SCIENTIFIC REPORTS

Received: 14 December 2015 Accepted: 20 April 2016 Published: 09 May 2016

OPEN Solvent and Intermediate Phase as Boosters for the Perovskite **Transformation and Solar Cell** Performance

Jinhyun Kim¹, Taehyun Hwang¹, Sangheon Lee¹, Byungho Lee¹, Jaewon Kim¹, Gil Su Jang¹, Seunghoon Nam² & Byungwoo Park¹

High power conversion efficiency and device stabilization are two major challenges for CH₃NH₃Pbl₃ (MAPbl₃) perovskite solar cells to be commercialized. Herein, we demonstrate a diffusion-engineered perovskite synthesis method using MAI/ethanol dipping, and compared it to the conventional synthesis method from MAI/iso-propanol. Diffusion of MAI/C₂H₅OH into the PbCl₂ film was observed to be more favorable than that of MAI/C₃H₇OH. Facile perovskite conversion from ethanol and highly-crystalline MAPbl₃ with minimized impurities boosted the efficiency from 5.86% to 9.51%. Additionally, we further identified the intermediates and thereby the reaction mechanisms of PbCl₂ converting into MAPbl₃. Through straightforward engineering to enhance the surface morphology as well as the crystallinity of the perovskite with even faster conversion, an initial power conversion efficiency of 11.23% was obtained, in addition to superior stability after 30 days under an ambient condition.

The feasible challenges in solar cell commercialization are enhancement in power conversion efficiency (PCE) and cost reduction to support the world-wide electricity consumption¹⁻⁵. Alternatively, organometallic perovskite solar cells were first demonstrated by Miyasaka's group in 2009 with a PCE of 3.8%⁶, and an enormous growth has been achieved over the last 6 years with the highest efficiency of 22.10%⁷. Perovskite (CH₃NH₃PbI₃) solar cells are settled as the most attractive topic in photovoltaic research areas due to the low fabrication cost and high efficiencies, followed by inherent advantages of the perovskite material which include an appropriate and direct bandgap, small exciton binding energy, balanced ambipolar charge transport properties, etc.⁸⁻¹². Furthermore, the synthesis of CH₃NH₃PbI₃ (MAPbI₃) goes through a simple process, by mixing PbI₂ and MAI precursors⁶. In 2012, the superior performance via MAPbI₃ synthesis with PbCl₂ and MAI precursors was introduced by Snaith's group, and property analyses were carried out by many groups¹³⁻¹⁶. Since then, researchers widely studied the chlorine effect, and concluded that chlorine enhances the morphology of perovskite films¹⁶⁻²⁰. Even though the chlorine effect is suggested by many research groups, understanding the mechanisms on the synthesis is still required to be elucidated.

Architectural challenges are widely studied due to the ambipolar behavior²¹⁻²³ of perovskites. Among them, the highest efficiency of 22.10%⁷ has been achieved with mesoporous structure, and mesoporous layer allows the additional light trapping effect^{24,25}. In the mesoscopic structure, there are two major MAPbI₃ deposition methods. The one-step solution deposition generally uses a mixture solution of PbI₂ and MAI¹⁶, and the sequential deposition is carried out by pre-depositing the PbI₂ film, followed by dipping it into an MAI-dissolved iso-propanol solution to form the MAPbI₃ film²⁶. Among them, the one-step solution deposition is highly beneficial in that this process is quite simple and time-saving. However, the sequential deposition is reported with a higher PCE than that of the one-step deposition²⁷⁻²⁹ due to the enhanced pore filling through the mesoporous TiO_2 (mp- TiO_2). Although the sequential deposition guarantees a high PCE, a comparative disadvantage in the sequential deposition is that it is a long-time process, since it goes through multiple steps to fabricate the perovskite film²⁶.

¹WCU Hybrid Materials Program, Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea. ²Nano Mechanical Systems Research Division, Department of Nano Mechanics, Korea Institute of Machinery & Materials (KIMM), Daejeon 305-343, Korea. Correspondence and requests for materials should be addressed to B.P. (email: byungwoo@snu.ac.kr)

Figure 1. Schematic illustration of the MAI in ethanol or iso-propanol diffusing into the PbCl₂-wetted mesoporous-TiO₂ (mp-TiO₂). The blocking-layer is coated on SnO₂:F (FTO).

