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Abstract

On-demand, localized release of drugs in precisely controlled, patient-specific time sequences 

represents an ideal scenario for pharmacological treatment of various forms of hormone 

imbalances, malignant cancers, osteoporosis, diabetic conditions and others. We present a 

wirelessly operated, implantable drug delivery system that offers such capabilities in a form that 

undergoes complete bioresorption after an engineered functional period, thereby obviating the 

need for surgical extraction. The device architecture combines thermally actuated lipid membranes 

embedded with multiple types of drugs, configured in spatial arrays and co-located with 

individually addressable, wireless elements for Joule heating. The result provides the ability for 

externally triggered, precision dosage of drugs with high levels of control and negligible unwanted 

leakage, all without the need for surgical removal. In vitro and in vivo investigations reveal all of 

the underlying operational and materials aspects, as well as the basic efficacy and biocompatibility 

of these systems.

INTRODUCTION

Macroscale drug delivery devices offer advantages over systemic particulate approaches 

with respect to target efficiency, nuclease degradation and renal clearance.1 Most such 

devices rely on passive drug diffusion from non-degradable polymer materials or release 

from matrices that degrade over time.2–5 In both cases, the engineering designs, the 

materials compositions and the physiological conditions pre-define the release kinetics, such 

that control after implantation is not possible. Precise, adjustable and patient-specific 

operation can be achieved with electronically programmable systems that exploit remotely 

triggered opening of valves built into combined fluidic and electronic platforms.6–8 A key 

disadvantage is that surgical procedures must be used to extract the implanted hardware after 

completion of the delivery function. Alternative strategies include those that use lipid-based 

materials as hosts for drugs such as doxorubicin, where ex situ hyperthermic treatments 

based on radio frequency ablation,9 microwaves10 or focused ultrasound,11 can trigger 

thermally activated release. When used in oncological applications in the liver, breast, brain 

or pancreas,12 this scheme can extend the tumor treatment zone down to microscale 

metastases, which are the main culprit in cancer recurrence.13 Such ex situ triggering 

approaches can, however, be difficult to localize precisely; they can induce ancillary tissue 

damage; and they are only applicable to a single type of drug. Our recent work14 

demonstrated bioresorbable systems for in situ operation, but with only single-channel 

control over a single type of drug from a single reservoir, where matrices of silk fibroin 

allowed adjustment of release rates across a narrow range above a fixed, intrinsic baseline 

value.

This paper reports an important advance that follows from the combined use of temperature-

sensitive lipid-based layered films with electronically programmable, frequency-multiplexed 

wireless hardware. The result allows in situ, on-demand release of single or multiple classes 

of drugs from multiple, independently controlled reservoirs, in a completely bioresorbable 

platform, where reversible control of the release kinetics with near-zero leakage in the off-

state. Systematic in vivo and in vitro studies demonstrate the underlying principles and all of 

the relevant features of operation.
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MATERIALS AND METHODS

Fabrication and device design

The device configuration allows wireless power delivery through inductively coupled coils 

to resistive heating elements designed to increase the temperature within a lipid membrane. 

Electronic components, such as inductive coils, resistive heaters and interconnects, consist of 

features formed in a thin molybdenum (Mo) foil. The fabrication began with laminating a 

thin metal foil (Mo; purity: 99.9%, Goodfellow, Coraopolis, PA, USA) on a sheet of 

adhesive plastic (3M, St Paul, MN, USA) as a temporary supporting layer. Micromachining 

with a laser-cutting tool (LMT-5000s Dual Laser System, Potomac, MD, USA) defined the 

patterns for inductive coils and resistive heating elements in the foil. Integration with a 

bioresorbable substrate involved bonding to a sheet of poly(lactic-co-glycolic acid) (PLGA) 

softened by heating at 60 °C for 1 min followed by cooling to room temperature. Peeling 

away the adhesive plastic sheet exposed the surfaces of the contact pads to allow mechanical 

removal of surface oxides. Sputter deposition of Mo (1.5 μm) through a shadow mask 

defined an interlayer electrical connection. Laminating additional layers of micromachined 

foils and PLGA sheets formed interconnects, dielectrics and encapsulation layers to 

complete the fabrication.

