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Abstract

Many fish exhibit rheotaxis, a behavior in which fish orient themselves relative to flow. Rheotaxis 

confers many benefits, including energetic cost savings and interception of drifting prey. Despite 

the fact that most species of fish school during at least some portion of their life, little is known 

about the importance of rheotactic behavior to schooling fish and, conversely, how the presence of 

nearby conspecifics affects rheotactic behavior. Understanding how rheotaxis is modified by social 

factors is thus of ecological importance. Here we present a mathematical model in the form of an 

all-to-all, coupled-oscillator framework over the non-Euclidean space of fish orientations to model 

group rheotactic behavior. Individuals in the model measure the orientation of their neighbors and 

the flow direction relative to their own orientation. These measures are corrupted by sensory noise. 

We study the effect of sensory noise and group size on internal (i.e., within the school) and 

external (i.e., with the flow) disagreement in orientation. We find that under noisy environmental 

conditions, increased group size improves rheotaxis. Results of this study have implications for 

understanding animal behavior, as well as for potential applications in bio-inspired engineering.

1 Introduction

Rheotaxis is a robust, multi-sensory behavior in which fish and other aquatic organisms tend 

to align themselves in the direction of flow [1,2]. This form of taxis is generally positive 

(orienting upstream), but can be negative (orienting downstream). Positive rheotaxis confers 

many potential benefits to fish, including capture of downstream drifting prey [3,4], 

orientation to currents for migration [5,6], aiding odor searches [7] and energetic cost 

savings for fish attempting to maintain stream-wise positions in strong currents [8].
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Although rheotaxis is an important behavior in the survival of many fish and aquatic species, 

the benefits of group behavior have largely focused on anti-predation [9,10]. According to a 

review of schooling behavior by Rieucau et al. [11], there has been conflicting evidence for 

some of the anti-predator hypotheses, and little experimental evidence obtained for larger 

schools. Thus, further work is necessary to investigate other possible benefits for the 

evolution of schooling behavior.

While the primary focus of previous research on collective behavior has been on anti-

predator benefits, there have been several studies investigating group benefits of taxis. 

Grünbaum [12] developed asocial and social random-walk models for chemotaxis along a 

gradient using attractive and repulsive forces to mimic collective behavior; this study 

demonstrated that collective behaviors have the potential to enhance taxis by providing a 

mechanism for averaging instantaneous movement decisions over neighbors rather than 

averaging over time. Torney et al. [13] investigated context-dependent search of a chemical 

gradient with fluctuating gradients defined by patchy, heterogeneous information; by 

including social interaction terms, a group acts as a non-local spatial gradient sensor. 

Berdahl et al. [14] investigated emergent environmental sampling by moving animal groups; 

they found that a group of fish has the ability to track a fluctuating environmental gradient.

The results of these studies support the hypothesis that group behavior enhances taxis, as 

compared to solitary individuals, and provide some possible mechanisms by which this 

benefit emerges. However, most of the previous studies on the group benefits of taxis use a 

repulsion, attraction, orientation (ROA) framework [15,16] to model collective behavior. In 

an ROA framework, individuals move closer when beyond a certain distance and move apart 

when too close. While widely used, the ROA framework contains a large number of 

parameters, including the size and shape of each behavioral zone as well as the behavioral 

rules in each zone. The use of simple models can still result in complex and biologically 

realistic dynamics. Vicsek et al. [17] previously observed emergent self motion and 

clustering of simulated agents using a simple model of self-driven particles with constant 

speed. The only rule of the model was that at each time step each particle, would assume the 

average direction of other particles in a given radius, with some added noise.

While rheotaxis has been extensively studied and is of interest to neuroethologists and 

fisheries biologists, it has yet to be fully appreciated as a group behavior, despite ample 

evidence of group rheotaxis in nature (e.g., the upstream migration of salmon to their natal 

spawning sites) and evidence of collective benefits in migration [20,21]. We hypothesize that 

increasing group size may enhance rheotactic behavior, particularly in noisy or turbulent 

flows. It has been shown that individuals in a group may gain additional information about 

the environment from observing the behavior of their neighbors [22–24]. During rheotaxis, 

individual fish may use a combination of visual and lateral-line sensing to perceive the 

relative motion of nearby fish in order to gain information about the directionality of the 

local flow field [18,19].

We investigate the effects of sensory noise and group size on rheotactic performance using a 

mathematical model of coupled phase oscillators based on the Kuramoto model [25]. 

