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Abstract

Despite the growing number of patients affected, the understanding of diastolic dysfunction and 

heart failure with preserved ejection fraction (HFpEF) is still poor. Clinical trials, largely based on 

successful treatments for systolic heart failure, have been disappointing, suggesting that HFpEF 

has a different pathology to that of systolic dysfunction. In this review, general concepts, 

epidemiology, diagnosis, and treatment of diastolic dysfunction are summarized, with an emphasis 

on new experiments suggesting that oxidative stress plays a crucial role in the pathogenesis of at 

least some forms of the disease. This observation has lead to potential new diagnostics and 

therapeutics for diastolic dysfunction and heart failure caused by diastolic dysfunction.
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Since the first report of the syndrome of heart failure (HF) with a preserved ejection fraction 

(HFpEF) nearly 30 years ago,1 the diagnosis, pathophysiology, and most effective therapies 

for diastolic dysfunction and HFpEF caused by diastolic dysfunction (ie, diastolic HF) have 

remained controversial. Some of the confusion exists because diastolic dysfunction can be 

present in asymptomatic patients, patients with preserved EF, and patients with reduced EF 

(Figure 1).2 Moreover, not all cases of HFpEF or HF with reduced EF (HFrEF) are 

associated with diastolic dysfunction.3 Therefore, the relationship of diastolic dysfunction to 

the clinical syndrome of HF is somewhat ill-defined.

Epidemiology

HF is a major and growing public health problem in the USA, affecting approximately 5.1 

million patients, and over 23 million patients worldwide.4 In Japan, approximately 1–2 
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million patients have chronic HF and nearly 170,000 patients die annually because of heart 

disease.5 More than 650,000 new patients are diagnosed with HF in the USA each year, and 

approximately half of them show diastolic dysfunction.6,7 Aging is an independent factor in 

HF incidence. The absolute mortality rate is high, and the prevalence of asymptomatic left 

ventricular (LV) dysfunction is increasing annually.6,8,9 Major risk factors for diastolic 

dysfunction include age, hypertension, diabetes mellitus, and LV hypertrophy.3,7,10 Diastolic 

dysfunction is common in diabetic patients and is associated with increased LV mass, wall 

thickness, and arterial stiffness.7 Of note, 34% of patients with diabetes have diastolic 

dysfunction.6

Although these risk factors are similar to those for HFrEF, growing evidence indicates that 

the mechanism of diastolic dysfunction is quite different from that in systolic dysfunction. 

Many effective treatments for HFrEF have shown disappointing results when applied to 

HFpEF patients.11 There are also clear clinical differences between HFpEF and HFrEF. 

Patients with HFpEF are older and more likely to be female.6 In HFpEF, the LV end-

diastolic volume is not increased relative to the stroke volume, and there is concentric 

remodeling. In contrast, HFrEF has eccentric remodeling with LV dilation.12 The major risk 

factors for diastolic dysfunction are shared between HFpEF and HFrEF.6

Relationship of Diastolic Dysfunction to Diastolic HF

Epidemiological evidence suggests there is a latent phase in which diastolic dysfunction is 

present and progresses in severity before the symptoms of HF arise.3 Asymptomatic mild LV 

diastolic dysfunction is found in 21%, and moderate or severe diastolic dysfunction is 

present in 7% of the population.3 Both moderate and severe diastolic dysfunction is 

associated with an increased risk of symptomatic HF and mortality.3 This asymptomatic 

phase represents a potential time to intervene to prevent symptomatic HF. Suggesting the 

success of possible interventions, a mortality benefit has been observed in those whose 

diastolic dysfunction improved compared with those whose diastolic dysfunction remained 

the same or worsened.13 In early diastolic dysfunction, elevated LV stiffness is associated 

with diastolic filling abnormalities and normal exercise tolerance. Asymptomatic diastolic 

dysfunction may be present for significant periods before it develops into a symptomatic 

clinical event. When the disease progresses, pulmonary pressures increase abnormally 

during exercise, producing reduced exercise tolerance. When filling pressures increase 

further, clinical signs of HF appear.10 In a significant number of cases of diastolic HF, 

patients have atrial fibrillation at the time of diagnosis, suggesting an association and a 

possible common pathogenesis.14 With atrial fibrillation, diastolic dysfunction may rapidly 

lead to overt diastolic HF (Figure 2).15

Mechanisms of Diastolic Dysfunction

Many mechanisms have been proposed. Recently, cardiac oxidative stress has been 

associated with diastolic dysfunction.16 Increased levels of cardiac reactive oxygen species 