Wireless power delivery system

An external primary transmission coil was constructed using planar printed circuit board 

technology. An alternating current waveform with a peak voltage of 1–10 V from a 

waveform generator (Agilent 33120A, Agilent Technologies, Santa Clara, CA, USA) was 

amplified to 10–20 V by a radio frequency power amplifier (210L, Electronics and 

Innovation, Rochester, NY, USA) and delivered to the transmitter coil. An inductively 

coupled coil received the amplified current waveform and delivered it to resistive heating 

elements. The inductance of the square receiver coil can be approximated by the expression:

where n is the number of turns, μ = μ0μr is the product of relative and absolute permeability, 

davg = (do+di)/2 is the average turn length where di and do are the inner and outer diameter 

of the coil, respectively, and φ=(d0 − di)/(d0 + di) is the fill factor for the coil. The design of 

the receiver coil determines the resonant frequency, thereby enabling multiple, 

independently controlled coils to be positioned in close proximity.

Synthesis of lipid membrane

Lipid compounds dissolved in either a chloroform or a mixed solution of chloroform, 

methanol and deionized water (65:35:8 by weight) were purchased from Avanti polar lipids, 

Alabaster, AL, USA. The preparation began with spin casting of pre-mixed lipid stock 

solution (60 μl) of dipalmitoylphosphatidylcholine, 1,2-dilauroyl-sn-glycero-3-

phosphoethanolamine, dipalmitoylphosphatidylglycerol or 1,2-dioleoy1-3-

trimethylammonium-propane and cholesterol with a mole ratio of 35 : 35 : 10 : 20 on the 
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surface of the device. Placing the coated device in a desiccator under vacuum (<75 torr) for 

overnight allowed self-assembly of the lipid into a multilayer membrane and complete 

removal of residual solvent. Laminating a temporary shadow mask (Mo foil, 5 μm thickness) 

selectively exposed the serpentine resistor. Heating the device at 55 °C for 30 s with a drop 

(30 μl) of solution containing a drug of interest allowed hydration and self-assembly into a 

liquid-disordered (Ld) phase of the lipid membrane, thereby trapping the drug. Spinning the 

device twice at 2000 r. p.m. for 40 s and then immersing it in deionized water (60 ml) for 

more than 2 days eliminated any untrapped drugs. The deionized water was replaced every 

other day.

Measurements of drugs

Amounts of released drug were measured using a plate reader (Victor 3 Multilabel Reader, 

Perkin-Elmer, Waltham, MA, USA). The fluorescence intensity measured relative to the 

standard curve (Supplementary Figure S1) was used to calculate the amounts of 

doxorubicin15 (Sigma-Aldrich, St Louis, MO, USA) and Alexa Fluor 488 conjugated 

Dextran (3000 MW, anionic; Life Technologies, Carlsbad, CA, USA). Amounts of the 

released parathyroid hormone (1–34) were measured by absorbance (optical density) 

through an enzyme immunoassay kit (Phoenix Pharmaceuticals Inc., Burlingame, CA, 

USA). Applying a drop (20 μl) of surfactant (Triton X-100, Sigma-Aldrich) destroyed the 

structure of the lipid membrane, allowing the complete release of the remaining drugs into 

surroundings.16 The measured amounts of the remaining drugs in the lipid membrane were 

insignificant, typically within ~ 0.1 μg.

Cell culture experiments and proliferation/viability assay

Human tumor cells (HeLa) were cultured in Dulbecco’s Modified Eagle’s Medium (mixture 

of 10% fetal bovine serum and 1% penicillin–streptomycin) at 37 °C with 5% of carbon 

dioxides (CO2). The proliferation/viability assays followed protocols for commercially 

available kits (CellTiter 96 AQueous One Solution Cell Proliferation Assay (Promega, 

Madison, WI, USA) and Cytotox ONE (Promega) for proliferation and viability assays, 

respectively) with ~ 10 000 seeded cells per wells on 96-well plates (Falcon 96-Well Cell 

Culture Plates, Corning, Corning, NY, USA).

