
Advances in Cognitive Psychologyresearch Article

http://www.ac-psych.org2016 • volume 12(1) • 20-3820

Fast and Conspicuous? 
Quantifying Salience 
With the Theory 
of Visual Attention 
Alexander Krüger, Jan Tünnermann, and Ingrid Scharlau

Faculty of Arts and Humanities, Paderborn University

salience, visual attention, 

Bayesian inference, theory 

of visual attention, compu-

tational modeling 

Particular differences between an object and its surrounding cause salience, guide attention, and 
improve performance in various tasks. While much research has been dedicated to identifying 
which feature dimensions contribute to salience, much less regard has been paid to the quantita-
tive strength of the salience caused by feature differences. Only a few studies systematically related 
salience effects to a common salience measure, and they are partly outdated in the light of new 
findings on the time course of salience effects. We propose Bundesen’s Theory of Visual Attention 
(TVA) as a theoretical basis for measuring salience and introduce an empirical and modeling ap-
proach to link this theory to data retrieved from temporal-order judgments. With this procedure, 
TVA becomes applicable to a broad range of salience-related stimulus material. Three experiments 
with orientation pop-out displays demonstrate the feasibility of the method. A 4th experiment 
substantiates its applicability to the luminance dimension.

Corresponding author: Alexander Krüger, Faculty of Arts and Humanities, 

Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany. 

Email: alexander.krueger@uni-paderborn.de

Abstract

KeywordS

DOI • 10.5709/acp-0184-1

Introduction

As early as 1890, William James (1890, p.416) described a kind of atten-

tion caused by “an instinctive stimulus, a perception which, by reason 

of its nature rather than its mere force, appeals to one of our normal 

congenital impulses”.

Though over a century old and in an uncommon wording, the 

quote expresses the idea that some objects trigger basic attentional 

mechanisms that all humans share. These mechanisms are feature-

specific instead of being based on sensory strength. This description 

fits the current idea of stimulus-driven or bottom-up attention. For 

both James’ description and the modern perspective, however, there 

remains the question which features attract such attention. Among 

James’ rather uncommon examples are strange things, moving things, 

bright things, and metallic things. From today’s knowledge, we would 

argue that it is not simply the properties, but the context in which the 

object occurs which are of great importance. This relation is captured 

by the term salience (among others) which describes a local feature 

difference that attracts attention. Thus, a bright stimulus among other 

bright stimuli would not attract much attention, and neither would an 

object moving in the same direction and with the same speed as other 

moving objects.

James’ (1890) initial question which features are essential for 

guiding attention has been extensively studied within visual atten-

tion research (for a summary see Wolfe & Horowitz, 2004). However, 

much less research has addressed the strength of salience dimensions 

and their quantitative influence on attention, which is the focus of the 

present article. If you want to be seen, would it be better to be moving, 

or to be bright—or even metallic?

There are several, mostly model-based approaches to answer this 

question.

Early visual processing is based on the receptive fields of neurons 

tuned to particular features (e.g., Hubel & Wiesel, 1959, 1968), which 

are the source of bottom-up influences on perception and attention 
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(for a review see Treue, 2003). The strength of these neurophysiological 

responses depends on the strength of the presented features (Zhang, 

Zhaoping, Zhou, & Fang, 2012). This strength and combinations of 

features of varying strength have predominantly been tackled using 

methods from engineering (e.g., Itti & Koch, 2001b; Zhao & Koch, 

2013). 

Computational modeling approaches allow to simulate retinoto-

pic salience maps for natural input images (for a review see Frintrop, 

Rome, & Christensen, 2010). Different mathematical strategies have 

been explored to compute a salience value for every location in the 

image. Because of the difficulties of solving these problems algorithmi-

cally, machine learning techniques have been employed (Itti & Koch, 

2001b; Zhao & Koch, 2013). Although such approaches may be applied 

in computer vision, it is unclear if they correspond to salience in hu-

man attention. For instance, many computational models such as that 

by Itti and Koch (2001a) predict that a higher luminance contrast at-

tracts more attention. Einhäuser and König (2003) experimentally ma-

nipulated the luminance contrast of images. The participants in their 

study had to carefully study natural and modified natural images. The 

correlation of luminance contrast and fixation probability, however, 

failed to confirm the model prediction.

The neurophysiological salience model by Li (2002) makes quanti-

tative predictions about human performance in salience related tasks. 

