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Abstract
Computational modeling of tertiary structures has become of standard use to study proteins

that lack experimental characterization. Unfortunately, 3D structure prediction methods and

model quality assessment programs often overlook that an ensemble of conformers in equi-

librium populates the native state of proteins. In this work we collected sets of publicly avail-

able protein models and the corresponding target structures experimentally solved and

studied how they describe the conformational diversity of the protein. For each protein, we

assessed the quality of the models against known conformers by several standard mea-

sures and identified those models ranked best. We found that model rankings are defined

by both the selected target conformer and the similarity measure used. 70% of the proteins

in our datasets show that different models are structurally closest to different conformers of

the same protein target. We observed that model building protocols such as template-

based or ab initio approaches describe in similar ways the conformational diversity of the

protein, although for template-based methods this description may depend on the sequence

similarity between target and template sequences. Taken together, our results support the

idea that protein structure modeling could help to identify members of the native ensemble,

highlight the importance of considering conformational diversity in protein 3D quality evalua-

tions and endorse the study of the variability of the native structure for a meaningful biologi-

cal analysis.

Introduction
In the last years, recognition of the strong relationship between function and structure has
driven a steady improvement in algorithms and methods to predict protein structure. These
efforts are justified by the difficulties in experimentally determining the structure of several
proteins and the enormous amount of biological information made available when protein
structure is known. It is important to recognize that protein function is more related with pro-
tein dynamism than with any single structure [1,2]. Following this view, the native state of pro-
teins is not represented by a unique structure and is better described by an ensemble of
conformers in equilibrium. The need for considering different conformations in order to
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explain biological function could be generalized to most proteins [3]. A classic example is
hemoglobin, whose function could not be fully understood without considering its different
conformers, namely the tense (T) and relaxed (R) forms displaying low and high affinity for
oxygen respectively [4]. The structural differences between conformers usually range from rela-
tive movements of whole domains to small-scale changes like the displacement of secondary
structural elements and the rearrangement of loops, but could also be as specialized as the rota-
tion of a single side chain [5–7]. A thorough comparison of experimentally solved conformers
with identical sequences has a distribution of Root Mean Square Deviation (RMSD) values cen-
tered in 0.3Å with a large positive skew and maximums above 20Å [8]. These structural
changes define conformations with varied effects on affinity and movement of ligands (sub-
strate, product, modulators) required to sustain the biological function. For example, many
ligands move from the surface of the molecule through pockets and tunnels to reach cavities
containing active site residues, a process mainly regulated by a molecular gate switching
between different conformations [9]. This population of conformers, mingled in a dynamic
equilibrium, defines as a whole the structural basis of protein function.

The structural differences between conformers characterize the so-called conformational
diversity of the protein. In spite of the time that has passed since Monod postulated the impor-
tance of the different conformations to explain protein function[10], this concept has only
recently become central to explain a vast and increasing list of different biological processes.
Besides the classical models explaining cooperativism and allosteric effects in proteins and
enzymes through conformational diversity[4], the concept has also been employed to describe
numerous processes such as enzyme catalysis [11] and promiscuity [12], protein-protein recog-
nition [13] and signal transduction[14], mechanisms of disease-related mutations[15] and
immune escape[16], the origin of neurodegenerative diseases [17], protein evolutionary rates
[18], conformer-specific substitution patterns[19], the origins of new biological functions [20]
and co-evolutionary measurements between residues [21]. Lately, conformational diversity has
been considered in new computational tools for ligand docking and protein-protein interaction
predictions [22], the development of biologically active ligands[23] and the evaluation of pro-
tein structure models[24]. Bioinformatics is a fast-paced but relatively novel discipline and
despite the great progress in structural modeling and quality assessment over the last decade
[25], one of the next steps needed to improve functional characterization is related with the
development of methods that can explicitly predict or take into account the conformational
ensemble of the native state. This is of major importance for many quality assessment protocols
that heavily rely on structural comparisons (like those applied in the CASP competition [26])
and in the derivation of several model validation programs [27,28]. The results obtained by
these structure-based strategies may thus be biased by the use of unique target structures
selected as representatives of the whole native state. Moreover, the way of measuring protein
structure similarity will influence the evaluation of decoy quality and alter their ranking, as typ-
ically used metrics like root mean square deviation (RMSD), global distance test score (GDT)
and template modeling score (TM-score) [29] display different sensibilities to structural
variation.