In vivo cytotoxicity

All animal studies were performed in accordance with Institutional Animal Care and Use 

Committee. Balb/c mice (female, 7 weeks) were anaesthetized with 30 mg kg−1 zolazepam 

hydroxide (Zoletil 50; Virbac, Sao Paulo, Brazil) and 10 mg kg−1 zylazine hydroxide 

(Rumpun; Bayer, Shawnee Mission, KS, USA) via intraperitoneal injection. Prior to the 

implantation, test and reference materials (HDPE (high-density polyethylene)) were 

sterilized with ethylene oxide. Materials were inserted in subcutaneous pockets made on the 

dorsal of the animal for 5 weeks. For histological analysis, the skin surrounding the tested 

materials was fixed in 10% neutral-buffered formalin, embedded in paraffin, stained with 

hematoxylin and eosin.
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Flow cytometry analysis

The following Abs were purchased from eBioscience (San Diego, CA, USA): anti-mouse 

CD4 (RM4–4), Ly6G (RB6–8C5), CD3 (145–2C11), CD19 (1D3), CD49b (Dx5), CD8 (53–

6.7), CD11b(M1/70) monoclonal antibodies conjugated with fluorescein isothiocyanate, 

phycoerythrin, phycoerythrin-cyanine dye, peridinin chlorophyll protein complex with 

cyanin-5.5, allophycocyanin, allophycocyanin-cyanine dye, Alexa Fluor 488. Single-cell 

suspensions from blood and spleen were treated with 2.4G2 anti-CD16/CD32 mAb (2.4G2, 

Fc block) to block FcRIII/II receptors. Cells were then incubated for 20 min at 4 °C. 

Multicolor analysis was performed using a FACS Canto II (BD Bioscience, San Diego, CA, 

USA) and analyzed with FlowJo software (TreeStar, Ashland, OR, USA).

Measurement of cytokine by cytometric bead arrays

The levels of interleukin-10 (IL-10), IL-6, interferon-γ, tumor necrosis factor-α and 

IL-12p70 in the serum were measured by mouse inflammation cytometric bead arrays kit 

(BD Biosciences, San Diego, CA, USA).

Statistics

The data are represented as mean ± s.e.m. Statistical significance was determined by one-

way analysis of variance followed by Bonferroni’s multiple comparison test. Differences 

were considered significant when the P<0.05. All analyses were conducted using the Prism 

software (Graph Pad Prism 5.0, La Jolla, CA, USA).

Finite element analysis

ABAQUS commercial software (ABAQUS analysis user’s manual V6.10, Providence, RI, 

USA) was used to study the thermal response of receiver coils and resistor on a substrate. 

Both the receiver coils and resistor (Mo, 15 μm thickness, thermal conductivity: 138 W m−1 

K−1, density: 10 330 kg m−3, specific heat: 251 J K−1 kg−1) were modeled by the heat 

transfer shell element (DS4), while the substrate (PLGA, 200 μm thickness, thermal 

conductivity: 0.3 W m−1 K−1, density: 1580 kg m−3, specific heat: 1200 J K−1 kg−1)17 and 

the porcine tissue (1–3 mm, 0.45 W m−1 K−1, density: 1024 kg m−3, specific heat: 3350 J 

K−1 kg−1)18 were modeled by the heat transfer brick element (DC3D8).

RESULTS AND DISCUSSION

Figure 1a presents an optical image and an exploded view schematic illustration of a 

representative system. The construction relies exclusively on bioresorbable materials, in 

components that include (1) an array of independent, wirelessly addressable thermal 

actuators, each of which consists of a resonant receiver coil connected to a serpentine 

resistor (Joule heating element) and (2) a uniform, multilayer coating of a thermally 

triggerable biological lipid membrane embedded with one or more hydrophilic drug 

molecules, selectively located on the Joule heating elements. Details associated with the 

materials and fabrication strategies appear in the Materials and methods section. Figure 1b 

and Supplementary Figure S2 present confocal microscope images of the layers of the lipid 

(green) and the drug (red) over the surface of the device. The lipid membrane consists of 

dipalmitoylphosphatidylcholine, 1,2-dilauroyl-sn-glycero-3-phosphoethanolamine, 

Lee et al. Page 5

NPG Asia Mater. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dipalmitoylphosphatidylglycerol or 1,2-dioleoy1-3-trimethylammonium-propane and 

cholesterol, specifically designed to (1) efficiently retain drugs for long periods of time in 
vitro (months), with little leakage, (2) rapidly release them upon heating beyond a critical 

temperature (41–43 °C) that is higher than body temperature (normal to fever; 36.5–38.5 °C) 

but below the maximum allowable temperature (43–45 °C) for human tissues and (3) exploit 

materials with established levels of biocompatibility (Food and Drug Administration-

approved lipid compounds with cholesterol). This type of precise control and abrupt 

switching, together with separately addressable drug reservoirs, represent key advances over 

our recently reported silk-based systems14 in which diffusion of drugs occurs continuously 

from a single region, and the rate can be thermally accelerated.