(ROS) may explain some of the changes in Ca2+ handling proteins and the increased Ca2+ 

sensitivity of myofilaments in diastolic dysfunction.11,17 Some of the proposed mechanisms 

that represent therapeutic targets are reviewed next.
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Alterations in Intracellular Ca2+ Transients

Increased diastolic Ca2+, delayed Ca2+ extrusion from the cytoplasm, or increased 

myofilament Ca2+ sensitivity could theoretically cause diastolic dysfunction. A prolonged 

Ca2+ transient results in elevation of intracellular Ca2+ during diastole, leading to 

abnormalities in both active relaxation and passive stiffness.18 Ca2+ homeostasis is regulated 

by a number of Ca2+ handling proteins, including the sarcoplasmic reticulum (SR) Ca2+ 

release channel (the ryanodine receptor, RyR), the SR Ca2+ pump (ie, the SR Ca2+-ATPase-

SERCA2a), the sarcolemmal L-type Ca2+ channel, and the sodium-calcium exchanger 

(NCX). Increased diastolic intracellular Ca2+ may be a result of 3 possible mechanisms: (1) 

decreased SR Ca2+ pump activity, (2) SR Ca2+ leakage, or (3) abnormalities in the ionic 

channels responsible for calcium transport.19,20 For example, the NCX couples Ca2+ 

extrusion to the transmembrane Na+ gradient.9 In the failing heart, a small number of Na+ 

channels fail to inactivate, creating a late Na+ current (INa),10–13 which increases Na+ entry 

into the cell, reducing Ca2+ extrusion by the NCX.14 Oxidative stress may contribute to 

diastolic dysfunction by RyR S-nitrosylation, resulting in diastolic SR Ca2+ leaks and 

relaxation stiffness of cardiomyocytes.21 In addition, ROS-activated, cardiac-specifi Ca/

calmodulin kinase (CaMK) II expression can regulate relaxation through SERCA2A.22 

Redox-mediated SERCA2A sulfonation on the cysteine residue may also play a role.23

Many of these changes are not unique to diastolic dysfunction, however, and are seen in 

systolic dysfunction. Nevertheless, it is possible that these changes may contribute to both 

diastolic and systolic dysfunction or explain the presence of diastolic dysfunction during 

systolic dysfunction.

Titin Isoform Shifts

Another sarcomere macromolecule, titin, has been recognized as a determinant of diastolic 

relaxation.19 Titin is expressed in 2 isoforms: a smaller, stiffer N2B and a larger, more 

compliant N2A. In HFpEF, there is a higher proportion of the N2B isoform.24 Moreover, 

titin is modulated by phosphorylation.25,26 The cGMP-protein kinase (PK) G-dependent 

pathway has been suggested to play an important role in regulating diastolic tone and 

ventricular fi through titin phosphorylation and troponin I phosphorylation.26

Fibrosis

Changes in fibrillar collagen may be responsible for the development of diastolic 

dysfunction and diastolic HF. Hypertension and aging are associated with diastolic 

dysfunction and are accompanied by fibrosis. In turn, this fibrosis is associated with 

increased oxidative stress and profi cytokines. Reed et al reported that senescence-

accelerated mice have diastolic dysfunction in the absence of alterations in systolic 

function.27 This change in diastolic dysfunction was associated with increased interstitial 

and perivascular collagen 1A1, collagen 3A, and fibronectin.27 Cardiac fibrosis was 

accompanied by increased levels of transforming growth factor-β and connective tissue 

growth factor.

Alterations in collagen degradation have also been associated with diastolic dysfunction. 