In this work we studied how a set of protein models obtained by different 3D structure pre-
diction methods reproduce the conformational ensemble of selected proteins. For 91 proteins
used as targets in different 3D prediction experiments, we collected the proposed computa-
tional models and evaluated their structural similarity against alternative PDB structures[30] of
the same protein taken from CoDNaS database [31,32], which provides an empirical sample of
the native conformational diversity of each protein. Our results confirm the possibilities of
state-of-the-art in silico protein structure modeling methods to sample the native conforma-
tional variability of proteins and highlight the need for developing new structural quality
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assessment methods to address conformational diversity in order to improve our understand-
ing of the complex relationship between protein structure and function.

Methods

Dataset construction
We collected protein structure models from three public datasets: the whole set of CASP exper-
iments from CASP3 to CASP10 (http://predictioncenter.org/) and two decoy sets obtained
with Rosetta@home[33] (‘All Atoms decoy set’ accessed on January 2015 at http://depts.
washington.edu/bakerpg/) and QUARK[34]. Our analysis was limited to the subset of target
proteins with observed conformational diversity as identified by cross-linking with CoDNaS
database[31,32]. Initially, and from all available CoDNaS conformers of a protein, we only con-
sidered those structures with 100% sequence identity to the target and showing ligand changes,
post-translational modifications or different oligomeric states as possible causes of the
observed conformational diversity. We measured all pairwise Cα-RMSD (hereafter RMSD for
simplicity) between CoDNaS conformers using MAMMOTH[35] and selected the most distant
pair of structures (representing the maximum conformational diversity observed for the pro-
tein) for further considerations. In the case of NMR solved structures, all models in the PDB
file were treated as separate conformers. From every decoy set we discarded those structures
with more than five consecutive missing residues or less than 80% coverage to the correspond-
ing target. This process resulted in the generation of a compiled dataset of 182 conformers
from 91 target proteins (with a total of 127121 decoys) gathering 47 (19361), 23 (2760) and 21
(105000) targets from the CASP, Rosetta and QUARK experiments respectively.

Structural comparisons
For every target, each of both conformers derived from CoDNaS were used as reference to cal-
culate the TM-score and GDT_TS using TM-score [29] and the RMSD with MAMMOTH
against all the corresponding decoys. Aiming to recognize members of the same fold, only
RMSD-based comparisons with a MAMMOTH alignment score above the cutoff [-ln(E)>4]
were considered. This cutoff is based on the statistical significance of the expected random
value E for that superposition. All remaining decoy-conformer pairs were ranked according to
the measures above and the similarity of the decoy rankings against each of the two available
conformers were studied using Spearman’s rank correlation coefficient.

Conformational diversity studies
The selected conformers for each target protein were studied using different structural parame-
ters in an attempt to characterize the biological relevance of their conformational diversity. In
particular, we estimated the rASA (relative Accessible Surface Area) using DSSP [36] which
was then normalized by the ASA in tripeptides according to [37] and finally used to derive a
ΔrASA between conformers. We applied the programs MOLE [38] and FPocket [39] to predict
the presence of tunnels, pockets and cavities and estimate their structural changes between
conformers. Visual inspection of the structures and a review of relevant bibliography allowed
us to identify interesting candidates for discussion.

Results and Discussion

Characterization of conformational diversity in selected proteins
Our studies were based on the analysis of 91 proteins for which there is experimental evidence
of conformational diversity in the native state (Table 1). Since these proteins were used in
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different 3D modeling experiments, a number of structural models or decoys are publicly avail-
able and can be used to assess if protein modeling would account for conformational diversity.
From all possible target proteins in the datasets of origin, we only took those included in CoD-
NaS database. CoDNaS is a database of putative conformers: it stores redundant collections of
structures of the same protein sequence determined experimentally under different biological
conditions. These conditions, such as pH, presence of ligands, oligomeric state, post-transla-
tional modifications and so forth, could be associated with the changes observed among struc-
tures of the same protein, thus providing an interesting biological background to characterize
their conformational diversity.