Figure 1c schematically illustrates the two coexisting phases of the lipid membranes: liquid 

ordered (Lo) and Ld. The Lo phase involves rigid, all-trans tails; the Ld phase contains alkyl 

tails that can undergo rapid conformational changes.19 The coexistence of Ld and Lo phases 

is often induced by the presence of cholesterol.20,21 Sinha and coworkers22 demonstrated 

that the Lo domains segregate laterally within the lipid membrane with correlations across 

bilayers to form a columnar Lo lamellar phase that has two distinct lamellar phase repeat 

distances. Hydrophilic drugs bind most tightly to the head group domains. For charged drug 

molecules, this interaction can be enhanced by attractive Coulomb forces.23 Multiple-

stacked lipids in the Lo phase hinder the permeation of the drugs.22 Thermal actuation 

induces a transition to the Ld phase,24,25 thereby allowing diffusion of the drugs out of the 

system. Figure 1d shows results of small angle X-ray scattering from a lipid membrane at 

various temperatures (T = 25, 40, 43 and 50 °C), with magnified views (right) near the 

critical temperature (T = 40 and 43 °C). Each reflection consists of double Bragg peaks 

below 40 °C (Figure 1d, blue line) that arise from the coexistence of extended Lo (lower q) 

and Ld regions (higher q) of the lipid bilayers. At 43 °C (Figure 1d, green line), a single 

Bragg peak emerges, consistent with a phase transition (from the coexistence of Lo/Ld 

phases to the Ld phase) at the critical temperature between 40 and 43 °C. The even spacing 

of the Bragg peaks indicates a lamellar structure of regularly stacked lipid multilayers at a 

repeat distance d = 2π/q = 182 Å, where q is wave vector.26 Wide angle X-ray scattering 

(Supplementary Figure S3) measurements confirm the Lo/Ld transition, where a Bragg peak 

characteristic for packed rigid lipid alkyl tails vanishes as the temperature exceeds the 

critical point.

Wireless power delivered to the Joule heating elements (for details see Supplementary 

Figure S4) can selectively induce this phase transition in corresponding regions of the lipid 

membrane. The 2 × 2 array design presented here includes four independent receiver coils 

with 1, 4, 6 and 9 turns, where the resulting resonant frequency is proportional to the inverse 

of the number of turns (Supplementary Figure S5a). Supplementary Figure S5b illustrates 

the phase-angle transition from inductive to capacitive impedance of the coupled coils at the 

peak resonant frequencies. Further improvements in coupling can be achieved by integrating 

capacitors to match the resonant frequencies of the transmitter to the self-resonant frequency 

of the receiver. Experimental results in Figure 1e show temperature distributions (FLIR 

SC645 infrared camera, sensitivity <0.05 °C) that follow from resonant delivery of power 

(0.4 W at 12 MHz) to one of the four elements in the array. Here, the temperature reaches 

45 °C within 10 s, consistent with finite element analysis of the thermal response (Figure 
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1f). The temperature increase is spatially localized and linearly proportional to the incident 

power (Supplementary Figure S5c), thereby allowing controlled, independent activation of 

lipid associated with each element in the array. Figure 1g shows representative experimental 

measurements and computational (finite element analysis) results of the average temperature 

of the activated element (marked 4; ~ 45 °C) and adjacent elements (marked 1, 2, 3; 26–

28 °C) in Figure 1e and f. The temperatures of the adjacent elements are considerably below 

the phase transition temperature (40–43 °C) of the lipid, thereby minimizing the possibility 

of off-state leakage before activation. Experimental results demonstrating that all the heating 

elements are capable of operating in a sequential way appear in Supplementary Figure S6. 

