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Abstract

Cardiac fibroblasts support heart function, and aberrant fibroblast signaling can lead to fibrosis and 

cardiac dysfunction. Yet how signaling molecules drive myofibroblast differentiation and fibrosis 

in the complex signaling environment of cardiac injury remains unclear. We developed a large-

scale computational model of cardiac fibroblast signaling in order to identify regulators of fibrosis 

under diverse signaling contexts. The model network integrates 10 signaling pathways, including 

91 nodes and 134 reactions, and it correctly predicted 80% of independent previous experiments. 

The model predicted key fibrotic signaling regulators (e.g. reactive oxygen species, tissue growth 

factor β (TGFβ) receptor), whose function varied depending on the extracellular environment. We 

characterized how network structure relates to function, identified functional modules, and 

predicted cross-talk between TGFβ and mechanical signaling, which was validated experimentally 

in adult cardiac fibroblasts. This study provides a systems framework for predicting key regulators 

of fibroblast signaling across diverse signaling contexts.
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Introduction

Cardiac fibroblasts play an important role in cardiac physiology by maintaining the 

extracellular matrix (ECM), linking with myocytes to participate in electrical propagation, 

and by actin as a sentinel cell mediating response to cardiac injury[1]. These cells are critical 

to the heart’s ability to adapt to mechanical, chemical, and electrical changes, and 

dysregulation of fibroblast activity leads to cardiac pathology. Increased fibrosis in the heart 

is associated with tissue dysfunction such as arrhythmias, diastolic failure, and systolic 

failure[2], [3]. Moreover, increased ECM is an independent risk factor for the development 
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of heart failure and is associated with a worse prognosis[4]. In a failing heart, a major source 

of ECM is the population of myofibroblasts – differentiated fibroblasts characterized by 

increased contractility (αSMA) and increased expression of collagens, fibronectin, and 

tissue inhibitors of matrix metalloproteinases (TIMPs), which increase the stiffness of the 

extracellular matrix. Identifying key drivers of this fibrotic phenotype could be the key to 

understanding the pathogenesis of heart failure.

Cardiac fibroblasts experience competing cues from growth factors, inflammatory cytokines 

and mechanical signals, among others, and integrate these diverse signals to produce 

increases or decreases in matrix turnover. Therefore, appropriate therapeutic strategies to 

modulate cardiac fibrosis must function within the rich milieu of diverse signaling cues 

present in the diseased heart, and designing such therapies relies on understanding how cells 

integrate these signals[5]. Large-scale computational models have been used to describe 

hypertrophic signaling in cardiac myocytes and have successfully identified signaling 

mechanisms and key regulatory hubs for cardiac hypertrophy[6]–[8].

In this study we developed a large-scale computational model of the cardiac fibroblast 

signaling network in order to identify context-dependent drivers of myofibroblast 

differentiation and extracellular matrix remodeling. The model integrates multiple signaling 

pathways in order to predict changes in gene expression and protein activity across different 

signaling contexts. The model identifies a context-dependent functional role for 

transforming growth factor β receptor (TGFβ-R) and reactive oxygen species (ROS). 

Additionally, TGFβ-R was found to be important for up-regulation of alpha smooth muscle 

actin (αSMA) under many signaling contexts. The model predicted that regulation of αSMA 

by TGFβ-R is dependent on the level of mechanical stimulation, and this novel cross-talk 

mechanism was experimentally validated in rat cardiac fibroblasts.

Materials and Methods

Model Development

A cardiac fibroblast consensus signaling network was manually reconstructed from previous 

experimental studies from the literature. This network integrates 10 pathways with 11 

mechanical or biochemical stimuli that are altered during cardiac injury or heart failure 

including: IL1 (interleukin 1), IL6 (interleukin 6), TNFα (tissue necrosis factor α), NE 

(norepinephrine), NP (natriuretic peptide), β-integrins, TGFβ (tissue growth factor β), 

angiotensin II, PDGF (platelet derived growth factor), ET1 (endothelin 1), mechanical 

stimulation, and forskolin.

A review of the literature on cardiac fibroblast signaling was conducted, with a focus on the 

pathways described above. During literature review, studies were separated for use in 

validation (see Model Validation section below) if the cell type used was human or rat 

cardiac fibroblasts and the study investigated input (biochemical or mechanical stimulus) to 

pathway output (e.g. collagens, αSMA, cell migration, proliferation, and other ECM 

proteins) responses. Alternatively, studies that focused on direct signaling mechanisms were 

used to identify interactions to define the structure of the signaling network. Initially, 

interactions were added based on direct experimental evidence in mammalian cardiac 
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fibroblasts (112 reactions). Then, we performed gap filling of each pathway with 

intermediate reactions (20 reactions) between those that had support in cardiac fibroblasts if 

they were well-characterized in other cell types and there was evidence for the interaction in 

a fibroblast-related cell type. Each reaction in the network is supported by two independent 

studies, at least one of which was performed in fibroblasts, with a majority of the reactions 

supported by data in cardiac fibroblasts. Extracellular interactions were included from cell-

free measurements. The network includes 91 nodes (mRNA, proteins, and cell processes) 

connected by 142 reactions. Full documentation of the experimental evidence supporting 

each reaction is provided in Database S1.