For each of the 91 selected proteins we performed pairwise structural comparisons of all
conformers derived from CoDNaS. Unsurprisingly, even subtle structural perturbations associ-
ated with the presence of a bound ligand can have serious biological implications. S1 Appendix
shows some examples of targets in our dataset evidencing different degrees of conformational
diversity derived from changes in experimental conditions. Although CoDNaS database lists as
many alternative structures of a protein as can be found in the PDB, many conformers bear no
recognizable differences among them and thus are not of much benefit for studies on confor-
mational diversity. In order to limit the redundancy of the data but at the same time to sample
widely the extension of the native state, for each protein in our dataset we only analyzed the
pair of conformers showing the higher RMSD between them. While different structural simi-
larity measures have been developed[40] here we considered GDT_TS, TM-score and RMSD
(Cα-RMSD) as indicators of conformational diversity. In Fig 1 we show the correlation of
GDT_TS and RMSD values between all pairs of maximally distant conformers (TM-score dis-
played a close to perfect correlation with GDT_TS, as evidenced in S1 Fig, so it was left out of
the discussion for simplicity). A marked structural similarity is generally reflected by both high
GDT_TS and low RMSD values. While GDT_TS normally performs better at detecting if two
structures have the same fold, RMSD can be more sensitive to movements in loops and tails
and, as a consequence, it should be more adequate to detect local structural differences between
native conformers of the same protein. Owing to this sensitivity, RMSD has been used in most
of the studies of protein conformational diversity[41][42][21]. Since MAMMOTH calculates
RMSD together with a statistical evaluation of its reliability[35] we decided to focus on the
RMSD as the principal measure of similarity.

Table 1 indicates average and maximum RMSD and GDT_TS values observed for each pro-
tein. Most of the pairs of conformers with maximum conformational diversity show structural
changes of different degrees. The subset of structure pairs that differ in the presence of ligands
(42% of the total) displayed a distribution of maximum RMSD per dataset with a mean value
of 1.17Å (max = 4.0Å, min = 0.02Å). This value is slightly smaller than observed for those max-
imum pairs differing in post-translational modifications (6.50%) or oligomeric states (26%),
with mean maximum RMSD of 1.18Å (max = 3.84 Å, min = 0.14Å) and 1.39Å (max = 3.98Å,

Table 1. Datasets used in the analysis. Shown are the number of proteins and the overall number of decoys in each dataset, the minimum and average
TM-score (in TM-score units), the minimum and average GDT_TS (in GDT_TS units) for all targets in each dataset and their maximum and average Cα-
RMSD (in Å) calculated likewise. Datasets and statistics are available as S1 Dataset and as a compressed file from our website at http://ufq.unq.edu.ar/sbg/
files/Palopoli-Monzon_2016_SI.tar.gz.

Dataset Proteins Decoys GDT_TS
(min)

GDT_TS
(avg)

TM-score
(min)

TM-score
(avg)

Cα-RMSD
(max)

Cα-RMSD
(avg)