The amplification circuit used in these experiments is able to trigger the operation of only 

one coil at a time.

This simple construction offers robust, wireless control of the kinetics of drug release. 

Figure 2a shows the cumulative release of doxorubicin, in terms of a percentage of the total, 

as a function of time from a device immersed in deionized water (12 ml) when activated 

wirelessly with externally applied power between 0.1 to 1.3 W at 12.5 MHz (four turns of a 

receiver coil) and a distance of 2 mm. All of the experiments in Figure 2 used deionized 

water to isolate the fundamental materials design principles from the chemical complexities 

introduced by the use of biological fluids. The results indicate linear release profiles, up to a 

plateau that corresponds to an average release rate of ~ 15% h−1. These kinetics correspond 

to first-order behavior, wherein the release begins abruptly at a critical temperature between 

41 and 43 °C, without significant change for higher temperatures, across the range of powers 

examined here (Supplementary Figure S7). This observation is consistent with the thermal 

phase transition behavior of the cholesterol containing lipid membrane,27 and differs 

distinctly from a mechanism based on simple, temperature-dependent diffusion behavior28 

or silk-based drug release profiles14 where temperature-driven annealing accerlerates the 

release rate of drugs by further crystallization of silk fibroin. A certain amount of leakage 

occurs when the power is removed before complete release of the drug, likely due to 

openings in the lipid membrane formed at locations where the drug molecules leave 

(Supplementary Figure S8).

The type of operation illustrated in Figure 2a can be useful in programmed, multi-dose drug 

release for the treatment of conditions that require pulsatile delivery profiles, modulated 

from a zero baseline. Figure 2b shows the cumulative amounts of doxorubicin released 

wirelessly once a day from each element in the 2 × 2 array device with externally applied 

power of 1.0 W at 12.5–14 MHz at a distance of 2 mm. The results exhibit well-defined, 

predictable responses with negligible leakage of drug during the inactivated state. Extended 

measurements reveal minimal leakage (< ~ 0.05 μg per day) of drug over a month yielding 

high on and off ratio (> ~ 50, that is, the ratio of drug released during the activation period to 

that released during the inactivated state) as shown in Supplementary Figure S9. Increased 

leakage of drug occurs in phosphate-buffered saline, as distinct from the case in deionized 

water due to the influence of ions in the biological fluids (Supplementary Figure S9).

Delivery of multiple different drugs, often important in clinical contexts, is also possible. 

Figure 2c presents experimental results that demonstrate separate, independent release of 

parathyroid hormone (1–34), dextran and doxorubicin by exploiting a single device (four 
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turns of a receiver coil) with externally applied power of 1.0 W at 12.5 MHz and a distance 

of 2 mm. The release rates and cumulative loading of each drug vary with molecular weight 

(Mw = 4117.7, 3000.0, 579.9 for pTH (1–34), dextran and doxorubicin, respectively) as well 

as lipid membrane charge density. The latter affects the interaction characteristics (that is, 

diffusivity and Coulomb forces) of the drug molecules with the lipid membrane.29,30 Design 

of the lipid chemistry can, therefore, influence the maximum dosage. Figure 2d presents the 

cumulative amounts of drugs released from lipid membranes formed with different ratios by 

weight of charged lipid (dipalmitoylphosphatidylglycerol and 1,2-dioleoy1-3-

trimethylammonium-propane for doxorubicin and dextran, respectively). Increasing the 

content of charged lipid strengthens the Coulomb attraction forces, thereby increasing the 

amount of drug that can be accommodated. The results show that the dosages for dextran 

and doxorubicin increase until the ratio reaches ~ 30%, followed by an abrupt decrease at 

higher ratios (>40%) due to aggregation of the charged lipid with the drugs.31 The thickness 

of the membrane provides another route to define the maximum dosage. Figure 2e presents, 

as an example, the release of controlled amounts of dextran (red dotted line) and 

doxorubicin (blue dotted line) from lipid membranes with thicknesses between 12 and 30 

μm, achieved by selecting spin-casting speeds between 500 and 3000 r.p.m. Dosages in this 

case vary between 0.9–4.1 μg and 0.8–1.3 μg for dextran and doxorubicin, respectively. 