The network reconstruction was converted into a predictive computational model using a 

previously described logic-based ordinary differential equation modeling approach used 

previously described[9]. Briefly, the activity of each node is modeled using a normalized 

Hill ODE with default parameters and logic gating. Default reaction parameters include 

weight (1), Hill coefficient (1.4), and EC50 (0.6), and species parameters include yinit (0), 

ymax (1), and τ. The τ parameter (time constant) was scaled according to the type of 

reaction: 6 minutes for signaling reactions, 1 hour for transcription reactions, and 10 hours 

for translation reactions. The system of ODEs was auto-generated from Database S1 using 

the Netflux software available at: https://github.com/saucermanlab/Netflux and implemented 

in MATLAB.

Model Validation

Literature for validating network input-output relationships (see Table S2) were identified by 

searching for each network input and output together with the phrase “cardiac fibroblast” in 

the Pubmed database. Other validation literature was identified while reviewing literature for 

the development of the network (see above). As a quality and reproducibility control, model 

validation used only studies that use rat or human cardiac fibroblasts and have at least two 

agreeing data points for that response (e.g., two methods of measurement, two dosages, two 

time points, or two independent studies). All supporting studies used in validation were 

independent of those used to develop the model network. Validation was performed by 

comparing the qualitative increase, decrease, or no change in output activity of the model 

simulation to the experimental results. Changes of less than 0.1% were categorized as “no 

change”.

Sensitivity Analysis

A systematic functional analysis was performed by simulating full knockdown of each node 

and predicting the change in activity of every node in the network. First the steady-state 

activity of all nodes was computed under baseline conditions, serving as a control. Then, we 

knocked down the activity of each node one at a time and subtracted the basal activity levels 

from the activity in the knocked down case to calculate “Δ Activity”. Influence is measured 

as the number of nodes with 25% change or greater in activity following knock out of the 

perturbed node, sensitivity is the number of nodes that will affect the target by a 25% change 

or greater when knocked out. The collagen sensitivity and αSMA sensitivity are defined as 

either the change in collagen I activity + change in collagen III activity or the change in 

αSMA activity respectively when the target node is knocked out. The topology of the 
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fibroblast signaling network was analyzed using the NetworkAnalyzer plugin in Cytoscape 

[10], [11]. AND relationships were collapsed into their target node using MetaNodes plugin 

(developed by John Morris, University of California, San Francisco) and network analysis 

was performed on that topology. The correlation coefficient for matching topological to 

functional metrics was computed using the fitlm function in MATLAB.

Functional modules were identified using k-means clustering of the sensitivity analysis in 

the high TGFβ context. Nodes were clustered based on both influence and sensitivity by 

concatenating the sensitivity matrix with its transpose. Clustering was performed using 

MATLAB’s kmeans function using the “correlation” distance measure. The clustering was 

performed 20 times with different initial centroid positions and nodes were grouped into the 

module that most frequently appeared. The number of clusters was set at 10 because that 

gave the highest inter-cluster vs intra-cluster distance without having clusters of single 

nodes. Functional relationships between modules were derived from the high TGFβ or high 

mechanical stimulus sensitivity analysis (described above) by summing the influence of all 

nodes in one module over all nodes in the second module. The line weights indicate the sum 

of influence of one module over another, with the shape of the target arrow indicating 

whether the overall relationship is positive or negative.

Cardiac Fibroblast Isolation

Adult rat cardiac fibroblasts were isolated and cultured as previously published[12]. Briefly, 

Sprague-Dawley rats (6 weeks old, ~ 200g) were sacrificed and the ventricles removed, 

minced into ~1 mm pieces, and digested using Liberase Blendzyme 3 (Roche, Indianapolis, 

IN). Successive digestions were centrifuged for 10 min at 400×g and cells were resuspended 

into culture medium containing Dulbecco’s modified Eagle medium (Sigma-Aldrich, St. 

Louis, MO) with 10% fetal bovine serum (FBS, Atlanta Biologicals, Flowery Branch, GA), 

100 U/mL penicillin, 100 g/mL streptomycin, and 2 ng/mL amphotericin B (all Sigma-

Aldrich). After incubating in culture flasks for 4 hrs at 37 C and 5% CO2, flasks were rinsed 

with phosphate-buffered saline (PBS, Sigma-Aldrich) to remove nonadherent cells, and 

resupplied with culture medium.