Changes in matrix metalloproteases (MMPs), which degrade collagen, and tissue inhibitors 
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of MMPs (TIMPs) result in LV remodeling.15 A knockout of MMP-9 results in increased 

myocardial collagen with increased LV stiffness.28 Increased MMP-1 activity results in 

excessive collagen deposition and diastolic dysfunction.28 Elevations of MMP-2 and 

MMP-9 or a decrease of TIMP-1 occur in patients with asymptomatic diastolic dysfunction, 

as well as in diastolic HF.29 In addition, the magnitude of collagen turnover correlates 

directly with the severity of diastolic dysfunction.29 In systemic sclerosis, TIMP-1 levels are 

associated with diastolic dysfunction and LV matrix remodeling.30 In premenopausal, obese 

women with asymptomatic diastolic dysfunction, plasma MMP-2/-9 and TIMP profiles are 

altered.31

Posttranslational Modification of Cardiac Myosin Binding Protein C (cMyBP-C)

cMyBP-C regulates cross-bridge kinetics. Many of the mutations in cMyBP-C are known to 

induce diastolic dysfunction, and cMyBP-C knockout mice show higher myofilament Ca2+ 

sensitivity and lower diastolic sarcomere length with impaired relaxation without Ca2+ 

handling proteins changes or fibrosis.32 Phosphorylation of cMyBP-C by protein kinase A 

accelerates cross-bridge turnover rates, and dephosphorylation of cMyBP-C slows the 

dissociation of actin and myosin.33 Recently, Jeong EM et al reported that oxidative S-

glutathionylation of cMyBP-C correlated with relaxation impairment. The mechanism for 

this diastolic dysfunction is increased myofilament Ca2+ sensitivity.34

Diagnosis of Diastolic Dysfunction

The presence and severity of diastolic dysfunction is commonly evaluated by 

echocardiography using color Doppler and tissue Doppler imaging (Table 1). Alternative 

modalities include strain analysis from cardiac magnetic resonance imaging (CMR) and 

speckle tracking echocardiography (STE). The diagnosis of diastolic HF, a subset of HFpEF, 

requires 3 conditions to be simultaneously satisfi (1) the presence of signs and symptoms of 

HF; (2) the presence of normal or only slightly reduced LVEF (EF >50%) and (3) the 

presence of increased diastolic pressure or impaired filling as indicated by delayed 

isovolumic relaxation or elevated stiffness.

Two-dimensional echocardiography with Doppler flow measurements is commonly used to 

assess diastolic dysfunction.35 Exercise may be required to clearly demonstrate diastolic 

functional changes.36 During diastole, blood flows through the mitral valve when the LV 

relaxes, causing an early diastolic mitral velocity (E), and then additional blood is pumped 

through the valve when the left atrium contracts during late diastole (A). The E/A ratio can 

be altered in diastolic dysfunction. Tissue Doppler imaging is an echocardiographic 

technique that measures the velocity of the mitral annulus. This velocity has been shown to 

be a sensitive marker of early myocardial dysfunction. With abnormal active relaxation, 

mitral annulus velocity during early diastole (e’) is decreased while mitral annulus velocity 

during late diastole (a’) is increased, resulting in a lowered e’/a’ ratio. In animal models, 

tissue Doppler imaging has been validated as a reliable tool for the evaluation of diastolic 

dysfunction.15,35,37 LV inflow propagation velocity (VP) by color M-mode Doppler is 

another relatively preload-insensitive index of LV relaxation.38 It has been shown to 
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correlate well with the time constant of isovolumic relaxation (τ), both in animals and 

humans.35

Recently, STE has emerged as a promising technique for the evaluation of myocardial wall 

motion by strain analysis. By tracking the displacement of speckles during the cardiac cycle, 

STE allows semiautomated delineation of myocardial deformation.

CMR imaging is a newer technique for measuring diastolic dysfunction.39 Myocardial 

tagging allows the labeling of specific myocardial regions. Following these regions during 

diastole enables them to be analyzed in a manner similar to STE. In addition, the rapid 

diastolic untwisting motion followed by CMR tagging is directly related to isovolumic 

relaxation and can be used as an index of the rate and completeness of relaxation.39

Biomarkers may contribute to the diagnosis. B-type natriuretic peptide (BNP) and TnI have 

been used as HF biomarkers and exhibit strong association with hospitalization.40 

Nevertheless, they are nonspecifi and not well correlated with diastolic dysfunction. 

