

FIG. 4. Paired-pulse facilitation at parallel fiber–Purkinje cell synapses. (A) Schema of parallel fiber–Purkinje cell synapse.
PC, Purkinje cell; GC, granule cell; R, recording electrode; S, stimulating electrode. (B) Representative excitatory postsynaptic
current (EPSC) trace of parallel fiber–Purkinje synapses from Wt and Duoxa–/– mice. The intervals between the first and second
stimulations were 20, 50, 100, 200, and 600 ms. (C) The traces were normalized by the peak of the first stimulation. The interval
between the first and second stimulations was 20 ms. (D) Graph showing the ratio of the second peak amplitude divided by the
first peak amplitude. The degree of paired-pulse facilitation decreased in Duoxa–/– mice after P14 especially at a short interval.
The data represent the average of 13 cells in 12 slices from four Wt mice (3 male mice) at –P13; 10 cells in 10 slices from three
Duoxa–/– mice (1 male mouse) at –P13; 25 cells in 20 slices from five Wt mice (2 male mice) at P13–P24; 26 cells in 18 slices
from four Duoxa–/– mice (2 male mice) at P14–P24; 20 cells in 16 slices from five Wt mice (2 male mice) at P25–; and 20 cells in
15 slices from four Duoxa–/– mice (1 male mouse) at P24–. *p < 0.05; **p < 0.01 determined by the Bonferroni test.

FIG. 5. Paired-pulse depression at climbing
fiber–Purkinje cell synapses. (A) Schema of
climbing fiber–Purkinje cell synapse. (B) Re-
presentative EPSC trace of climbing fiber–
Purkinje cell synapses from Wt and Duoxa–/–
mice. The shape of climbing fiber–Purkinje cell
EPSC traces did not show significant differ-
ences between Wt and Duoxa–/– mice. Appli-
cation of 100 lM cyclothiazide (CTZ) did not
cause a significant change either. (C) The short-
term plasticity was not affected by the knockout
of Duoxa. (D) The decay time constant of
EPSCs was not affected under both artificial
cerebrospinal fluid (ACSF) condition and CTZ
treatment condition. The data are the average of
12 cells in 12 slices from four Wt mice (3 male
mice) at –P13; 13 cells in 13 slices from three
Duoxa–/– mice (1 male mouse) at –P13; 20
cells in 20 slices from five Wt mice (2 male
mice) at P13–P24; 16 cells in 16 slices from
four Duoxa–/– mice (2 male mice) at P14–P24;
20 cells in 20 slices from five Wt mice (2 male
mice) at P25–; and 14 cells in 14 slices from
four Duoxa–/– mice (1 male mouse) at P24–.
The Bonferroni test was used in each analysis.
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be hyperactive in the open field test (36,37). The exact reason
causing such differences is not clear. While these differences
may be caused by species differences, there is a possibility
that the phenotype of Duoxa–/– mice may be partly unique
compared with those of other hypothyroid animals.

Decrease in neural transmission efficiency
in the hypothyroid cerebellum

Parallel fiber–Purkinje cell synapse impairment causes motor
coordination and motor learning dysfunctions, which have been
studied by electrophysiology (38,39). However, although a
motor coordination impairment has also been reported in hy-
pothyroid animals (36,40), electrophysiological analyses have
rarely been conducted. Only one study has shown a delay of the
evolution of excitations between parallel fibers and Purkinje
cells, especially at P10–P20, and a slight disturbance of the
climbing fiber responses of Purkinje cells after P9, with recovery
by P30 (41). In the present study, the short-term plasticity of
parallel fiber–Purkinje cell synapses was affected in Duoxa–/–
mice (Fig. 4). On the other hand, the short-term plasticity of
climbing fiber–Purkinje cell synapses was not affected (Fig. 5).
These findings indicate that the release of neurotransmitters at
parallel fiber–Purkinje cell synapses is disrupted, whereas the
effects on climbing fiber–Purkinje cell synapses are negligible
in Duoxa–/– mice. This is a unique feature of Duoxa–/– mice
compared with other rodent hypothyroid models. Although the
exact reason for this difference is not clear, Duoxa–/– may have
a different phenotype compared with other mutants, since no
aberrant Purkinje cell morphology was observed (Fig. 3). Fur-
ther study is required to clarify these points.