In this article, we have demonstrated a straightforward diffusion-controlled synthesis approach by replacing the conventional MAI-dissolved iso-propanol solution with a MAI-dissolved ethanol solution, which enhanced the crystallinity, boosted the perovskite transformation, and minimized impurities. Moreover, we have detected intermediate phases when the PbCl₂ precursor transforms into MAPbI₃, and engineered the MAPbI₃ deposition procedure by artificially mixing those intermediates as deposition precursors. This novel approach allowed superior surface morphology and crystallinity with enhanced conversion kinetics of MAPbI₃, yielding an initial PCE of 11.23% and notable stability exhibiting 10.14% PCE after 30 days under ambient conditions.

Results

Ethanol Conversion. Sequential deposition is one of the most preferable methods for perovskite fabrication due to the high PCE. One major problem, however, is the long fabrication time by multiple fabrication steps²⁶. To reduce the fabrication time in the sequential deposition process, boosting the formation kinetics of MAPbI₃ using MAI with PbCl₂ precursors is required. Therefore, a low viscous solvent and larger concentration of MAI are necessary for effective diffusion of MAI into the PbCl₂ layer. In general, conventional dipping solution uses 10 mg mL^{-1} of MAI in iso-propanol²⁶, and a high concentration of MAI in solvent reduces both cuboid sizes and PCEs³⁰. Thus, finding an alternative solvent is necessary for the viscosity and diffusion aspects. Figure 1 schematically illustrates the movements of ionized MAI into the PbCl₂ film with ethanol (20 mg mL^{-1}) and iso-propanol (10 mg mL^{-1}) , where the conversion kinetics of PbCl₂ into MAPbI₃ for each solvent is quite different even with the optical images (Supplementary Fig. 1, fast conversion kinetics with MAI/ethanol). The extent of the reaction was easily estimated by color changes (E_g of MAPbI₃ \approx 1.55 eV). However, less viscous methanol was not effective due to the dissolution of MAPbI₃ (Supplementary Fig. 2)²⁶. The fabricated perovskite film with the same concentration (20 mg mL^{-1}) for the iso-propanol solution results in rather small cuboid sizes (~80 nm) with a low PCE of 2.08% in the solar cell performance, as shown in Supplementary Fig. 3. The cuboid size of MAPbI₃ with an ethanol solution is also distinguishable from that with iso-propanol, as shown in the scanning electron microscopy (SEM) (Fig. 2a,b). The PbCl₂-deposited film and cuboid-size distributions are plotted in Fig. 2c, and the synthesized perovskite with twice-large cuboid sizes (~1180 nm) through an ethanol conversion is expected to produce higher carrier mobilities³¹.

Figure 2. Solvent effects on MAPbI₃ using ethanol or isoporpanol. (a) SEM images of MAPbI₃ using ethanol, (b) MAPbI₃ using iso-propanol, and (c) PbCl₂ on mp-TiO₂. The average cuboid size is shown for MAPbI₃ by ethanol or iso-propanol.