Li assumes that the strength of salience is represented implicitly by the 

firing rate of retinotopic neurons in V1 that encode specific features or 

combinations of features. This model accounts qualitatively for a wide 

range of empirical findings like search asymmetries in visual search 

(e.g., Li, 1999). It simulates the neurophysiological processing of the 

visual information by a complex recurrent artificial neuronal network 

(Li, 2001). The firing rate of these artificial neurons can hence be re-

garded as a quantitative prediction. However, the model cannot yet 

account quantitatively for experimental data. 

Another model focusing on salience-related human performance is 

the fourth version of the Guided Search model by Wolfe (2007). In this 

model, salience is handled by a module for the bottom-up guidance of 

attention. This guidance is modeled by individual channels tuned to 

specific features (e.g., steep, shallow, left, and right for orientation). It 

contains a simple mathematical function for the contribution of each 

orientation channel. Salience itself is then computed by pairwise com-

parisons of these values for all visible objects. Wolfe states that the pre-

cise shape of the function that determines the contribution of a channel 

to overall salience is not critical for the qualitative performance of the 

model. This statement makes it questionable whether the model may 

provide good quantitative predictions on this level although it qualita-

tively accounts for a wide range of empirical findings on visual search. 

As Wolfe himself concedes, not all quantitative aspects of human 

behavior in terms of response times and errors can be successfully pre-

dicted. In conclusion, models do not yet provide a general explanation 

of the quantitative strength of salience.

Some attempts to establish a quantitative measure of salience are 

based on the analysis of behavioral data. Among the few studies in 

this line of research are those by Nothdurft (1993, 2000). He asked 

participants to compare the conspicuousness of two singletons that are 

unique elements embedded in a display of homogeneous background 

elements. Each stimulus whose salience was to be measured was pre-

sented with a stimulus that was salient due to a luminance difference. 

To measure the salience of a stimulus, the salience of the reference 

(luminance) stimulus was systematically increased. By this means, 

Nothdurft (2000) related the feature dimensions motion, orientation, 

luminance, and color to each other and also compared combinations 

of features from different dimensions. He quantified salience by relat-

ing a salient stimulus to the luminance difference that would create 

the same salience via approximation of psychometric functions and 

calculating what one might call the point of subjective equal salience. 

This approach comes close to a general and theoretically well-founded 

quantification. Unfortunately, the results are difficult to replicate. 

While we could replicate Nothdurft’s findings using orientation and 

luminance, we also found that many participants showed no regular 

psychometric functions but rather a behaviour strongly influenced by 

guessing (unpublished pilot study). Similar difficulties were reported 

by Koene and Zhaoping (2007).

Starting from this need for a better behavioral method to quantify 

salience, Huang and Pashler (2005) came up with a search task for the 

biggest and brightest square in a display of several objects. The location 

of a small probe on its left or right side had to be reported to verify that 

the target was found. The dependent variable was the response time for 

a correct report. The display was randomly filled with other distractor 

squares. Salience was measured in these trials by introducing a salient 

key distractor. Its salience was quantified by examining the effect of the 

feature differences on response times. Via this quantification, Huang 

and Pashler related luminance and size to each other.

An additional aspect impeding the measurement of salience is its 

time course. Regarding the time course, several different ideas were 

discussed (e.g., Egeth & Yantis, 1997), with two types of temporal 

dynamics being especially important for the study of salience. (1) 

Salience-based progression of attention (e.g., Koch & Ullman, 1985) 

describes the shift of attention from the most salient spot in an image 

to the second most salient spot and so forth. (2) Time course of salience 

describes how the strength of salience effects varies over time. Salience 

effects increase from display onset to 100 or 150 ms (e.g., Couffe, Mizzi, 

& Michael, 2016; Kean & Lambert, 2003) and decay after approximate-

ly 300 ms. Evidence for this time course—which resembles the time 

course of attention (Olivers, 2007)—comes from a variety of different 

paradigms: probe detection (Dombrowe, Olivers, & Donk, 2010; Donk 

& Soesman, 2010), TOJs (Donk & Soesman, 2011), saccadic selec-

tion (Donk & van Zoest, 2008), and saccadic trajectories (van Zoest, 

Donk, & Van der Stigchel, 2012). This research implies that it is crucial 

to measure salience at specific points in time (a condition not met by 

Huang & Pashler, 2005). 