Originally developed in physics, the Kuramoto model has been adopted in neuroscience to 
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investigate neural control and information processing [27]. It has also been applied to the 

study of collective behavior in biological groups [28,29]. Phase oscillator models have 

motivated studies on stability analysis [30,31] and stabilization of planar collective motion 

[32,34]. Mahmoudian and Paley [35] investigated phase synchronization in the presence of 

bounded noise, based on earlier work studying noisy consensus [36].

In cooperative control theory, synchronization differs from consensus in the following sense: 

consensus takes place in a Euclidean space, such as the real line, whereas synchronization 

takes place in a non-Euclidean space, such as the circle. Synchronization is connected to the 

biologically relevant behaviors of alignment and rheotaxis in fish because these quantities 

are described by phase angles, and a phase angle is a point on a circle. In collective behavior, 

each fish synchronizes its orientation with that of its neighbors, so that the school heads in a 

common direction. In rheotaxis, individuals also synchronize with the direction of the flow.

We expand on our current understanding of the factors governing rheotaxis in flow, and on 

taxis in uncertain environments, by investigating synchronization of particles with sensory 

noise, in the context of fish behavior in a flow field. In the model, each individual obtains 

measurements of the relative orientation of other individuals as well as the relative 

orientation of an external reference direction, the flow. Sensory noise is represented by the 

uncertainty in each individual’s measurements. We vary the level of sensory noise, as well as 

the group size. Monte Carlo simulations numerically illustrate the influence of sensory noise 

and group size on internal (i.e., within the school) and external (i.e, with the flow) 

disagreement in orientation. We find that in high noise conditions, the use of neighbor cues 

and group size improves rheotactic behavior. By relating the model to biological processes, 

we generate testable predictions about fish behavior.

The contributions of this work are (1) the extension of a noisy, non-Euclidean 

synchronization model to include a reference direction and unbounded sensory noise; and 

(2) investigation of the influence of sensory noise and group size on synchronization, using 

novel measures of internal and external disagreement. The model generates testable 

experimental predictions, that may have implications for fish ecology, collective behavior, 

and flow sensing. While this study emphasizes schools of fish, the general model framework 

may be applied to other animal and engineered collectives.

2 Methods

Noisy synchronization model

Starting with random initial phases drawn from a uniform distribution on the circle, each 

individual gathers measurements of the relative direction of the reference direction and of its 

neighbors’ relative phases to determine the change in its own orientation. The measurements 

obtained by each individual contain additive sensory noise.

Consider a network [37] of N phase angles indexed by k = 1, …, N and coupled via an all-

to-all, undirected communication graph  = ( , ℰ) with nodes  = {1, …, N} and edges (l, 
k) ∈ ℰ ⊆  ×  such that the graph  satisfies (l, k) ∈ ℰ for all l ≠ k. In the absence of 

noise, these angles synchronize with one another and with the reference direction; their 
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dynamics are modeled below as a stochastic difference equation [38,39]. The reference 

direction is a special node in the graph, associated with the index k = 0 and, without loss of 

generality, is fixed at zero radians.

In order to sample sensory noise on the circle, we use a von Mises (VM) distribution [40]. A 

normal gaussian distribution when placed on the circle would lead to overlapping tail ends, 

increasing the probability of extreme values being selected. Thus, a distribution meant for 

the circle should be used. The two main options used are the wrapped Gaussian or the von 

Mises, which is a close approximation of the wrapped Gaussian, avoids overlapping tails, 

and is straightforward to implement. A VM distribution is characterized by its mean and 

concentration, σkl (roughly, the reciprocal of variance). The noise concentration depends of 

the values of k and l such that

(1)

Figure 1 illustrates three VM distributions with low, moderate, and high sensory noise, 

respectively. When individual k compares its orientation to the reference direction, the noise 

is sampled from a VM distribution with concentration σ0, and when fish k compares its 

orientation to another individual, the sensory noise is sampled with concentration σ. Sensory 

noise may be higher when visibility is poor [41] or if bulk flow interferes with inter-

individual communication [42].

Let t represent the discrete time index. The orientation of individual k at time t is denoted by 

, k = 0, 1, …, N, where  represents the reference direction. Each orientation is 

updated according to the following stochastic difference equation:

(2)

where  represents the sensory noise value at time t with concentration value σkl as above 

and κkl is the coupling gain between pair k and l. Note that the sine term linearizes to 

 when that term is sufficiently small.

The gain κkl is of importance for the synchronization behavior of the model (2) [25]. 