Figure 3 illustrates qualitative analysis of the perovskite formation with ethanol or iso-propano. The energy disperse x-ray spectroscopy (EDS) was conducted to identify the chlorine concentration (Fig. 3a). MAPbI₃ converted from an ethanol solution contains lower Cl than that of iso-propanol-synthesized MAPbI₃ since unreacted PbCl₂ or partially-reacted MAPbCl₃ remains in the film. Still, ethanol-based MAPbI₃ shows some chlorine content, and we believe that this is caused by MACl which is a co-product during the MAPbI₃ synthesis¹⁶⁻¹⁸. Actually, there is a possibility that chlorine is doped in the perovskite structure (MAPbI_{3,x}Cl_x) as reported by several groups¹⁴⁻¹⁶. However, the small quantity of chlorine in the perovskite structure is difficult to be evaluated, and the remaining chlorine may form other products^{17,19}. Cross-sectional SEM image of MAPbI₃ perovskite solar cell by ethanol exhibits uniform film structures, as shown in Fig. 3b. For further understanding of impurities, X-ray diffraction (XRD) scans were compared, and an ethanol-based MAPbI₃ shows clear (110), (220) and (330) peaks (Fig. 3c). On the contrary, the conversion with iso-propanol produced impurity peaks of PbI₂ and MAPbCl₃ (Fig. 3c), indicating incomplete reaction. To explain the effect of ethanol on the crystallinity, we have additionally confirmed that the longer dipping time increases the crystallinity of MAPbI₃ (Supplementary Fig. 4) eVen when the reaction was completed. Together with the optical observation in Supplementary Fig. 1, it can be said that MAI/ethanol-converted MAPbI₃ completes the reaction faster with better crystallinity, compared to that of iso-propanol for the same dipping time. Furthermore, the light absorption from the synthesized perovskite is clearly different between ethanol and iso-propanol (Fig. 3d). The enhanced absorption at approximately 800 nm by ethanol is due to the superior purity of MAPbI₃ ($E_q \approx 1.55 \text{ eV}$), while partially-reacted MAPbI3 by iso-propanol contains high-bandgap impurities, such as PbI2 $(E_{g} \approx 2.36 \text{ eV})^{32}$ and MAPbCl₃ $(E_{\sigma} \approx 3.17 \text{ eV})^{33}$. Therefore, the overall PCE is greatly improved from 5.86% to 9.51% (Fig. 3e) with much better stability (Fig. 3f), and both methods performed high reproducibility (Supplementary Fig. 5 and Supplementary Table 1). After 30 days, the PCE decreased from 9.51% to 8.53% and 5.86% to 3.75%, respectively, for the ethanol and iso-propanol

Reaction Condition		$V_{oc}(\mathbf{V})$	J_{sc} (mA/cm ²)	FF	η (%)
Initial	Ethanol	0.87	17.3	0.63	9.51
	Iso-propanol	0.83	14.4	0.49	5.86
30 Days	Ethanol	0.84	16.4	0.63	8.53
	Iso-propanol	0.79	10.1	0.47	3.75

Table 1. Photovoltaic performance of MAPbI₃ perovskite solar cells using an ethanol or iso-propanol solution (as-fabricated cells and cells after 30 days).

solution (Table 1). The improved crystallinity and enlarged grain of $MAPbI_3$ by ethanol surely prevents possible air penetration through various grain boundaries, leading to stability enhancement. The half-lifetime of the $MAPbI_3$ perovskite solar cell (degradation details in Supplementary Fig. 6) was estimated to be ~150 and ~40 days, respectively, for ethanol and iso-propanol.

To identify the reaction mechanisms, intermediate phases during the perovskite formation were investigated by the concentration variations of MAI in ethanol. With a low concentration of MAI/ethanol (Fig. 4a), PbCl₂ partially reacts into PbI₂ (5 mg mL⁻¹). The chlorine in PbCl₂ ion-exchanges with iodine in MAI to form PbI₂, and the

dissociated MA⁺ and Cl⁻ from outer PbCl₂ intercalate into the inner PbCl₂ layer, transforming to the MAPbCl₃ phase (15 mg mL⁻¹ of MAI/ethanol). The intermediate PbI₂ reacts with MAI directly to form MAPbI₃ by intercalating MAI in the layered PbI₂, while MAPbCl₃ will ion-exchange with I⁻ and reconstructs to the final MAPbI₃, as schemed in Fig. 4b (20 mg mL⁻¹ of MAI/ethanol). The whole reaction occurs through the following steps:

2 $PbCl_2 + 2 MAI \rightarrow PbI_2 + PbCl_2 + 2 MACl (step 1)$

 $PbI_2 + MAI \rightarrow MAPbI_3 (step 2)$

 $PbCl_2 + 2 MACl \rightarrow MAPbCl_3 + MACl (step 3)$

 $MAPbCl_3 + MACl + 3 MAI \rightarrow MAPbI_3 + 4 MACl (step 4)$

 $PbCl_2 + 3 MAI \rightarrow MAPbI_3 + 2 MACl.$ (Total Reaction)