Loading each compartment in the array with different amounts of drugs is limited by the 

spin-casting process during formation of the lipid membrane. The available dose can be 

further increased by physically stacking devices built on thin bioresorbable supports 

(PLGA), as illustrated in Supplementary Figure S10. Figure 2f shows examples in double 

and triple layer constructions that allow two and three times the amount of drug 

(doxorubicin), respectively, compared with that of a single layer.

Practical considerations demand mechanical strength and robustness, and ability to function 

reliably within realistic biological environments. An experiment to demonstrate these 

features appears in Figure 3a, in the form of thermal images of a wirelessly activated device 

implanted in the subdermal region of a porcine model. (The temperatures shown in the 

image are smaller, by ~ 25%, compared with the device temperature due to the presence of 

the skin.) Figure 3b presents fluorescence microscope images that highlight drug delivered 

into tissue pre-colorized with a green dye (Alexa Fluor 488, Life Technologies). The results 

show no visible off-state leakage for 24 h after implantation (Figure 3b, left), with diffusion 

of the drug (red color) into the tissue only after wireless activation (Figure 3b, right). Further 

development of the device for long-term use in vivo will mitigate degradation mechanisms 

that arise from factors such as mechanical abrasion of the lipid membrane, and the presence 

of proteins, ions and enzymes.

Complete bioresorption following the programmed drug delivery process eliminates 

unnecessary patient risk and device load on the body. Figure 3c presents a series of thermal 

maps and optical images (insets) of a typical device at various times after immersion in 

phosphate-buffered saline solution (pH 7.4, Sigma-Aldrich) at 37 °C. The wirelessly 

activated increase in temperature at the surface of the solution remains almost unchanged for 

~ 1 week, and then begins to rapidly decrease due to dissolution of the electrical 

interconnects (dashed circle in Figure 3c; middle bottom image). The addition of 

encapsulants based on layers of silicon oxide or silicon nitride can further extend the 
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operational lifetimes, as studied in the context of other types of devices in previous 

reports.32,33 Complete dissolution of the Mo components (5 μm thick) occurs after 6–8 

months under these conditions, consistent with previously reported dissolution rates of ~ 

0.02 μm per day.34 The polymer layers (PLGA) used in this study possess high relative 

molecular masses (66 000–107 000) to provide degradation times of a few months, based on 

previously reported kinetics for this material.4 The biological lipids undergo enzymatic 

degradation by lipases and phospholipases, in which the kinetics strongly depend on 

temperature, pH, concentration of enzymes and compositions of the lipid.35,36 Lipid 

membranes that consist of compounds similar to those used here degrade only ~ 5% in 3 

months, whereas ~ 95% of the encapsulated chemotherapy drug was found to be intact after 

6 months when stored at room temperature in day light conditions.37 More additional details 

about bioresorption of the components, such as Mo, PLGA and lipids, of the device appear 

in our previous studies and others.34–36,38 The lipid membrane is stable throughout this 

timeframe, without any significant drug leakage (both in deionized water and phosphate-

buffered saline media). As a result, the possibility of off-state leakage before activation is 

minimal, such that drug is efficiently retained before the main body of the device degrades.

Treatment of tumor cells with doxorubicin provides an application example. Here, because 

different stages of cancer evolution demand different drug release rates, programmable 

control can improve the therapeutic efficacy and also reduce any systemic side effects, such 

as cardio-toxicity and congestive heart failure.39,40 Figure 4a presents a set of microscope 

images at various stages of culturing human tumor cells (HeLa) on a sterilized device loaded 

with doxorubicin in a cell culture dish (inset). Significant numbers of tumor cells stretch and 

differentiate within 5 days, to reach more than 95% confluency within 9 days, suggesting 

that there is negligible off-state leakage of the drug during the culturing period. Figure 4b 

shows fluorescence microscopy images to determine cytotoxicity using a Live/Dead 

Viability/Cytotoxicity kit (Life technologies), indicating that the healthy tumor cells (green 

dye, Calcein, Life technologies) are mostly dead (red dye, EthD-1, Life technologies) ~ 2 h 

after triggered release of the doxorubicin. Figure 4c and d present evaluations of 