Namely, κkl > 0 yields synchronization and κkl < 0 yields incoherent behavior. Here we 

specify κkl > 0 to vary based on

(3)

The values κ0 and κ are coupled according to Nκ + κ0 = 1, so that as group size N increases, 

the influence of each neighbor decreases. We investigate several cases of κ0 and κ values: 
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for κ0 = 1, there is no influence of the neighbors; for κ0 = 1/2, the influence of the reference 

direction is equal to that of all neighboring fish; for κ0 = 0, there is no influence of the 

reference direction, for κ0 = 1/3 there is slight preference for neighbors, and for κ0 = 2/3 

there is preference for the reference direction.

Table 1 summarizes the model parameters. Each parameter combination was run for 500 

Monte Carlo trials and each trial ran for 2,000 time steps. The University of Maryland 

supercomputing resources were used to conduct the research in this paper. Running through 

all group sizes for one parameter set takes twenty-four hours or more.

Measures of model performance

In the coupled oscillator model introduced by Kuramoto (1975) [25], synchrony is quantified 

using a complex-phase order parameter , where i is the imaginary unit. The 

magnitude |pθ| ranges from zero to one in proportion to the level of alignment, where |pθ| = 1 

is synchronized. (The magnitude of pθ is also called vector strength [25]; the orientation of 

pθ indicates the average orientation.) In the stochastic consensus literature [26], the 

following definition is used to characterize the asymptotic behavior in weak consensus: 

 for all t and k and  for all pairs k, l, where is the expected-

value operator.

Existing measures of polarization and weak consensus vary over time. Additionally, the 

roots of a complex number are multi-valued, as seen in the simple example of . 

In order to achieve a single difference between two angles, we introduce two alternative 

measures of disagreement in orientation, based on chord length on the unit circle. To 

compute ED and ID, we use the median statistic, because the distribution of chord lengths 

was highly skewed, and the median captures highly skewed or bimodal data better than other 

statistics such as the mean or mode. The internal disagreement (ID) measure quantifies the 

median level of disagreement within the school, and the external disagreement (ED) measure 

quantifies the median level of disagreement between each fish and the reference direction. In 

behavioral terms, ID pertains to schooling behavior and ED to rheotaxis.

Let , where T is a sufficiently large time such that weak 

consensus is reached. The orientation  of fish k at time step T is converted to , a 

complex unit phasor. When taking the difference between two angular values, there is no 

unique answer, thus the chord length is used instead. The value  is half of the chord 

length between points  and  on the unit circle; the maximum chord length equals two.

For ID, we take the median of  over all pairwise differences in orientation within each 

trial, . For ED, we compute 

. The number of values in the ID set is (N2 − N)/2 and, in 

the ED set, N. Let mZ̃
T denote the median disagreement in synchronization for Monte Carlo 

trial m. The ID value is the median disagreement in orientation over all Monte Carlo trials, 
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i.e., ID = median{1Z̃
T, 2Z̃

T, …, MZ̃
T}. Similarly, the ED value is 

.

3 Results

We plot the results from four typical trials to illustrate the time course of each phase angle. 

Figure 2 shows the orientations over time, as well as the histogram of orientation 

distributions for the entire trial. Figures 2a,c depict the case when there is low noise in both 

the neighbor orientation and the reference direction; the group size is N = 4 and 32, 

respectively. Both of these simulations show strong alignment with the reference direction. 

Figure 2b,d shows simulations with moderate noise (σ0 = σ = 100) in both the reference 

direction and in neighbor orientation. In these trials, there is no qualitative difference in 

synchronization based on group size.

No gain on reference direction

When κ0 = 0, the reference direction is ignored. Figures 3a,b show the internal and external 

disagreement measures under various levels of neighbor noise (σ = 102, σ = 100, and σ = 

10−2). With no gain on the reference direction, individuals rheotact at chance levels (the 

disagreement in orientation on the circle for random values is 0.7), no matter what the noise 

is in neighbor orientation (Fig. 3a). Internal disagreement decreases as group size increases 

in the presence of moderate sensory noise (Figure 3b, orange (white in print)).

No gain on neighbor orientation

When κ = 0, neighbor orientation is ignored. Figures 3c,d depict the internal and external 

disagreement measures under various levels of noise in the reference direction (σ0 = 102, σ0 

= 100, and σ0 = 10−2). External and internal disagreement values increase with increasing 

noise levels, indicating reduced synchronization. Although there is no effect of group size on 

either ED or ID, performance on both measures is better than chance, because all individuals 

have knowledge of the reference direction.