The PbI₂ phase converts into MAPbI₃ earlier than the formation of MAPbCl₃, as shown by the X-ray diffraction of MAPbI₃ vs. MAPbCl₃ phases for MAI concentrations of 10 and 15 mg mL⁻¹ (Fig. 4a). We have also compared the perovskite formation from MAPbCl₃ (MAPbCl₃ + 3 MAI \rightarrow MAPbI₃ + 3 MACl) with PbI₂ (PbI₂ + MAI \rightarrow MAPbI₃) (respectively, in the middle and right of Fig. 4a), and found that both have resulted in no intermediate phases. Synthesizing fully-converted MAPbI₃ from PbCl₂ requires both intercalation and reconstruction steps, while the idea of reconstruction from MAPbCl₃ to MAPbI₃ was investigated in the previous report³⁴. Therefore, we intuitively conclude that the recrystallization of intermediates both inside and on top of the mp-TiO₂ film can enhance the coverage morphology, nanostructures, and crystallinity¹⁶⁻¹⁸ of MAPbI₃ by multiple crystal-alignment steps. Moreover, ethanol conversion increases the kinetics of the reaction steps, and produces improved MAPbI₃ film, compared to the conversion with iso-propanol.

Reaction Mechanism Engineering. To understand the phase-formation paths of MAPbI₃ from PbCl₂, we came up with an idea to further optimize MAPbI₃ by utilizing the identified intermediate phases. While the direct conversion of MAPbCl₃ to MAPbI₃ can drastically reduce the reaction time, the repetition of crystallization from PbCl₂ to MAPbI₃ will enhance the surface morphology. Even though PbI₂ appears during the transformation of the PbCl₂ precursor to MAPbI₃, and increases the reaction kinetics, the MAPbCl₃ precursor is more reactive than the PbI₂ precursor to synthesize MAPbI₃ (middle and right graphs in Fig. 4a) where the MAPbCl₃ precursor is likely to transform with lower MAI concentration than that of the PbI₂ precursor. Also, the chlorine-based

	Reaction Mechanism	Precursor Ratio (PbCl ₂ : MAPbCl ₃)		
RXN 1	$\begin{array}{c} PbCl_2 + 3 \text{ MAI} \rightarrow MAPbI_3 \\ + 2 \text{ MACl} \end{array}$	3:0		
RXN 2	$\begin{array}{l} 2 \ PbCl_2 + MAPbCl_3 + 9 \ MAI \\ \rightarrow 3 \ MAPbI_3 + 7 \ MACl \end{array}$	2:1		
RXN 3	$\begin{array}{l} PbCl_2 + 2 \; MAPbCl_3 + 9 \; MAI \\ \rightarrow 3 \; MAPbI_3 + 8 \; MACl \end{array}$	1:2		
RXN 4	$\begin{array}{c} MAPbCl_3 + 3 \text{ MAI} \rightarrow \\ MAPbI_3 + 3 \text{ MACl} \end{array}$	0:3		

Table 2. Precursor ratio of PbCl₂: MAPbCl₃ for the reactions 1, 2, 3, and 4.

.....

Figure 5. Schematic illustration of the experimental procedure. Various ratios of PbCl₂: MAPbCl₃ were initially deposited on the substrate, and then the MAI-dissolved ethanol solution was utilized to synthesize MAPbI₃.

precursor should be preferred considering the positive effects of chlorine on the MAPbI₃ perovskite solar cells^{16–20}. Therefore, a straightforward direction is rendered by mixing PbCl₂ and MAPbCl₃ in several different ratios of 3:0 (reaction 1), 2:1 (reaction 2), 1:2 (reaction 3), and 0:3 (reaction 4), to optimize the reaction time with smooth surface morphology (Table 2 and Fig. 5).