After 7 d of culture, fibroblasts were removed from flasks with 0.25% Trypsin-EDTA 

(Sigma-Aldrich), and seeded into 3D collagen gels as previously published[12]. Briefly, 0.2 

M HEPES (Sigma-Aldrich), 10X MEM (Sigma-Aldrich), 3 mg/mL type I bovine collagen 

(PureCol, Advanced Biomatrix, San Diego, CA) and cells resuspended in low-serum culture 

medium (1% FBS) at respective ratios of 1:1:8:2 to yield a final collagen concentration of 2 

mg/mL and final cell concentrations of 200k cells/mL (for restrained gel conditions) or 133k 

cells/mL (for floating gel conditions). The cell+collagen gel mixtures were rotated in an 

incubator for 5 min, then pipetted into 24-well plates (1mL in each well).

In order to apply a high mechanical stimulus cells were seeded into a collagen gel restrained 

at the boundary, and compared to a free-floating gel (low mechanical stimulus). Restrained 

gels were poured into non-treated wells and remained adhered to the well bottom and sides; 

floating gels were poured into wells pre-coated with bovine serum albumin (BSA, Sigma-

Aldrich) by incubation in 2% BSA for 1 hr. After 4 hrs of incubation, the floating gels were 

released from the bottom of the wells with the addition of low-serum culture medium (1% 
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FBS). All gels were then incubated for 2 d in low-serum medium. After 2 d, gels were 

cultured for an additional 2 d in one of three chemical conditions: low-serum culture 

medium control, TGFβ-inhibitor treatment (30nM of SD208, Sigma-Aldrich), or TGFβ 

treatment (100 ng/mL of human TGFβ1, Cell Signaling Technology, Danvers, MA).

Gel Compaction Measurements

Starting immediately after floating the gels, pictures of the floating gels were taken every 24 

hrs with a handheld digital camera. Gel outlines were manually traced using ImageJ[13], and 

relative gel compaction was assessed as the ratio of the area of each gel at a given time point 

to the initial area of that gel.

Microscopy and Image Analysis

After a total of 4 days of culture, gels were fixed overnight in 4% paraformaldehyde (Sigma-

Aldrich), and washed 3× with PBS; cells were then permeabilized in 0.05% TritonX (Sigma-

Aldrich) in 1% BSA overnight, stained with monoclonal anti-alpha smooth muscle actin 

(Sigma-Aldrich) overnight, washed 3× with PBS, stained with 4′,6-diamidino-2-

phenylindole, dihydrochloride (DAPI, Life Technologies, Carlsbad, CA), and washed again 

3× with PBS. PBS was removed and gels were imaged on an Olympus IX81 inverted 

microscope with a 10× UPlanSApo 0.40 NA objective (Olympus, Center Valley, PA) and a 

C9300 cooled CCD digital camera (Hamamatsu, Bridgewater, NJ). An 800 μm × 600 μm 

area in the central region of every gel was scanned, capturing at least 100 cells per gel.

To quantify αSMA expression, an automated image analysis pipeline was employed in 

CellProfiler (Broad Institute)[14], [15]. Fibroblast nuclei were identified by DAPI signal, 

and fibroblast boundaries corresponding to each nuclei were segmented based on the αSMA 

signal using the “propagate” algorithm. αSMA signal was integrated within each cell’s 

boundary, and then averaged across all cells in a given gel as a measure of average αSMA 

expression per cell for that particular gel condition.

Statistics

Fibroblasts were isolated from 7 different rats, each isolation was divided into 18–24 gels, 

and gels were divided into six experimental groups for a total of 3–4 gels per group per rat 

(150 gels total, 25 gels per experimental group). αSMA was averaged across the gels within 

each group and rat, yielding N=7 replicates (one for each rat isolation) across the six 

experimental conditions. We performed a two-way ANOVA on floating-baseline, floating-

SD208, restrained-baseline, and restrained-SD208 groups with post-hoc Bonferroni tests 

comparing floating-baseline to restrained-baseline, and comparing restrained-baseline to 

restrained-SD. For the gel compaction assay, we performed a Student’s t-test between 

floating-control vs. floating-SD208 and between floating-control vs. floating-TGFβ groups 

with Bonferroni adjustments. Statistical significance was set at p<0.05.
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Results

A predictive computational model of cardiac fibroblast signaling

A cardiac fibroblast consensus signaling network was manually reconstructed from previous 

experimental studies from the literature. Literature papers on cardiac fibroblast signaling 

were placed into distinct “model development” and “model validation” groups, depending 

on whether that paper described direct molecular interactions (e.g. smad3 binds to the 

collagen I promoter) or network input-output relationships (e.g. TGFβ induces collagen I 

protein expression in cardiac fibroblasts), respectively. The 177 papers in the “model 

development” literature group were used to define the structure of the cardiac fibroblast 

signaling network, while the 41 papers in the “model validation” literature group were used 

to validate model predictions of network function. The detailed procedure for literature 

review and network reconstruction is provided in Methods.

This cardiac fibroblast signaling network (Fig 1) integrates ten signaling pathways 

previously shown to regulate cardiac fibroblast phenotypes and are up- or down-regulated 

during cardiac injury or heart failure. The network includes 91 nodes (mRNA, proteins, and 

cell processes) connected by 142 reactions. Full documentation of the experimental evidence 

supporting each reaction is provided in Database S1.