Equal gain on reference direction and neighbor orientation

When κ0 = 1/2 (i.e., the influence of the reference direction equals that of all neighbors), we 

organize results based on the noise in the reference direction and assess how group size and 

noise in neighbor orientation affect the ED and ID values. There is no effect of group size 

when there is low noise in both the reference direction and neighbor orientation (Figs. 4a,b 

yellow (grey in print)). However, when there is low noise in the reference direction, and 

moderate to high noise in neighbor orientation (Figs. 4a,b orange (white in print) and blue 

(black in print)), the ED and ID values decrease with increasing group size, N. When there is 

moderate noise in the reference direction, there is a slight decrease in ED and no significant 

difference in ID values with increasing group size (Figs. 4c,d). Both ED and ID values 

decrease with decreasing noise levels in neighbor orientation. When there is high noise in 

the reference direction (Figs. 4e,f), there is a decrease in ED with increasing group size for 

all values of neighbor orientation noise, σ, but no difference in the ID values. Both ED and 

ID values decrease with decreasing noise levels in neighbor orientation.
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Higher gain on neighbor orientation

When κ0 = 1/3 the results appear almost identical to the results of κ0 = 1/2. Agents have a 

slightly higher gain on neighbor orientation than the reference direction. When there is low 

to moderate noise in the reference direction and low noise in neighbor orientation, there is 

no effect of group size. When there is moderate to high neighbor noise, the ID and ED 

values decrease with increasing group size, N. The effect of group size in these cases is most 

prominent at the lowest group sizes. Both ED and ID values decrease with decreasing noise 

levels in neighbor orientation. When there is high noise in the reference direction, there is a 

decrease in ED with increasing group size for all values of neighbor orientation noise, σ, 

with the largest effects occurring when there is low to moderate noise in neighbor 

orientation. Both ED and ID values decrease with decreasing noise levels in neighbor 

orientation.

Higher gain on the reference direction

When κ0 = 2/3 the agents have a slightly higher gain on the reference direction than on 

neighbor orientation. When there is low to moderate noise in the reference direction, there is 

little to no effect of group size. Both ED and ID values decrease with decreasing noise levels 

in neighbor orientation. When there is high noise in the reference direction, there is a 

decrease in ED with increasing group size N only when there is the lowest value of neighbor 

orientation noise, σ. When there is moderate and high neighbor noise the ED values are 

mostly random. Conversely, the ID values increase with increasing group size with low to 

moderate noise in neighbor orientation, especially at lower group sizes. This is shown next 

to the ID values of κ0 = 1/3 for comparison (Fig. 5).

4 Discussion

Grünbaum [12] quantitatively demonstrated the effect of the many-wrongs principle [43], 

which states that inherent noise in a system may be damped out through multiple samples. 

Our results demonstrate the effects of social information on rheotaxis, a simple yet robust 

behavior found in fish and invertebrates. We find potential limitations of the many-wrongs 

principle, in the extreme cases when the individuals are randomly aligned (for very high 

noise) or perfectly aligned social information does not improve taxis. Additionally, when 

there is higher gain on a noisy reference direction and moderate to high noise in neighbor 

orientation, as the group size increases, rheotaxis does not improve and school alignment 

decreases. By introducing noise in intra-school signaling as well as in an external reference, 

we investigate the relative roles of each cue.

We find that (i) under environmentally plausible conditions, the use of neighbor cues in 

groups improves rheotactic behavior; (ii) this improvement is limited to cases when there is 

high sensory noise in sensing either the flow direction or neighbor cues; and (iii) when there 

are external cues about the flow, fish align with each other, and the addition of neighbor cues 

do not improve intra-school alignment.

This work extends the engineering results of [35] by analyzing weak consensus on the N-

torus with additive noise. The contributions of the previous work were analytical solutions to 
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weak consensus on the N-torus with additive noise bounded by π/2. We elaborate on this 

finding by numerically testing weak synchronization with unbounded noise levels, and find 

that with unbounded noise, individuals may still reach weak synchronization.

Effect of sensory noise on synchronization

When individuals have reliable information regarding the direction of the flow (which we 

take to be the reference direction), group size does not affect synchronization. However, 

when information regarding the flow direction is noisy, increasing group size improves 

synchronization to the flow. This result suggests that rheotacting fish may rely more on 

social information when their own information is uncertain. It has been previously shown 

that there may be costs to socially acquired information [44,46,47], thus when personal 

information is more accurate (i.e., when fish perceive the external or flow environment 

accurately), there may be a detriment to relying on noisy neighbor information. There is also 

some evidence that behaviors can change adaptively based on environmental context, 

including dynamically changing interactions between individuals [13,48,49].