CASP 3–10 47 19361 0.15 0.89 0.30 0.91 3.26 1.20

QUARK 21 2760 0.30 0.81 0.27 0.80 1.40 0.82

Rosetta@home
2007

23 105000 0.44 0.80 0.40 0.79 2.87 1.64

doi:10.1371/journal.pone.0154923.t001
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min = 0.09Å), respectively. The most diverse set of conformers (25%) corresponded to the
alternative NMR structures (mean RMSD = 2.14Å). Thus, structural variability ranges from
localized and small changes in loops or secondary elements to the relative displacement of
entire domains. These movements are sometimes associated with a variation in the relative
accessible surface area (rASA), although this metric shows no correlation with the protein-spe-
cific degree of conformational diversity as measured by the RMSD (S2 Fig). This lack of corre-
lation could suggest, for example, that the major global rearrangements normally associated
with high ΔrASA values cannot be directly linked to a broadening of the native structure land-
scape. Instead, local changes may play an important functional role in native structural diver-
sity. In agreement, comparing predictions obtained by FPocket and MOLE for the pairs of
conformers in our dataset, we found that 78% of the proteins change the number and volume
of their cavities and 57% differ in the quantity of tunnels connecting cavities with the surface
(S3 Fig). All these structural variations between conformers define, and may be responsible for,
their different biological activities. Thus, none of the native conformers could be used by itself
to provide a thorough explanation of the biological function of the protein, as this relies on the
interplay among all conformers in the ensemble[9,14,20,22,43].

Following from above, and due to the importance of analyzing structural differences
between conformers as a proxy to understand protein function, the next section is focused on
the possibility of applying common 3D modeling tools to reproduce the conformational diver-
sity of selected protein targets.

Conformational diversity and 3D prediction
Started 20 years ago, the CASP initiative has established itself as a landmark community-wide
effort for the assessment of protein structure prediction methods[44,45]. 3D prediction is
blindly evaluated in CASP by having undisclosed, experimental knowledge of the tertiary struc-
ture of a target protein and performing structural comparisons between the target and the
models submitted by participating groups. Best models are then automatically determined
according to rankings of structural similarity and other evaluation measures[46]. A similar
strategy is taken by other large-scale benchmarking experiments (e.g. CAPRI [47]).

Fig 1. Comparison of GDT_TS against RMSD, calculated for pairs of conformers with maximum
conformational diversity for each protein in our dataset. Pairs were taken from the CoDNaS database of
different structures (from available PDB files) for each represented protein. RMSD scores are expressed in Å
while GDT_TS values are normalized to the range [0, 1].

doi:10.1371/journal.pone.0154923.g001
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A single structure-based approach would be promising if the target protein can be charac-
terized by a narrow and homogeneous native state. In such cases all 3D modeling efforts should
tend towards decoys that resemble the target structure closely. Nevertheless, when considering
the existence of a marked conformational diversity, then the selection of protein models by
their structural proximity to a unique native conformer may lead to a biased subset of struc-
tures in which decoys resembling other true conformers are not included. Hence, we explored
how structurally derived rankings would be modified when different native conformers are
simultaneously considered as targets in the evaluation of several 3D models proposed by vari-
ous simulation protocols. For the 91 protein targets in our dataset we performed pairwise struc-
tural comparisons between the proposed decoys and each conformer in the pair with
maximum conformational diversity, as identified in the previous section using CoDNaS data-
base. When analyzing a high-quality subset (76 proteins targets) of proteins with 3 or more sta-
tistically significant structural alignments between any decoy and target pair, based on RMSD
Z-scores calculated with MAMMOTH, the highest correlations occur when comparing decoys
against structurally close conformers (Fig 2). As the structural distance between target

Fig 2. Distribution of Spearman’s rank correlation coefficients per target, computed between structural rankings for all proposed structural
models against each of the conformers in the pair of maximum conformational diversity, as a function of different averagemeasures of
structural similarity between native conformers. (a) Correlation against GDT_TS between native conformers. (b) Idem (a) but using TM-score. (c)
Idem (a) but using RMSD, with distinction among the three dataset used in the study (CASP 3–10, pink circles; QUARK, green circles; Rosetta@home
2007, blue circles). (b) Same as (c) but with distinction between experimental methods used for determining protein structure according to PDB (X-RD, x-
ray diffraction, red circles; NMR, blue triangles).

doi:10.1371/journal.pone.0154923.g002
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conformers increase, there are more chances of finding decoys that more strongly resemble
either one of them, but only if these differences could be detected. Both GDT_TS (Fig 2a) and
TM-score (Fig 2b) indicate strong correlations between decoy rankings against pairs of con-
formers when these target conformers are very similar (e.g. when the TM-score between them
exceeds 0.5[48]). While the average Spearman rank correlation coefficient is 0.89 and 0.88
using GDT_TS and TM-score respectively, it decreases to 0.55 when the RMSD is used to eval-
uate structural similarity (Fig 2c). Moreover, when considering how decoy rankings change
depending on the structural similarity of the decoys themselves, only the RMSD can capture
enough variability to explain low correlations (S4 Fig). Consequently, only when the correct
structural similarity measure is used, it could be clearly noticed that the decoys are not equally
distant to both known native conformations. This observation confirms that the choice of a ref-
erence structure (a given conformer) will affect the evaluation of protein 3D models.