Recently, it has been reported that cMyBP-C could be a new biomarker releases from 

damaged myofilaments.41 Additionally, elevated S-glutathionylated cMyBP-C level can be 

detected in the blood of patients with diastolic dysfunction.42 Hypertension and diabetes 

lead to cardiac oxidation and S-glutathionylation of cMyBP-C, a cardiac contractile protein, 

which leads to impaired relaxation, and modified cMyBP-C in the blood may represent a 

circulating biomarker for diastolic dysfunction.17

Novel Therapeutic Strategies

To date, there are no specific treatments for diastolic dysfunction to selectively enhance 

myocardial relaxation. Moreover, no drug has been developed to improve long-term 

outcomes for diastolic HF.9 Nevertheless, recent trials and new hypotheses about the 

mechanism of diastolic dysfunction suggest possible directions for specific therapies.

Current Treatment for HFpEF

Recent clinical trials using drugs of advantage in systolic dysfunction have failed to 

demonstrate improvement in long-term outcome for diastolic HF, further emphasizing 

differences in the underlying pathophysiology of diastolic dysfunction. Several trials of 

these drugs for HFpEF are summarized in Table 2. Despite abundant evidence of the efficacy 

of reninangiotensin system inhibition in systolic dysfunction, the PEP-CHF trial using 

perindopril showed no overall difference in mortality and or need for HF hospitalization.43 

In the Hong Kong Diastolic Heart Failure study, only diuretics in combination with 

irbesartan or ramipril marginally improved diastolic function and lowered NT-proBNP over 

1 year.44 Angiotensin II receptor blockers show a similar lack of efficacy. The CHARM-

preserved trial, which randomized 3,023 patients between candesartan and placebo, showed 

no beneficial effect in cardiovascular death at 3-year follow-up.45 In the I-PRESERVE trial, 

which randomized 4,128 patients, irbesartan showed no reduction in all-cause mortality or 

hospitalization for a cardiovascular cause at 49.5-month follow-up.46 In OPTIMIZE-HF, 

carvedilol, a β-blocker, did not affect primary or long-term outcomes for HFpEF.47 In the 

SENIORS trial, nebivolol showed limited beneficial effect in the elderly HFpEF group (age 
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>70).48 The CORONA trial used a statin and showed only LV remodeling improvement 

without changes in the primary outcomes.49 Aldosterone antagonists are known to prevent 

the development of cardiac hypertrophy and fibrosis.50 Aldo-DHF, using spironolactone, 

revealed little improvement in LV relaxation and no change in the primary outcome in 

HFpEF patients.51 In the TOPCAT trial, there was no reduction in mortality, aborted cardiac 

arrest or hospitalization for HFpEF patients using spironolactone.52 Furthermore, the 

inotropic agent digoxin showed no significant advantage in HFpEF.53

There is accumulating evidence indicating diastolic dysfunction is associated with oxidative 

stress and the nitric oxide (NO) pathway. Oxidative stress is often associated with reduced 

NO and cGMP levels, leading to vasoconstriction and cardiac stiffness.54 Therefore, it might 

stand to reason that increasing NO-cGMP signaling by phosphodiesterase (PDE)-5 

inhibition would improve diastolic function. Nevertheless, the RELAX trial, which used 

sildenafil to treat NYHA class II/III HFpEF patients showed no significant difference in 

clinical outcomes.55 This suggests that diastolic dysfunction is independent of downstream 

cGMP-dependent signaling, but the result does not clearly rule out the oxidative stress 

hypothesis.

Ranolazine

Ranolazine, an anti-anginal drug with multiple putative mechanisms of action, has shown 

some promise as a treatment for diastolic dysfunction. In an animal model of hypertension-

induced diastolic dysfunction, ranolazine worked directly on myofilaments to correct the 

defect in relaxation.56 Ranolazine is also known to decrease the late Na+ current, which may 

lower internal Na+ and Ca2+ levels in diastole.57 In the randomized clinical trial, RALI-

DHF, acute infusion of ranolazine in HFpEF patients resulted in modest improvements in 

hemodynamics, but no improvement in LV relaxation.58 It is possible that ranolazine may 

have therapeutic efficacy in diastolic dysfunction, even if the mechanism is unclear.