Rheotaxis is a robust and multi-sensory behavior [50]. However, the contribution of different 

sensory modalities to rheotactic behavior may vary by species’ ecology. For example, fish in 

murky environments may rely more on other sensory modalities in order to compensate for 

the noisy visual information [41]. This idea could be tested experimentally using a 

comparative study with species of schooling fish from different habitats, or by 

experimentally manipulating available cues, e.g., by conducting experiments in the dark or 

by temporarily blocking the lateral line [51,52].

Effect of group size on synchronization

The results of this paper rely on the assumptions that there is all-to-all communication 

between identical individuals. Neither assumption is realistic. Although we have chosen to 

investigate the all-to-all interaction case, in part to match the assumptions laid out by [35], 

the model described here is applicable to limited interaction topologies as well [32]. Other 

potential directions for future research would be to investigate the case when noise values 

are correlated between connected individuals [53], of limited and/or time-varying interaction 

networks and non-independent estimates of flow direction across individuals.

Group size made the most significant improvement in our rheotaxis model when there was 

high noise in sensing the flow. In this case, having information from many neighbors 

significantly improved synchronization to the reference direction when compared to the 

asocial case (Figs. 3c,d), where individuals with no neighbor information orient to the 

reference direction at chance levels. Once the group size increases past N = 8, there is a 

significant effect of group size on improving rheotactic performance (Fig. 4e). Based on 

these results, group size has the largest benefit to schools in noisy conditions. Testing this 

hypothesis experimentally may yield additional insights into the roles of multi-sensory 

integration and group behavior in rheotaxis.
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Ongoing and future work

We numerically demonstrate that weak synchronization occurs in the presence of noise, 

under the assumptions of an all-to-all, undirected graph. It would be interesting to perform 

numerical and analytical solutions when these assumptions do not hold. Skardahl et al. 

(2015) investigated frustrated and heterogenous networks in which synchronization is likely 

to erode. By characterizing the conditions that lead to the erosion of synchronization, it may 

be possible to mitigate these effects in both natural and unmanned systems. In biology, 

hypotheses may be generated when a synchronized group of fish or other animals may 

dissolve or break apart. Ongoing work will further test the limits of synchronization when 

applied to biological groups, including heterogenous networks and incomplete, directed 

and/or time-varying networks.

For future research involving group dynamics, it may also be interesting to explore 

associative memory models [54] (in addition to heterogenous populations), such that agents 

can dynamically associate with the other connected agents. It has been well established that 

fish can recognize and preferentially associate with certain individuals. Thus, a dynamic, 

heterogenous graph may be formed based on a memory of which agents have better 

knowledge of the reference direction.
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Fig. 1. 
Example von Mises distributions with concentration values 102, 100 and 10−2.
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Fig. 2. 
Typical runs (N=4, N=32) in the presence of low noise, σ = σ0 = 102 (a,c) and moderate 

noise, σ = σ0 = 100 (b,d).
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Fig. 3. 
(a,b) Synchronization results when the gain on flow is zero (κ0 = 0). (c,d) Gain on neighbors 

is zero (κ0 = 1). (a,c) ED and (b,d) ID, over all group sizes, N and noise values. Noise values 

are as follows: (a,b) σ = 102 and (c,d) σ0 = 102 (yellow online, grey in print), (a,b) σ = 100 

and (c,d) σ0 = 100 (orange online, white in print), and (a,b) σ = 10−2 and (c,d) σ0 = 10−2 

(blue online, black in print). Length of bars represent the upper and lower quartiles.
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Fig. 4. 
The effect of group size on synchronization results when there is both neighbor and flow 

information (κ0 = 1/2) for low (a,b), moderate (c,d) and high (e,f) flow noise levels and for 

low (yellow online, grey in print), moderate (orange online, white in print) and high (blue 

online, black in print) levels of neighbor noise within each of these flow noise conditions. 

Length of bars represent the upper and lower quartiles.
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Fig. 5. 
The effect of group size on internal disagreement (ID) when there is a slight preference for 

neighbor orientation (κ0 = 1/3) (a), or a slight preference for the reference direction (κ0 = 

2/3) (b) in the presence of high flow noise (σ0 = 10−2). Low (yellow online, grey in print), 

moderate (orange online, white in print) and high (blue online, black in print) levels of 

neighbor noise is shown for each condition. Length of bars represent the upper and lower 

quartiles.
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Table 1

Summary of Model Parameters.

Model parameter Symbol Values

Group size N 2, 4, 8, 16, 32, 64, 128

Conc., flow σ0 102, 100, 10−2 rad.

Conc., neighbors σ 102, 100, 10−2 rad.

Gain, flow κ0

0, 1, 
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