Fig 2a–2c also discriminates the correlations by dataset, thus reflecting the different
approaches used for building the structural models. It is tempting to think that template-free
methods could result in a wider sampling of conformations for a given target. However, there
is no clear relationship between the rank correlation coefficients and the modeling approach
(the majority of CASP participants use template-based methods, while QUARK and Rosetta
datasets provide template-free or ab initio models). Besides, as shown in Fig 2d, pairs of con-
formers determined by NMR spectroscopy are more structurally dissimilar than those obtained
using x-ray crystallography, a fact that may reflect the increased exploration of solution state
dynamics allowed by NMR and may explain why ranking correlations are not higher.

Results shown in Fig 3 give a strong support to the idea that the population of decoys con-
tains a wide sample of structural models close to discernible conformers from the native state
of a target protein. For 30% of the targets studied, the same decoy was identified as the top-
ranked model using an RMSD-based comparison against conformers showing maximum
RMSD (RMSD = 1.91Å on average). In these cases, the best decoy is almost equally distant to
both conformers describing the putative native ensemble of the target. However, in the

Fig 3. Comparison of target structure-best decoy RMSD values between both conformers of a protein showingmaximum conformational
diversity. (a) Distribution of decoy-target RMSD values calculated for each protein in our dataset choosing pairs of best decoys for each conformer. (b) The
same comparison showed in a, but swapping conformers and best decoys. Symbols indicate the three datasets used in the study (CASP 3–10, pink circles;
QUARK, green circles; Rosetta@home 2007, blue circles).

doi:10.1371/journal.pone.0154923.g003
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remaining 70% of the targets different decoys are recognized as the top-ranked ones depending
on the reference conformer of choice. Best decoys in this case have a structural difference of
RMSD = 1.82Å in average between the best decoys and its corresponding conformer (Fig 3a).
When the best decoy against a given conformer is cross-compared with the alternative
conformer of the same target, the mean RMSD increases to 2.13Å in average (Fig 3b). Here
again, RMSD suggests more cases of conformational diversity than the other measures. More-
over, GDT_TS chooses the same top decoy in 49% of the datasets, or in 53% if only accepting
GDT_TS equal or higher than 0.5 (as generally employed in CASP). This difference compared
with RMSD is even stronger for TM-score, which recognizes a unique best model on 54% of
the datasets or in 70% when filtering unreliable decoy-target pairs (those with TM-score lower
than 0.5).

We also split CASP targets in ‘hard’ and ‘easy’ following CASP definition, according to their
level of sequence and/or structural similarity to known folds (see e.g. [49,50]). We found that
those hard targets showing two different best decoys have a mean RMSD of the best decoys
against the native conformers equal to 2.26Å, while the mean RMSD for the subset of hard tar-
gets with one top decoy is even higher at 2.8Å (both are respectively higher for easy targets).
Thus, the increased modeling difficulty of hard targets produces a population of decoys with
worse quality. We observed that the structural similarity between conformers in both subsets
of hard targets is not very different, with a mean RMSD of 1.35Å and 1.57Å for the targets with
one or more best decoys, respectively. This suggests that the degree of conformational diversity
may not condition an extended sampling of the native space from the proposed structural
models. Instead, this may rely on how the models are generated, and specifically for homology
modeling, the target-template sequence identity. In our analysis the decoys obtained with tem-
plate-based methods showing a single best model were modeled on a template with relatively
higher sequence identity (26.1% on average) than the putative template for targets with two
best models (21.4% on average). Therefore, it is expected that by employing a wider and more
divergent population of templates, homology modeling techniques as a whole could capture
more of the native structural space.