The network reconstruction was then converted into a predictive computational model using 

a logic-based ordinary differential equation (ODE) approach that we described previously 

[9], [16]. Briefly, the normalized activity of each node is modeled using ordinary differential 

equations, with reactions modeled using saturating Hill functions and continuous OR/AND 

logic gates. As in previous network models [9], [16], uniform default parameters were used, 

except that time constants (τ) were scaled to an order of magnitude appropriate for the type 

of molecule (mRNA, protein, process; see Methods). The baseline condition was defined as 

25% signaling activity for all inputs, which represents fibroblasts cultured on a stiff substrate 

with ligands at basal constitutive levels. Given any combination of the 11 signaling inputs, 

the model can simulate the dynamic changes in activity for every node in the network.

Next, we predicted responses of the fibroblast signaling network to specific stimuli. These 

predictions were validated against experimental studies performed in rat or human cardiac 

fibroblasts that were independent from those studies used to reconstruct the signaling 

network. For example, the effect of a 4-day TGFβ stimulus followed by a 2-day TGFβ + 

forskolin stimulus was simulated and compared to experimental data from Lu et al [17] (Fig. 

2A, with full simulation in Fig. S1). The model predicted that the addition of TGFβ initially 

increases collagen I mRNA, but forskolin treatment during the last two days partially 

reverses this increase. This prediction is qualitatively consistent with published data from rat 

cardiac fibroblasts showing that forskolin attenuates TGFβ-dependent expression of collagen 

I [17] (Fig. 2B).

Overall, the model was validated against 82 input-output relationships from 34 papers (see 

Methods) and accurately predicts 66 of those 82 (80%). Fig. 3 summarizes the predicted 

relationship of each individual input stimulus to the outputs collagen I, collagen III, αSMA, 

and the MMPs (matrix metalloproteinases) and the agreement between model predictions 
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and experimental data where available (40 relationships). Validations for the other 42 input-

output relationships are shown in Fig. S2, with complete annotation in Database S2. The 

validation accuracy was robust to a ±50% change in the baseline input levels as shown in 

Fig. S3.

Context-Dependent Roles of Cardiac Fibroblast Signaling Drivers

Sensitivity analysis is one way to systematically characterize the functional roles of nodes in 

a signaling network. We first performed sensitivity analysis under baseline conditions (all 

inputs at 25%) by simulating complete knockdown of each node in the fibroblast network 

and quantifying the change in activity of all network nodes in response to each knockdown 

(Fig. S4). From this analysis, we identified the most influential nodes as those whose 

knockdown produced the greatest summed magnitude of change in the phenotypic outputs of 

the network. Fig 4A shows how knockdown of these 10 most influential nodes affected the 

outputs under baseline conditions. For example, knockdown of interleukin 6 (IL6) was 

predicted to strongly suppress expression of pro-MMP14 and pro-MMP2, consistent with 

Dawn et al and Luckett et al [18], [19].

As TGFβ is a well-studied growth factor that is elevated following myocardial infarction 

[17], [20], we repeated the sensitivity analysis in a high TGFβ context (TGFβ input weight 

set to 90%, all other inputs at 25%) (Fig. S4B). The role of influential nodes on phenotypic 

outputs differed substantially between the baseline and high TGFβ contexts (Fig. 4A and B). 

For example, in the baseline condition proMMP2 and proMMP9 are sensitive to knockdown 

of IL6 pathway members. However in the high TGFβ context, IL6 pathway members were 

predicted to regulate proMMP1 but proMMP2 or proMMP9. We also identified key 

regulators of the overall network. While knockdown of TGFβ receptor (TGFβR) and ROS 

had broad network effects in both baseline and high TGFβ conditions (Fig. S4), their 

influence on specific network nodes was highly context-dependent (Fig. 4C). For example, 

ROS knockdown decreased MMP9 expression under baseline conditions but increased 

MMP9 activity in the high TGFβ context.

To more fully profile the context-dependent influence of the TGFβ receptor and identify 

cross-talks between pathways, TGFβR knockdown was simulated in all 12 possible single-

stimulus signaling contexts (90% activity of each stimulus, 25% activity of all other inputs). 

The network response to TGFβR knockdown varied considerably across the 12 signaling 

contexts (Fig. 4D). In particular, knockdown of TGFβR decreased expression of collagen I, 

collagen III, and αSMA in all single-stimulus contexts, but to different magnitudes in each 

context. TGFβR knockdown caused increases in periostin expression in the high NE or high 

forskolin signaling contexts but decreased expression in the 10 other contexts. Together, 

these analyses highlight the ability of the model to make predictions about how the influence 

of regulatory nodes in a signaling network vary as a function of the cell’s environment.

Signaling nodes that have similar function within a network are often thought to form 

modules which maintain biological robustness and allow for signaling flexibility [21]. 