As expected, we observed the morphology changes by synthesizing MAPbI₃ films from precursors with different ratios of PbCl₂ and MAPbCl₃ through SEM, as shown in Fig. 6a. Perovskite films synthesized by reaction 2 exhibits clearly improved coverage with ~2320-nm-sized cuboids. Furthermore, addition of MAPbCl₃ (reaction 3 and 4) deteriorates the coverage, but increases the cuboid size. When a larger amount of the MAPbCl₃ precursor is added through reactions, the crystallinity of MAPbI₃ is enhanced significantly, as shown by XRD (Fig. 6b,c). The enhanced crystallinity can be explained by the extent of reaction, and the facilely-transformed perovskite is likely to have high crystallinity even with the same dipping time (Supplementary Fig. 4). These observations are also consistent with the optical variations during the MAPbI₃ formation (Supplementary Fig. 7). It should be noted that the coverages for the reactions 1, 2, 3, and 4 are different. However, conversions at ~10 s are distinct between reactions 1 (PbCl₂ precursor) and 4 (MAPbCl₃ precursor). The light absorption in Fig. 6d indicates that the absorption is more influenced by the coverage rather than the crystallinity and cuboid size of MAPbI₃. The maximum coverage in reaction 2 reached the highest absorption, and the minimum coverage with reaction 4 yielded the lowest absorption. As a material perspective, MAPbI₃ synthesis by reaction 4 is supposed to show excellent properties due to the high crystallinity and cuboid sizes, as plotted in Fig. 7a. Moreover, EDS was additionally measured to identify the comparative chlorine contents with iodine, which is plotted in Fig. 7b for each reaction, indicating that reaction 1 obtained the highest, and reaction 4 occupied the lowest concentration of chlorine. This chlorine tendency suggests that a co-product of MACl is minimized through the addition of MAPbCl₂. (It should be noted that the EDS technique may not reflect the accurate chlorine concentration due to the coverage difference of each reaction.) It is possible that the detected chlorine through EDS is from the MACI phase or other products¹⁶⁻¹⁸. Moreover, excessive chlorine may lead to impurities, and deteriorate the device performance. Therefore, high crystallinity and low impurity of MAPbI₃ are highly beneficial in the carrier mobilities, but recombination of carriers arising from poor coverage³¹ is another factor that we should be aware of.

To understand the effects of crystallinity and coverage on the photovoltaic performance and stability, *J-V* curves are measured for 30 days under ambient conditions (Supplementary Fig. 6, and Table 3). In Fig. 7c, *J-V* curves were shown for the performance of the solar cells from each reaction, and the highly covered perovskite film from reaction 2 achieved the highest PCE of 11.23%. The lowest PCE of 4.03% was obtained by reaction 4, and these results indicate that the initial PCE is highly dependent on the perovskite coverage, which plays crucial roles in the carrier recombination. In contrast, MAPbI₃ synthesized by reaction 4 was distinctively stable after 30 days. The stability is well correlated with the crystallinity and grain size, apparent from the normalized PCE in Fig. 7d, confirming the reduced decomposition behavior from the low-defect perovskite. All of the solar cells with different experimental conditions performed high reproducibility (Supplementary Fig. 5 and Supplementary Table 1). From the reactions 1, 2, 3, and 4, the half-lifetimes of MAPbI₃ perovskite solar cells (degradation details in Supplementary Fig. 6) are estimated to be ~150, ~270, and ~300 days.

Figure 6. The film quality dependence of MAPbI₃ for the reactions 1, 2, 3, and 4. (a) SEM images of the precursor and MAPbI₃, (b,c) X-ray diffraction for the precursor and MAPbI₃, and (d) absorption spectra of MAPbI₃ by reactions 1, 2, 3, and 4.

Figure 7. The purity and deivce performance analysis for the reactions 1, 2, 3, and 4. (a) Average cuboid size, (b) EDS for the comparative chlorine contents with iodine contents, (c) *J*-*V* curves, and (d) the efficiency degradation for the as-fabricated cells and cells after 30 days.