To clarify the mechanism underlying the change in elec-
trophysiological properties further, the expression of pre-
synaptic proteins was measured. Proteins measured in the

present study play crucial roles in the depression of synaptic
transmission (mGluR4) (42–46) and the exocytosis of neu-
rotransmitters (Munc18-1, calmodulin, syntaxin1a, VAMP2,
and SNAP25) (29,47–49). The findings indicate that the
change in electrophysiological properties is not be caused by
an altered expression of these presynaptic proteins, which
could cause the disruption of neurotransmitter release. In rats
with drug-induced hypothyroidism, on the other hand, the
numbers of granule cells and parallel fiber–Purkinje cell
synapses are decreased (50–52). Taken together, the decrease
in the neural transmission efficiency in Duoxa–/– mice is not
caused by a change in synaptic property, but by alterations of
neuronal circuits (synaptogenesis) between parallel fibers
and Purkinje cells.

Possibilities of direct effects of Duox/Duoxa on
cerebellar development

In the present and one previous study (10), Duoxa–/– mice
showed severe hypothyroidism. However, although the
phenotype of cerebellar dysfunction in Duoxa–/– was similar
to those of other congenital hypothyroid animal models,
several differences could be observed. For example, the rdw/
rdw rat, a thyroid dyshormonogenesis animal caused by a
mutation in the Tg gene, shows not only a severe motor co-
ordination impairment and retarded migration of granule
cells, but also small somata and poor dendritic arborization of
Purkinje cells (36). In contrast, Duoxa–/– mice did not show
aberrant Purkinje cell morphology. Furthermore, the short-
term plasticity of climbing fiber–Purkinje cell synapses was
not affected. Nevertheless, the mice showed a similar motor
coordination defect on the rotarod, as did the rdw/rdw rats.
Such a difference may not only be caused by neonatal
hypothyroidism. Rather, DUOX/DUOXA may be directly

FIG. 6. Western blot analysis of expression levels of mGluR4, Munc18-1, calmodulin, sytaxin1a, VAMP2, and SNAP25
from Wt and Duoxa–/– mice at P10, P15, and P25 (n = 6, sex ratio: 0.5). Images of b-actin are the same as those used for
comparison with mGluR4, syntaxin1a, and SNAP25.
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involved in brain development. DUOXA1/2 are members
of the NADPH oxidase (NOX) protein families and play a
critical role in the production of reactive oxygen species
(ROS) (53). Coyoy et al. identified specific patterns of the
expression levels of other members of the family (such as
NOX1, NOX2, and NOX4) and ROS generation during
various stages of rat cerebellar development (54). Damiano
et al. reported that DUOX1/2 protein levels were increased
by platelet-derived growth factor through production of ROS
(55). Based on these findings, one may hypothesize that
Duox/Duoxa may help the formation and maintenance of
synapses in the neuron. However, the physiological functions
of the NOX/DUOX family are still unclear (56). In the
present study, since we cannot fully explain the mechanism
inducing the cerebellar phenotype in Duoxa-/- mice, there is a
possibility that some phenotypic features may be caused by a
direct effect of the functional disruption of the DUOX/
DUOXA complex. Further studies are required to clarify the
role of NOX/DUOX in brain development.

In conclusion, Duoxa deficiency induces developmental
hypothyroidism and cerebellar ataxia. Interestingly, although
the morphological changes in Duoxa–/– mice were negligible
compared with mice with PTU-induced hypothyroidism,
severe cerebellar dysfunction did persist. These results sug-
gest that the cerebellar dysfunction in Duoxa–/– mice may be
caused by the combined effect of congenital hypothyroidism
and the functional disruption of the DUOX/DUOXA com-
plex in the brain. Thus, Duoxa–/– mice may be a unique
model to study the role of Duoxa on brain development.
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