proliferation and cytotoxicity of the tumor cells with drug released from a device immersed 

in Optimem (12 ml) via wireless heating for 5–6 h. Prior to cell exposure, the device was 

submerged in a separate dish containing Optimem and the drug was triggered by the 

temperature stimulus. The released drug solutions were collected at specific time points and 

transferred to cell culture 96-well plates. The results show that the growth rate and the 

viability of the tumor cells decrease most significantly within the first 2–3 h after triggered 

release, followed by gradual reduction to subtle levels (0% and <20% for the cell growth rate 

and the viability, respectively). A representative release profile appears in Figure 4c (blue 

dotted line). Control studies showing that the device remains stable without any drug release 

during the course of the cell culture experiments appear in Supplementary Figure S11. These 

results indicate that cancer cell growth suppression is not associated with passive leakage 

but, instead, by actively triggered released drugs. Other control experiments performed 

without the drug suggest that the increases in temperature alone are insufficient (<10%) to 

account for the observed cytotoxicity, as shown in Figure 4d (black dashed bar). Details 

associated with the cell culturing procedures and treatments appear in the Materials and 

methods section.
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In vivo biocompatibility is a critical consideration for the achievement of long-term device 

engraftment. To test the biocompatibility of our devices, Balb/c mice (n = 10) were 

implanted at the right side of subcutaneous pockets with device containing lipid (Group A) 

or device without the lipid (Group B) in accordance with Institutional Animal Care and Use 

Committee protocols (Supplementary Figure S12a). The same mice also underwent the 

surgical procedure on the left side of subcutaneous pockets with non-toxic HDPE (Food and 

Drug Administration approved) controls to provide a baseline tissue inflammation caused by 

implantation. In addition, a group of mice were subjected to the same implantation 

procedure but with no device or materials, to provide a baseline for comparison (Sham, 

shown in Supplementary Figure S12b). After sagittal skin incisions with sterilized clips, the 

mice were returned to the specific pathogen-free facility until analysis. As compared with 

the sham-operated (that is, no implant) control group, mice with implanted devices exhibit 

normal behaviors with no significant body weight loss during implantation period of 5 

weeks (Supplementary Figure S12c). Hematoxylin and eosin staining and examination of 

the local cytotoxicity of skin sections demonstrate comparable levels of immune cells 

including polymorphonuclear cells, lymphocytes and multinucleated giant cells, compared 

with the control groups (Figure 5a and Supplementary Figure S13). A histological analysis 

of the biocompatibility at 5 weeks post-implantation appears in Figure 5b and 

Supplementary Table S1.

Measurements of the level of inflammatory cytokines and the percentages of immune cells 

in the blood allow assessment of systemic immune reactions over a period of 5 weeks 

(Figure 5c). The levels of IL-10, IL-6, interferon-γ, tumor necrosis factor-α and IL-12p70 

are comparable to those of the control group, suggesting that the implanted devices induce 

no inflammatory responses. In addition, there are no abnormal changes in the populations of 

CD4+ T cells, CD8+ T cells, B cells, NK cells, neutrophils, monocytes and macrophages in 

peripheral blood (Supplementary Figure S14) along with those in the spleen by comparisons 

between the control and the test groups (Supplementary Figure S15). Taken together, these 

findings suggest that the devices can be considered as biocomparable temporary implants for 

applications in drug delivery.

CONCLUSION

The results presented here demonstrate that bioresorbable wireless electronics can be 

combined with thermally activated lipids for remotely controlled release of drugs in a time 

sequenced manner, with full, programmable rate kinetics from values that are near zero to 

those that can be set by choice of lipid chemistry and structure. The materials, device 

designs and fabrication strategies for these platforms offer an expanded set of options in 

drug delivery, with potential to improve patient compliance and the efficacy of current 

clinical procedures. Deep tissues can be addressed by using near-surface coils connected by 

bioresorbable wires to the implant site. Although the results focus on advantages provided 

by lipid-based layered films, other material systems, such as those based on hydrogels can 

be considered.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Layouts and characteristics of bioresorbable, wirelessly programmable drug delivery devices 

that exploit thermally activated lipid membranes. (a) Optical image (scale bar: 5 mm) of a 