Reaction Conditions		$V_{oc}(\mathbf{V})$	J_{sc} (mA cm ⁻²)	FF	η (%)
Initial	RXN 1	0.87	17.3	0.63	9.51
	RXN 2	0.90	19.8	0.63	11.23
	RXN 3	0.76	16.3	0.56	6.94
	RXN 4	0.61	11.7	0.57	4.03
30 Days	RXN 1	0.84	16.4	0.62	8.53
	RXN 2	0.89	17.8	0.64	10.14
	RXN 3	0.73	15.2	0.59	6.55
	RXN 4	0.61	11.7	0.52	3.83

Table 3. Solar cell performance from the reactions 1, 2, 3, and 4 (as-fabricated cells and cells after 30 days).

.....

Discussion

Fast conversion can have positive influences on the device performance and stability by producing highly-crystalline MAPbI₃ perovskite. Therefore, we have controlled the diffusion reaction of MAI and PbCl₂ with ethanol to boost the perovskite transformations, leading to phase-pure and highly-crystalline perovskite films. Since PbCl₂ goes through several intermediate phases during the formation of MAPbI₃, we utilized the intermediates by mixing them with a conventional PbCl₂ precursor to boost the conversion kinetics and performance of the resulting solar cell. Thereby, the optimized crystallinity and coverage yielded a PCE of 11.23% with PbCl₂: MAPbCl₃ = 2:1 (reaction 2). Although the precursor with 100% MAPbCl₃ (reaction 4) resulted in the fastest transformations of MAPbI₃ and the most stable solar cell performance, poor coverage lowered the PCE of the device. Therefore, compact coverage of the perovskite with super-sized cuboids expects to achieve further enhanced performance and stability of the MAPbI₃ perovskite solar cell. At this point, investigation of hysteresis still remains as a future work.

Methods

Perovskite Solar Cell Fabrication. Fluorine-doped tin oxide substrate (FTO, TEC 8: Pilkington) was cleaned by sonication in Mucasol (Aldrich), ethanol (DEAJUNG), and DI water for 30 min sequentially. 50 nm of compact the TiO₂ blocking layer was deposited by spin-coating the mixture solution of 0.15 mM titanium diisopropoxide bis(acetylacetonate) (Aldrich) and 1-butanol (75.0 wt. % in iso-propanol, Aldrich) in 2500 rpm for 20 s followed by heating at 125 °C for 5 min in an air oven. The same step was repeated with 0.3 mM concentration and the substrate was annealed at 500 °C for 30 min. After the TiO₂ blocking layer was ready, TiO₂ pastes (ENB Korea) with 20 nm-sized nanoparticles were mixed with terpineol (Aldrich) in 1:2 ratio, followed by spin-coating at 4000 rpm for 30 s, yielding a \sim 350 nm thickness of the mp-TiO₂ layer. For the perovskite synthesis, MAI was first synthesized by following literature method²⁶. 1.5 M PbCl₂ (Aldrich) was diluted in dimethyl sulfoxide (DMSO, Aldrich), and then MACl (Aldrich) was added with different concentrations (0, 0.5, 1.0, and 1.5 M) to synthesize the reaction 1, 2, 3, and 4 precursors where the reaction 1, 2, and 3 precursors contain both MAPbCl₃ and PbCl₂ phases, whereas the reaction 4 precursor contains only MAPbCl₃ (MAPbCl₃ forms by 1:1 molar stoichiometric ratios of MACl and PbCl₂). After the preparation of precursor mixture solutions, the solution was preheated at 100 °C and the substrate was preheated at 150 °C, then the solution was spin-coated at 2000 rpm for 5 s, followed by 6000 rpm for 5 s. The film was annealed at 150 °C for 30 min, and cooled down in an ambient condition. After the film was cooled down, it was dipped into 20 mg mL^{-1} of MAI in an anhydrous ethanol solution (Daejung) for 20 min under ambient conditions (25 °C and 55% humidity) and annealed at 100 °C for 30 min. The hole transport solution was prepared by mixing 72.3 mg mL⁻¹ of spiro-OMeTAD (Merck) in chlorobenzene (Aldrich) with 28.8 µL of tert-butylpyridine (Aldrich) and a 17.5 µL solution of 520 mg of lithium bis(trifluoromethylsyfonyl) imide salt (Aldrich) in 1 mL acetonitrile (Aldrich) was spin-coated at 3000 rpm for 45 s. Finally, 100 nm thickness of an Au electrode was then thermally evaporated.