Identification of network modules would allow for development of a hierarchical 

understanding of network function. To predict functional modules in the cardiac fibroblast 

network, we initially clustered network nodes based on both influence and sensitivity in the 
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baseline signaling context (from Fig. S4A) using k-means clustering. However, we found 

that clustering using sensitivity analysis from baseline conditions was highly variable due to 

many signaling nodes having relatively low influence or sensitivity. Therefore, we clustered 

nodes into functional modules based on both influence and sensitivity in the high TGFβ 

context (Table 1 and Fig. S5) and computed the strength of functional relationships between 

modules by summing the influence all nodes in one module had over another, as shown in 

Fig. 5A.

Because relationships between modules can vary depending on the signaling context [21], 

we also computed the relationships between functional modules in a high mechanical 

stimulus context that mimics the mechanical environment during myocardial infarction or 

volume overload. Fig. 5 compares the relationships between functional modules in the high 

TGFβ and high mechanical stimulus contexts. This analysis indicated that in conditions of 

high TGFβ, the TGFβ module promotes and the cytokine module strongly inhibits activation 

of the fibrosis module, which contains network outputs such as expression of collagen I, 

collagen III, and αSMA. Intriguingly, the autocrine module became more influential in in 

the high mechanical stimulus context, predicting an important role for autocrine signals that 

amplify the fibrotic response to integrin stimulation.

Relationship Between Network Structure and Function

While the above analyses used model simulations to predict function of nodes in the 

fibroblast signaling network, an alternative approach is to estimate function based on metrics 

of network topology [22]. Highly connected nodes, as determined by the topology metrics 

defined in Table 2, are generally expected to be more influential in a network[23], [24]. For 

example the fibroblast network contains 5 network hubs, defined as nodes with 8+ edges: 

AP1, smad3, NFκB, CBP, and p38. Topological analysis has been most often applied to 

large-scale biological networks where a predictive computational model is not available[23], 

[25]. However, the availability of this large-scale predictive signaling model provides a 

unique opportunity to examine the relationships between signaling network structure and 

function.

Accordingly, we examined the relationship between metrics of network structure and 

function as predicted by sensitivity analysis of the model under baseline conditions (from 

Fig. S2). These functional metrics were: 1) influence, the number of nodes with an activity 

change of greater than 25% with knockdown of node n; 2) sensitivity, the number of nodes 

that change the activity of node n by more than 25% when knocked down; 3) collagen 

sensitivity, the sum of the absolute value of the change in collagen I and collagen III with 

knockdown of node n; and 4) αSMA sensitivity, the absolute value of the change in αSMA 

with knockdown of node n. Betweenness centrality, defined as the number of shortest paths 

from all nodes to all other nodes that pass through node n, is one topological measure of 

connectivity. As shown in the comparison of betweenness centrality with influence (see Fig. 

6A), a few nodes such as the TGFβR had both high topological and functional scores. Yet 

betweenness centrality was a poor predictor of influence for other nodes such as angiotensin 

II (underestimating influence) and smad3 (overestimating influence), with only moderate 

correlation overall (r = 0.64). A similar analysis was performed for all 10 topological metrics 
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compared to influence (Fig. S6), sensitivity, collagen sensitivity, and αSMA sensitivity (Fig. 

6B). Overall, functional features were not strongly correlated with topological features, 

indicating the additional need for predictive signaling models as developed here. 

Betweenness centrality was the most useful topological metric for predicting overall network 

influence, while measures of degree (in-degree, out-degree, and edge count, see Table S1) 

were the most useful for predicting influence over the phenotypic outputs collagen and 

αSMA.

Cross-Talk Between Mechanical and TGFβ Pathways

The sensitivity and clustering analyses described above suggested substantial crosstalk 

between the mechanical stimulus pathway and the TGFβ pathway. Simulated knockdown of 

the TGFβ receptor lowered expression of αSMA, collagen I, and collagen III in conditions 

of high mechanical stimulus (Fig. 4D). Furthermore, at a more course-grained level, the 

TGFβ module was an important regulator of the fibrosis module (which contains important 

output genes such as collagen I, collagen III, and αSMA) in conditions of both high TGFβ 

and mechanical stimulus (Fig. 5). This led us to further investigate the potential role for 

TGFβ in integrin-mediated differentiation of fibroblasts to myofibroblasts. The model 

predicted that inhibition of the TGFβ receptor would have little effect on αSMA expression 

in baseline conditions but would attenuate mechanical-induced αSMA expression (Fig. 7A). 

To experimentally validate this prediction, we cultured rat cardiac fibroblasts in floating and 

mechanically restrained collagen gels, with and without a TGFβ receptor inhibitor, SD-208 

(see Methods). The restraint boundary condition provides mechanical resistance to intrinsic 

cell contractile forces, enabling cells to produce higher contractile tension and higher 

corresponding reaction tension in the gel[26]. This restraint has been shown to activate 

integrin pathways[27]. TGFβ was used as a positive control. As shown in Fig. 7B–C, 

fibroblasts in the restrained gels had significantly increased αSMA expression, but SD-208 

significantly attenuated the expression of αSMA in the restrained gels. Inhibition of the 

TGFβ receptor in the floating gels did not significantly reduce αSMA expression. Further, 

the expression of αSMA in floating gels strongly correlated with the degree of gel 

compaction, a functional measure of cardiac fibroblast contraction (Fig. 7D–E). Together, 

these experiments semi-quantitatively validate the model prediction that the TGFβ receptor 

is an important regulator of mechanical-mediated myofibroblast differentiation.