device that consists of a 2 × 2 array of inductive coupling coils and serpentine thermal 

actuators on a bioresorbable substrate (left). Schematic exploded view illustration (right). (b, 
c) Three-dimensional (3D) Z-stacked confocal microscope images and schematic 

illustrations of a lipid membrane loaded with drug molecules. (d) Small angle X-ray 

scattering (SAXS) scans from a lipid membrane at temperatures between 25 and 50 °C (left), 

with expanded view between 40 and 43 °C (right) showing the transition from an liquid-

ordered to a liquid-disordered state. (e) An infrared (IR) image (scale bar: 1 cm) collected 

during operation of a representative device with a corresponding optical image (inset) 

showing spatially controlled heating (f) Distribution of temperature determined by finite 

element analysis (FEA). (g) Experimental (lines) and FEA (dots) results for average 

temperatures (marked 4 in e, f). The temperature of the wirelessly triggered actuator reaches 

45 °C while the other regions (marked 1, 2, 3 in e, f) remain at nearly room temperature. 

FEA, finite element analysis; Ld, liquid disordered; Lo, liquid ordered; PLGA, poly(lactic-

co-glycolic acid).
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Figure 2. 
In vitro assessments of programmed release of drugs. (a) Percentage of cumulative release 

of doxorubicin from a device operated at wireless power levels between 0.1 and 1.3 W. (b) 

Cumulative release from a 2 × 2 array of a device at 1-day dosing cycles. The off-state 

leakage levels correspond to values determined 30 min before activation. (c) Cumulative 

release of parathyroid hormone (PTH(1–34)), dextran, and doxorubicin. (d) Cumulative 

release of dextran and doxorubicin for devices formed with various ratios of charged lipids. 

(e) Cumulative release of dextran and doxorubicin for devices that incorporate lipid 

membranes with different thicknesses. (f) Cumulative release of doxorubicin from devices 

with double and triple stacked designs.
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Figure 3. 
In vivo operation of a device in a porcine model and its in vitro dissolution. (a) Thermal 

maps (scale bar: 1 cm) of a device implanted in the subdermal region. Inset (scale bar: 1 cm) 

shows an optical image during the implantation. (b) Fluorescent optical image (scale bar: 

300 μm) of the tissue 24 h after implantation (left) and after heating at 43 °C for 3 h (right). 

(c) Thermal maps (scale bar: 5 mm) and corresponding optical images (insets, scale bar: 1 

cm) of dissolution of a device immersed in phosphate-buffered solution (PBS, pH 7.4 at 

37 °C). Temperature scale bars, °C.
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Figure 4. 
In vitro evaluations of a device in a proliferation/viability assay using human tumor cells 

(HeLa). (a) Optical microscope images (scale bar: 100 μm) of tumor cells at different 

incubation times (day 2, 5, 9 from left to right). The inset in the upper left of the left frame 

provides a schematic illustration of the location of the device relative to the cells. (b) 

Fluorescent optical images (scale bar: 500 μm) of the tumor cells before and after 

programmed release of drug. Green and red colors represent live and dead cells, respectively. 

(c) Proliferation assay and a corresponding release profile of doxorubicin. (n = 3, averaged 

data points and error bars are represented). (d) Viability assay using devices with (red) and 

without (black) doxorubicin. (n = 3, averaged data points and error bars are represented).
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Figure 5. 
In vivo biocompatibility studies. (a) Representative microscope images (scale bar: 100 μm) 

of hematoxylin and eosin (H&E) stained tissue sections at 5 weeks post-implantation. (b) 

Evaluations of the histological score were performed in over 5 randomly chosen high-power 

fields in reference controls (HDPE) and test groups (means ± s.e.m., n = 5 per group). (c) 

Measured levels of inflammatory cytokines in peripheral blood serum by cytometric bead 

arrays (CBA). Statistical significance was determined by one-way analysis of variance 

(ANOVA) followed by Bonferroni’s multiple comparison test. Significance was ascribed at 

P<0.05. AdTi, adipose tissue; HDPE, high-density polyethylene; IFN-γ, interferon-γ; IL-10, 

interleukin-10; PMN, polymorphonuclear; SkMu, skeletal muscle; TNF-α, tumor necrosis 

factor.
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