Device Characterizations. The morphologies of MAPbI₃ perovskite films were analyzed using scanning electron microscope (Normal-SEM, JSM-6360: Hitachi). The chlorine compositions and distribution were examined using energy-dispersive X-ray spectroscopy (EDS, ISIS-300: Oxford Instruments). The phases of the synthesized samples were characterized by X-ray diffraction (XRD, D8 Advance: Bruker). The photocurrent-voltage (*J*-*V*) curves of MAPbI₃ perovskite solar cells were obtained with a potentiostat (CHI 608C: CH Instrumental Inc.) under AM 1.5 illumination at 100 mW cm⁻² (K3000: McScience) with an active cell area of 0.09 cm². The field-emission scanning electron microscope (FE-SEM, Merlin-Compact: Carl Zeiss) was used to observe the plan and cross-sectional views. The absorption spectra of the MAPbI₃-deposited films were recorded on a UV-Vis spectrophotometer (Lambda 20: Perkin Elmer). Stability was measured every 5 days, and stored at 25 °C with 55% of humidity under dark conditions.

References

- 1. Shin, B. *et al.* Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu₂ZnSnS₄ absorber. *Prog. Photovolt.: Res. Appl.* **21**, 72–76 (2013).
- 2. Choi, H. *et al.* The role of ZnO-coating-layer thickness on the recombination in CdS quantum-dot-sensitized solar cells. *Nano Energy* **2**, 1218–1224 (2013).
- 3. Kim, D. et al. Backcontact CdSe/CdTE windowless solar cells. Sol. Energ. Mat. Sol. C. 109, 246-253 (2013).