Discussion

Here we manually reconstructed a literature-based network of cardiac fibroblast signaling. 

This network was used to develop a logic-based predictive model of fibroblast signaling, 

which validated at a rate of 80% in comparison to independent, published studies in cardiac 

fibroblasts. A comprehensive sensitivity analysis revealed the context-dependent functional 

roles of nodes in the network, such as ROS and the TGFβ receptor. Betweenness centrality 

was the topological metric that was most predictive of functional influence, but overall there 

was a low correlation between topological and functional characteristics. The model 

predicted substantial crosstalk between TGFβ- and mechanical-induced myofibroblast 

differentiation, and this prediction was experimentally validated in rat cardiac fibroblasts.
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Model validation

While the model validates 80% of input-output relationships for which there is independent 

data, 16 input-output relationships were incorrectly predicted by the model. Most incorrect 

predictions were in response to 3 inputs: NP (6), NE (4), and IL1 (4). For example, the 

model predicted some responses to NP and IL1 where no change was reported 

experimentally. As NP counteracts fibrotic stimuli, those pathways may have a lower 

baseline activation than modeled currently. For IL1, validation data exhibited changes 

mRNA that were either not statistically significant [28] or did not propagate to protein 

expression as predicted by the model [29]. NE and forskolin both stimulate cAMP but have 

distinct effects[20], [30], indicating cAMP-independent roles of NE. However these are not 

yet sufficiently characterized for inclusion in the model. Together, these incorrect predictions 

highlight areas for future model revision and experiments.

Structure-Function Relationships in a Large Signaling Network

There are several approaches for using biological network reconstructions to identify key 

regulators of cell signaling. One way to predict the influence of a given node is through 

network topology analysis. Generally, well-connected nodes (those with high degree or 

betweenness centrality) are more likely to be essential nodes in the network[23], [24]. We 

found that, although betweenness centrality was most strongly correlated with influence, 

topological features were not strongly predictive of functional influence as determined by 

sensitivity analysis of the logic-based model. This finding is in agreement with other studies 

which found degree was not able to fully predict essentiality in signaling and metabolic 

networks[31], [32]. Topological metrics are simplified measures of connectivity, whereas the 

model utilizes the entire network structure to make functional predictions. This finding 

argues for the need for large-scale predictive network models as in this study rather than 

relying on simplified measures of connectivity of individual nodes to identify potential 

signaling drivers and therapeutic targets.

Context-Dependent Roles of Signaling Molecules

Cardiac fibroblasts play diverse functional roles in sensing and contributing to inflammation, 

remodeling extracellular matrix, and mediating wound healing. As a result their cellular 

signaling is highly context-dependent, which has implications for the effect of targeted 

therapy against fibrosis under these different signaling contexts. The large-scale model 

provides a unique opportunity to investigate context-dependent signaling roles in the cardiac 

fibroblast signaling network. TGFβ is known to be up-regulated following cardiac injury and 

in heart failure, and in vitro it has been established as a strongly pro-fibrotic stimulus on 

cardiac fibroblasts[17], [20], [33]. Anti-oxidants that suppress ROS have been shown to 

decrease fibrosis following myocardial infarction and prevent cardiac dilation [34], [35]. In 

conditions of high TGFβ, the model predicted that suppressing ROS would produce a larger 

decrease in the TGFβ and ET1 autocrine feedback loops than in the baseline signaling 

context. Additionally, simulations of ROS suppression predicted decreases in collagen and 

αSMA activity in the high TGFβ context, consistent with previous studies[36]. Interestingly, 

ROS suppression in the baseline signaling context decreased MMP-9 activity whereas it 

increased MMP-9 activity in the high TGFβ context. This is likely due to the effect of ROS 
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knock down on TIMP activity as MMP-9 mRNA levels were predicted to increase with ROS 

knock down regardless of the signaling context. This has implications for the treatment of 

heart failure-associated fibrosis with antioxidants as the model predicts antioxidants will be 

more effective in treating fibrosis under a high TGFβ signaling context (e.g. near a 

myocardial infarct) than in a baseline context (e.g. in the remote zone).

Additionally, the TGFβ receptor, which is directly linked to only the TGFβ pathway, was 

shown to be highly influential in both the baseline context and the high TGFβ context. For 

this reason, we investigated the role of the TGFβ receptor and, by extension, the involvement 

of the TGFβ pathway, under the baseline context and all 11 single-input contexts. We found 

that the TGFβ-R functions to increase collagen I, collagen III, and αSMA under all single-

stimulus contexts, but the magnitude of the increase depends on the context. In contrast, the 

TGFβ-R was predicted to up- or down-regulate periostin in a context-dependent manner. 