Tetrahydrobiopterin (BH4)

NO synthase (NOS) usually produces NO, which relaxes the heart.59 When the NOS 

cofactor, BH4, becomes oxidized and depleted, NOS begins to produce superoxide, an 

oxidant, rather than NO. This situation is called NOS uncoupling. In hypertension-induced 

diastolic dysfunction, cardiac NOS is uncoupled, BH4 is reduced, and NO is decreased. 

Cardiac oxidation generated diastolic dysfunction independent of changes in the vasculature. 

Supplementation with oral BH4 prevented or reversed the cardiac changes, including the 

diastolic dysfunction.

The cellular level of BH4 also regulates SERCA2A activity.60 HMG-CoA reductase 

inhibitors (statins) or resveratrol increase BH4 availability and improve LV relaxation in 

diabetes61 and in a hyperlipidemia animal model.62 Therefore, increasing BH4 may be a 

promising therapeutic target for diastolic dysfunction. Currently, oral BH4 is used to treat 

atypical phenylketonuria and shows a favorable safety profile.34,63
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Mitochondria-Targeted Antioxidants

Oxidative stress has been implicated in the pathophysiology of cardiac remodeling and 

diastolic dysfunction.16 Mitochondria are a major source of cardiac oxidative stress, 

especially in diabetes, and diabetes is a risk factor for diastolic dysfunction. In preliminary 

data, we have shown that diabetes is associated with cardiac mitochondrial oxidative stress 

and diastolic dysfunction.64 Injecting animals with a mitochondria-targeted antioxidant, 

mitoTEMPO, prevented diabetic-associated diastolic dysfunction.65 Other mitochondria-

targeted antioxidants that have shown beneficial effects in muscle include MitoQ1066 and 

the mitochondria-selective peptide, SS-31.67 Any of these may represent a novel therapeutic 

strategy for diastolic dysfunction.

Summary

The fact that many drugs beneficial in HFrEF are not efficacious in HFpEF, and that systolic 

and diastolic dysfunction can exist in isolation or together, suggests that diastolic 

dysfunction has a fundamentally different pathology to that of systolic dysfunction. Among 

the more promising avenues of ongoing research is the concept that cardiac oxidation can 

lead to diastolic dysfunction (Figure 3). This hypothesis explains why many of the risk 

factors for diastolic dysfunction are associated with increased oxidative stress and why 

cardiac oxidation has been associated with diastolic dysfunction. Also, it explains why select 

antioxidant therapies have shown potential efficacy in preventing or reversing diastolic 

dysfunction. The oxidant theory can also explain why the cardiac or circulating level of S-

glutathionylated cMyBP-C is associated with diastolic dysfunction.

Although it seems likely that more than one hypothesis will be necessary to explain all cases 

of diastolic dysfunction, new insights into the pathogenesis of the disease should lead to 

novel diagnostics and therapies. The latency between dysfunction and symptoms represents 

an ideal time for using these diagnostics and therapies.
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Figure 1. 
Relationship of diastolic dysfunction to HFpEF and HFrEF. Diastolic heart failure is a subset 

of HFpEF, diastolic dysfunction can exist in HFrEF, and many patients with diastolic 

dysfunction are asymptomatic. HFpEF, heart failure with preserved ejection fraction; HFrEF, 

heart failure with reduced ejection fraction.
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Figure 2. 
Major risk factors for diastolic dysfunction, which can lead to asymptomatic or symptomatic 

diastolic dysfunction. HTN, hypertension; LVH, left ventricular hypertrophy.
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Figure 3. 
Selected possible mechanisms of diastolic dysfunction. Hypertension (HTN) and diabetes 

lead to oxidative modification of proteins including cMyBP-C and a decreased myofilament 

relaxation rate. Targeted antioxidants appear to prevent or treat oxidant stress-induced 

diastolic dysfunction in animal models, and circulating modified cMyBP-C may serve as a 

biomarker of disease. Independent of myocyte biology, increased extracellular matrix may 

cause abnormal LV relaxation. BH4, tetrahydrobiopterin; cMyBP-C, cardiac myosin binding 

protein C; CTGF, connective tissue growth factor; MMP, matrix metalloprotease; NOS, 

nitric oxide synthase; ROS, reactive oxygen species; TIMP, tissue inhibitors of MMP; TGF, 

transforming growth factor.
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