- 4. Kim, J. *et al.* The role of a TiCl₄ treatment on the performance of CdS quantum-dot-sensitized solar cells. *J. Power Sources* **220**, 108–113 (2012).
- Choi, H. *et al.* The construction of tandem dye-sensitized solar cells from chemically-derived nanoporous photoelectrodes. J. Power Sources 274, 937–942 (2015).
- Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).
- National Renewable Energy Laboratory (NREL), Best Research-Cell Efficiencies, http://www.nrel.gov/ncpv/images/efficiency_ chart.jpg (Accessed: 30th March, 2016).
- Kazim, S., Nazerruddin M. K., Gratzel, M. & Ahmad, S. Perovskite as Light Harvester: A Game Charger in Photovoltaics. Angew. Chem. Int. Ed. 53, 2812–2824 (2014).
- 9. McGehee, M. D. Materials science: fast-track solar cells. Nature 501, 323-325 (2013).
- 10. Hodes, G. Perovskite-based solar cells. Science 342, 317-318 (2013).
- 11. Ponseca, C. S. et al. Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. J. Am. Chem. Soc. 136, 5189–5192 (2014).
- 12. Frost, J. M. et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584–2590 (2014).
- 13. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. *Science* **338**, 643–647 (2012).
- Colella, S. *et al.* MAPbI_{3-x}Cl_x mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties. *Chem. Mater.* 25, 4613–4618 (2013).
- Wehrenfennig, C., Eperon, G. E., Johnston, M. B., Snaith, H. J. & Herz, L. M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014).
- Williams, S. T. *et al.* Role of chloride in the morphological evolution of organo-lead halide perovskite thin films. ACS Nano 8, 10640–10654 (2014).
- 17. Unger, E. L. *et al.* Chloride in lead chloride-derived organo-metal halides for perovskite-absorber solar cells. *Chem. Mater.* **26**, 7158–7165 (2014).
- Deepa, M., Ramos, J. F., Shivaprasad M. S. & Ahmad, S. Unravelling the Role of Monovalent Halides in Mixed-Halide Organic-Inorganic Perovskite. *ChemPhysChem.* 17, 913–920 (2016).
- 19. Yin, W.-J., Chen H., Shi, T., Wei, S.-H. & Yan, Y. Origin of high electronic quality in structurally disordered CH₃NH₃PbI₃ and the passivation effect of Cl and O at grain boundaries. *Adv. Electron. Mater.* **1**, 1500044 (2015).
- Mosconi, E., Ronca, E. & Angelis, F. D. First-principles investigation of the TiO₂/organohalide perovskites interface: the role of interfacial chlorine. J. Phys. Chem. Lett. 5, 2619–2625 (2014).
- 21. Chen, Q. et al. Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 136, 622-625 (2013).
- Eperon, G. E., Burlakov, V. M., Docampo, P., Goriely, A. & Snaith, H. J. Morphological control for high performance, solutionprocessed planar heterojunction perovskite solar cells. *Adv. Funct. Mater.* 24, 151–157 (2014).
- Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395-398 (2013).
- Mihi, A. Zhang, C. & Braun, P. V. Transfer of preformed three-dimensional photonic crystals onto dye-sensitized solar cells. Angew. Chem. Int. Ed. 50, 5712–5715 (2011).
- Grandidier J., Callahan, D. M., Munday, J. N. & Atwater, H. A. Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres. Adv. Mater. 23, 1272–1276 (2011).
- 26. Burschka, J. et al. Sequential deposition route to high performance perovskite-sensitized solar cells. Nature 499, 316-320 (2013).
- Im, J.-H., Kim, H.-S. & Park, N.-G. Morphology-photovoltaic property correlation in perovskite solar cells: one-step versus two-step deposition of CH₃NH₃PbI₃. APL Mater. 2, 081510 (2014).
- Ma, Y. et al. A highly efficient mesoscopic solar cell based on CH₃NH₃PbI_{3-x}Cl_x fabricated via sequential solution deposition. *Chem. Commun.* 50, 12458–12461 (2014).
- 29. Yantara, N. *et al.* Loading of mesoporous titania films by CH₃NH₃PbI₃ perovskite, single step vs. sequential deposition. *Chem. Commun.* **51**, 4603–4606 (2015).
- Im, J.-H., Jang, I.-H., Pellet, N., Gratzel, M. & Park, N.-G. Growth of CH3NH₃PbI₃ cuboids with controlled size for high-efficiency perovskite solar cells. *Nat. Nanotechnol.* 9, 927–932 (2014).
- 31. Nie, W. et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522–525 (2015).
- Supasai, T., Rujisamphan, N., Ullrich, K., Chemseddine, A. & Dittrich, T. Formation of a passivating CH₃NH₃PbI₃/PbI₂ interface during moderate heating of CH₃NH₃PbI₃ layers. *Appl. Phys. Lett.* **103**, 183906–1 (2013).
- Comin, R. et al. Structural, optical, and electronic studies of wide-bandgap lead halide perovskites. J. Mater. Chem. C 3, 8839–8843 (2015).
- 34. Zhou, H. et al. Interface engineering of highly efficient perovskite solar cells. Science 345, 542-546 (2014).

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF): 2013R1A1A2065793, 2010-0029065 and 2015K2A1A2070386.

Author Contributions

J.K. fabricated the solar cell devices, designed the whole experiments, and participated in writing the paper. T.H. supported the optimization process on the solar cell fabrication, and participated in writing the paper. S.L. carried out the electrochemical analyses, and participated in writing the paper. B.L. supported the optimization process of MAPbI₃ perovskite synthesis, and participated in writing the paper with vital comments. J.K. analyzed electrochemical properties of the MAPbI₃ perovskite, and participated in writing the paper. G.S.J. supported the optimization steps in thermal evaporation of an Au electrode. S.N. helped writing the paper, and gave constructive scientific comments. B.P. advised on the overall experiments with vital comments, and finalized the manuscript.

Additional Information

Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Kim, J. *et al.* Solvent and Intermediate Phase as Boosters for the Perovskite Transformation and Solar Cell Performance. *Sci. Rep.* **6**, 25648; doi: 10.1038/srep25648 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/