Blocking the TGFβ-R was predicted to decrease periostin under 10 of 12 signaling contexts, 

but TGFβ-R knockdown was predicted to increase periostin expression in contexts of high β-

adrenergic or high forskolin signaling. Together these data demonstrate how a large-scale 

model that incorporates multiple pathways can be useful for interrogating how fibroblasts 

respond to different signaling contexts. These results also have implications for how cells in 

different signaling environments might respond differently to antioxidants (above) or to 

TGFβ receptor inhibitors. Future studies can use this model to better understand how 

fibroblasts respond to more complex signaling contexts such as combinatory- or dynamic-

stimulus contexts and varied doses of inputs.

Cross-Talk and the Effect on Phenotype

Hypertension is a risk factor for the development of cardiac fibrosis, and understanding how 

cross-talk between mechanical and chemical stimuli affects the development of a pro-

fibrotic phenotype could reveal possible mechanisms of pathogenesis. The model predicted a 

role for the TGFβ-R in up-regulating collagen and αSMA under a high mechanical stimulus. 

Therefore we tested this prediction using mechanically restrained or floating gels in order to 

activate the integrin pathway downstream of mechanical stimulus in the model[27]. 

Experimentally, we found that the TGFβ-R inhibition abrogates mechanical-induced αSMA 

up-regulation, validating the model’s prediction. To our knowledge this relationship has not 

been shown previously, reinforcing the value of large-scale modeling to elucidate novel 

signaling mechanisms via signal cross-talk. The precise mechanism by which the TGFβ 

pathway amplifies myofibroblast differentiation in response to integrin stimulation requires 

further investigation. The model predicts that an autocrine loop involving an increase in 

TGFβ expression is responsible for sensitizing the fibroblast to differentiation from multiple 

stimuli including mechanics, angiotensin II and ET1 (data not shown). However, stretch of 

extracellular matrix has also been shown to increase activation of extracellular stores of 

latent TGFβ[37]. For example, Sarrazy et al. demonstrated that integrins activate latent 

TGFβ[38]. Both of these are testable potential mechanisms underlying this cross-talk.

Limitations

As with all modeling approaches, our logic-based ODE approach has inherent limitations. 

While this model uses default parameters, we have previously shown that this approach still 
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exhibits strong predictive accuracy in comparison to a fully parametrized biochemical model 

[16]. Further, the model’s validation and predictions are robust to parameter variation (Fig. 

S3). Availability of more quantitative proteomic data could increase the quantitative and 

dynamic predictive power of the model. The model structure is not fully comprehensive, 

focusing instead on the consensus cardiac fibroblast signaling network that meets specified 

inclusion criteria. However, this provides a framework for future expansion based on new 

experimental data.

Conclusions

We developed a predictive model of cardiac fibroblast signaling through manual curation of 

a signaling network, combining 10 pathways that are altered during cardiac injury or heart 

failure. Sensitivity analysis identified key signaling drivers of fibroblast function, and 

showed that these drivers vary across diverse signaling contexts. Specifically, TGFβ and 

ROS were key drivers of fibrosis signaling under both the baseline and high TGFβ context, 

but their relative effect on different nodes in the network was context-specific. The model 

also predicted a role for TGFβ in amplifying myofibroblast differentiation and expression of 

extracellular matrix proteins in response to other signals such as mechanical stimulation. 

The role for the TGFβ-R in mechanical stimulation-induced αSMA expression was validated 

experimentally. More generally, we found that functional influence and topological features 

are not well correlated, revealing the limited ability of topological analysis to predict 

functionality within a signaling network. The large-scale network modeling approach 

utilized here enables the prediction of global features of signaling networks that are often 

non-intuitive from local topological connections alone.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A computational model of cardiac fibroblast signaling was built and validated.

• This model predicted a context-dependent role for regulators of differentiation.

• Topological metrics could not fully predict function of fibroblast network nodes.

• This model identified novel cross-talk between mechanical and TGFβ signaling.
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Fig. 1. Reconstruction of the cardiac fibroblast signaling network
Each of the 91 nodes represents a gene product, modification of a gene product, or cell 

process in the model. Each arrow indicates a reaction based on experimental data of 

activation or inhibition from cardiac fibroblasts or a fibroblast-related cell line (142 reactions 

from 177 papers). Where shown, some reactions combine the influence of multiple reactants 

via AND gate logic. Multiple reactions affecting the same product are combined using OR 

gate logic.
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Fig. 2. Example of model validation with combined stimuli
(A) Predicted dynamics of selected outputs in response to TGFβ, followed by a combined 

TGFβ + forskolin stimulus. Full dynamic prediction shown in Fig. S1 (B) The model 

prediction is compared to independent experimental data from Lu et al 2013 [17], showing 

the attenuation of collagen I mRNA by forskolin treatment. The model prediction is 

expressed as percent of maximal mRNA level. Experimental collagen mRNA is relative to 

the initial measurement at day 0.
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Fig. 3. Validation of network input-output relationships predicted by the model
The qualitative response of selected fibrosis-related outputs is shown in response to each of 

11 input stimuli. Agreement or disagreement with independent experimental data when 

available from the literature is indicated as a check or an X, respectively. The model 

validates 35 of the 40 (88%) predictions shown in this Figure that have experimental data. 