Biological insights from three-dimensional models reflecting
conformational diversity
As previously exposed using RMSD-based comparison, for 70% of the proteins in our dataset
we detected different decoys structurally closer to each of the conformers representing the tar-
get native ensemble. Fig 4 shows some examples of the structural differences between pairs of
known conformers and their respective best decoys. Left panels in the figure show the struc-
tural alignment of the target conformers representing the native ensemble, while right panels
present the distribution of z-scores based on RMSD per position between conformers and their
corresponding best decoys. In the same figure, pink salmon dots represent the z-score coming
from the conformers’ alignment while blue and green are used to represent the z-scores for the
alignment between the best decoys for each conformer. We observed that regions showing
structural differences are characterized by high z-scores while those more structurally similar
approach zero. In Fig 4a we represent the structural alignment of conformers of the receptor-
associated protein (RAP) which binds members of the low-density lipoprotein receptor
(LDLR) family and facilitates their transport from the endoplasmic reticulum to the Golgi. The
study of a co-crystalized structure suggests that two LDL receptor modules may be needed to
stabilize RAP binding [51]. Each of these interactions is established through one (of three) con-
served lysine of RAP that binds an aspartate via a salt bridge and stacks against an aromatic res-
idue in a specialized pocket of the LDLR domain. Conformational equilibrium is displaced
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Fig 4. Examples of structural differences between pairs of known conformers (left panels, red and blue) and z-score distribution
based on RMSD per position derived from the structural superpositions between conformers and with their corresponding best
decoys (right panels). (a) Human unbound receptor associated protein (RAP) (PDB ID: 2FTU, red) and RAP bound to low-density
lipoprotein receptor (LDLR) (PDB ID: 2FCW, blue). (b) Human SHIP2 protein conformers (PDB ID: 4A9C, red; PDB ID: 3NR8, blue; synthetic
ligand, green). (c) NMR structures of RGS (Regulator of G protein signaling) domain of human protein RGS18 (PDB ID: 2OWI, model 2, red;
PDB ID: 2OWI, model 18, blue). (d) Atx1 yeast metallochaperone in Cu(I)-bound form (PDB ID:1FD8, red) and the Atx1-Ccc2 ATPase
complex (PDB ID: 2GGP, model 19, blue). See text for further details.

doi:10.1371/journal.pone.0154923.g004
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following protonation of conserved histidines that brings a change, at low pH, in the electro-
static surface of the RAP-D3 domain. An RMSD = 1.73Å between the unbound (PDB ID:
2FTU) and bound to LDLR (PDB ID: 2FCW) known structures of RAP-D3 reveals subtle
global conformational rearrangements (Fig 4a, left). These differences can also be seen when
considering the best decoys for each of the putative conformers. The decoys display an RMSD
of 1.37Å and 1.57Å when compared to their closest conformer but show an increment to 2.52Å
and 2.04Å respectively when cross-assessed against the other conformer. These structural simi-
larities and differences could be appreciated by the z-scores in the right panel of Fig 4a, which
evidence that alignments between the best decoy and the corresponding conformer show lower
z-scores in some regions compared with equivalent z-scores derived from the alignment of
conformers.