Overall, the model validates 66 of 82 comparisons (80%), as shown inFigure S2andDatabase 

S2.
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Fig. 4. Sensitivity analysis reveals context-dependent functional roles for regulators of cardiac 
fibroblast signaling
Systematic knockdown (KD) simulations (see Fig. S2) revealed that the top 10 most 

influential differed considerably between (A) baseline and (B) high TGFβ signaling 

contexts. At baseline all inputs are set to 25%, while for high TGFβ that input is further 

increased to 90% (see Methods). (C) The response of network nodes to ROS knockdown 

differs substantially between baseline and high TGFβ contexts. Nodes are rank-ordered by 

change in activity in the baseline context (note the difference in y-axis scales in upper and 
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lower panels). (D) The effect of TGFβ-R KD on fibrosis-related model outputs varies across 

baseline and all 11 single-input contexts.
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Fig. 5. Relationships between functional modules are context-dependent
Relationships between functional modules (from Table 2) were quantified by the sum of 

influence of the members of one module over another in the specified signaling context. A) 

In the high TGFβ context, the fibrosis module was positively regulated by the TGFβ module 

and negatively regulated by the cytokine module. B) In the high mechanical signaling 

context, the autocrine module became a prominent regulator of the mechanical and fibrosis 

modules.
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Fig. 6. Metrics of network topology are insufficient to predict network functions
(A) Scatter plot showing the relationship of betweenness centrality (a metric of network 

topology) vs influence (predicted by the model). Influence is calculated by summing the 

absolute value of the changes in activity with knockdown of the target node. Several nodes 

of interest have been labeled. (B) The correlation coefficient for each topological feature vs 

4 functional features. Sensitivity is the absolute value of the change in activity of the target 

node for all possible knockdowns. Collagen sensitivity and αSMA sensitivity are the change 

in collagen or αSMA respectively with knockdown of the target node.
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Fig. 7. Experimental validation of predicted role for TGFβ in mechanical-induced expression of 
αSMA
(A) The model predicted that high mechanical input would increase αSMA expression, but 

that this effect would be mitigated by a TGFβ-R inhibitor. TGFβ increased αSMA at both 

low and high mechanical input. (B) Experimental measurements of αSMA expression as 

measured by immunofluorescence in adult rat cardiac fibroblasts cultured in floating or 

restrained gels, in which fibroblasts experienced increased mechanical stimulation. As 

predicted by the model, restrained gels exhibited increased αSMA expression, which was 

mitigated by the TGFβ-R inhibitor (TGFβ-Ri) SD208. (C) Example images of cardiac 

fibroblasts cultured in restrained and floating gels, stained for αSMA (green) and DAPI 

(purple). Scale bar = 100 μm. (D) Increased compaction of floating gels treated with TGFβ 

but not with TGFβ-Ri. (E) Floating gels compact over time with TGFβ and become more 

relaxed over time after treatment with TGFβ-Ri. (F) The final size of floating gels was 

inversely correlated with αSMA expression. * indicates p<0.05, and ** indicates p<0.01. All 

error bars indicate standard error of the mean.
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Table 1
Model-predicted functional modules

The members of each functional module identified using k-means clustering of the high TGFβ sensitivity 

analysis.

Module Members

PDGF PDGF, PDGFR, TNFα, TNFαR, p38, PP1, JNK, abl, cmyc

Autocrine ROS, ET1, ETAR, DAG, TRPC, latentTGFβ, Ca, calcineurin, NFAT, ERK, EDAFN, AP1, TIMP1, TIMP2

Migration Migration, proMMP14, proMMP2, MMP2, MMP14

Natriuretic NP, NPRA, cGMP, PKG, proliferation

Cytokine smad7, BAMBI, IL6, gp130, STAT, IL1, IL1RI, NFκB, proMMP1, MMP1, fibronectin

Mechanical PKC, mechanical stimulus, β1int, Rho, ROCK, Rac1, MEKK1, FAK, Factin, FA, SRF

TGFβ ACE, NOX, TGFβ, TGFβ-R, PI3K, Akt, TRAF, ASK1, MKK3, MKK4

Angiotensin AngII, AT1R, AGT, Ras, Raf, MEK1, proMMP9, MMP9

Beta Adrenergic NE, BAR, forskolin, AC, cAMP, PKA, CREB, epac

Fibrosis CBP, smad3, CTGF, αSMA, PAI1, periostin, CImRNA, CIIImRNA, CI, CIII
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