Left panel in Fig 4b shows the structural superposition between conformers of SHIP2 (SH2
(Src homology 2)-domain-containing inositol-phosphatase-2). This protein is involved in intra-
cellular signaling[52]. The double-stranded antiparallel beta sheet structure emerging on top of
the conformer that was co-crystallized with a synthetic ligand (PDB ID: 4A9C) is solvent-
exposed and does not appear in the free conformer (PDB ID: 3NR8) due to its high flexibility.
This region plays a key role folding over the ligand to form the binding site of the protein along
with other target structure poorly defined loops. However, best decoys help to understand the
biological importance of these flexible regions absent in the target structure. The selected best
decoys have RMSD of 1.17Å and 1.22Å against their respective targets. These values slightly
increase to 1.24Å and 1.25Å respectively when they are compared against the other conformer.
Additionally, Fig 4c shows two selected NMR-solved conformers of the RGS (Regulator of G pro-
tein signaling) domain of human protein RGS18 (PDB ID: 2OWI, models 2 and 18)[53]. The
RGS domain family is highly heterogeneous in structures and these differences may modulate G-
alpha-binding specificities. It has been shown that equilibrium displacement between conformers
would selectively modulate the mechanism for RGS-G-alpha subunit complex formation, at least
in the case of the homologous RGS4[54]. This plasticity is reflected in the best decoys which have
an RMSD of 1.36Å and 1.59Å against their respective conformers, but are more distant from the
complementary conformers at 1.57Å and 2.15Å respectively. Finally, Fig 4d illustrates the diver-
sity of the Atx1 yeast metallochaperone protein that carries metal ions to specific sites within the
cell. Analysis of the Cu(I)-bound form of Atx1 (PDB ID: 1FD8) has shown that the copper-bind-
ing cysteines become exposed on the surface of the protein after metal ion releasing [55]. This
structural change also disrupts the Atx1-Ccc2 ATPase complex (PDB ID: 2GGP, model 19), a
transient interaction for which copper ion is essential[56]. These conformers of Atx1 show an
RMSD = 1.82Å accounting for their secondary structure arrangements (Fig 4d, left). It is also
reflected by the selected best decoys, which increase the RMSD = 1.93Å to each of the conformers
to 2.19Å and 2.28Å when compared with the other conformer.

Conclusions
The increasing availability of experimental structures from native ensembles allowed us to
assess the quality of protein structure models under a different perspective. We have found
that considering the native state as an ensemble of conformers improves the selection of 3D
structure models, thus helping to understand protein function more comprehensively. The
evaluation of protein structure models is shown to be highly influenced by the conformational
diversity of the target protein. This evaluation proves to be robust to the use of different struc-
tural similarity scores, in the sense that conformational diversity can always be detected if pres-
ent, although with different sensibilities. Conversely, the selection of decoys is not robust
regarding the choice of similarity measures, as decoy rankings would be very different.
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A majority of the proteins in our dataset showing different decoys were structurally closer
to alternative native ensemble conformers. This finding reveals that, although not usually
taken into account, many of the current methods for predicting three-dimensional structures
of proteins could be used to predict conformational diversity as well. According to our results,
there is no particular tertiary structure prediction method that could stand out in the estima-
tion of close conformers to the target. However, we did find that, when template-based meth-
ods are used, using distant evolutionary templates produces a better sampling of the
conformational space than using closer homologs.

The biological analysis of several selected examples of top-ranked decoys allowed us to get a
better understanding of their role as members of the native ensemble. Therefore, conforma-
tional diversity estimated from 3D modeling techniques adds an additional value for a mean-
ingful interpretation of structure-function relationships. In the same sense, we deeply
encourage the consideration of conformational diversity when conducting protein structure
prediction and endorse the evaluation of conformational diversity in community-wide efforts
like CASP. To this end, and while current prediction methods can be used as such, a proper
selection of structural decoys that may account for conformational diversity in a target protein
would necessarily require new improvements and novel methodologies of model evaluation in
assessment protocols.
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(TIF)

S3 Fig. Distribution of cavity volume differences between pairs of conformers with maxi-
mum conformational diversity for each protein in our dataset. Pairs were taken from the
CoDNaS database of different structures (from available PDB files) for each represented pro-
tein.
(TIF)

S4 Fig. Distribution of Spearman’s rank correlation coefficients per target, computed
between structural rankings for all proposed structural models against each of the con-
formers in the pair of maximum conformational diversity, as a function of different aver-
age measures of structural similarity between pairs of decoys and native conformers. (a)
Correlation against average RMSD of all decoy-target pairs of each protein. (b) Same as (a) but
using average GDT_TS. (C) Same as (a) but using average TM-score. (d) Correlation against
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the average variance of all RMSD values between decoy-target pairs of each protein. (e) Same
as (d) but using average variance of GDT_TS. (f) Same as (d) but using average variance of
TM-score. RMSD scores are expressed in Å while GDT_TS values are normalized to the range
[0, 1].
(TIFF)
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