The approaches discussed above consider or measure performance 

as an indicator of attention. They spend less effort on the quantification 

of salience itself. An approach that might provide such a quantification 

is Bundesen’s Theory of Visual Attention (TVA; Bundesen, 1998). It 

comprises a psychologically inspired, general formal explanation of 
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visual attention and selection processes and allows to infer attentional 

weights for specific objects in a display. The attentional weight deter-

mines if an object is encoded in visual short-term memory (VSTM)—

and if so, how quickly it is encoded—that is, its processing speed. These 

parameters can possibly be used as a general quantification of salience 

in the sense that the strength of salience is the attentional weight of 

an object.

Although promising on an abstract level, TVA has only rarely been 

used to investigate salience (e.g., Nordfang, Dyrholm, & Bundesen, 

2013). A possible reason is that in the item-report paradigms com-

monly used with TVA, the potential stimulus material is restricted to 

highly overlearned categories like digits and letters. The experimental 

paradigm requires a categorization because probabilities of stimulus 

categorizations are estimated. Hence, TVA is not directly applicable to 

salience research.

Recently, however, Tünnermann, Petersen, and Scharlau (2015) 

paved the way for such an application. Originally, they investigated 

whether the relatively faster perception of an attended stimulus in a pair 

is caused by speeded processing of this attended stimulus or decelerated 

processing of its unattended counterpart. Along with TVA-based item 

report, participants judged the temporal order (temporal-order judg-

ment; TOJ) in which the stimuli appeared. Tünnermann et al. found 

that the attentional benefit originates from a combination of speeding 

up the attended and slowing down the unattended stimulus. This con-

clusion is based on a conventional TVA analysis. In the Discussion, 

however, they sketched a new approach. They suggested that data from 

TOJ might be directly modeled by TVA to obtain TVA’s attention pa-

rameters. At first sight, this might not seem ground-breaking, but the 

proposed method offers applying TVA-based analysis to any kind of 

stimulus. The aim of the present paper is to test the feasibility of this 

approach.

In a nutshell—details will be explained below in two sections on 

TVA and modeling of TOJ data—the method consists of having ob-

servers judge the temporal order of two arbitrary visual stimuli. The 

interval between the stimuli is varied over trials. Application of TVA to 

the observers’ judgments allows computing of processing speed, atten-

tional weights, and overall attentional processing capacity. By manipu-

lating the features of the stimulus, this method allows us to quantify 

salience in the form of these parameters. This approach can provide a 

theoretically well-founded, general quantification of salience.

The Theory of Visual Attention 
(TVA)
The present section provides a short summary of the relevant parts 

of TVA as a formal theory. Key terms for the modeling as well as the 

experiments are introduced, most importantly attentional weight and 

processing capacity. The section can, however, not provide a full intro-

duction to TVA, for which we refer the interested reader to sources 

such as those by Bundesen (1998) and Bundesen, Habekost, and 

Kyllingsbæk (2005).

TVA was introduced as a unified theory of visual recognition and 

attentional selection. The theory achieves this by mathematically for-

malizing the processes associated with the processing of visual objects 

from presentation towards encoding in VSTM. This processing is de-

scribed as a race for representation in one of the limited slots in VSTM. 

Stimuli race independently and in parallel. The race is influenced by 

many factors. Among them are the total number of elements compet-

ing for representation, the distribution of attention across the stimuli, 

and the categories to which the stimuli potentially belong.

In order to explain the formalization of this process, we proceed 

backwards from the arrival in VSTM to the appearance of the stimuli.

TVA assumes that the arrival times of stimuli in VSTM are expo-

nentially distributed. Although the theory is fleshed out for multiple 

stimuli, the present approach is a simpler case: In the derivation 

proposed by Tünnermann et al. (2015) on the basis of TOJs, only two 

targets are encoded. Thus, the VSTM limitation can be ignored, which 

simplifies formalization. Back to the event of encoding an object to 

VSTM, the probability of an object x to be encoded before time t can 

then be expressed as the probability density function:

						                     (1)

The two cases that are distinguished in the equation emerge from 

the assumption that there is a maximal ineffective exposure duration 

t0. This is the interval—that is still too short to provide enough sensory 

evidence for the race to start at all. If t ≤ t0, there is no chance that 

the processing of x finishes, whereas for t > t0 there is a chance that 

processing has been completed. This probability depends on the expo-

sure duration and the processing rate υx. This rate’s unit corresponds to 

categorizations per second, and it is composed of:

						                     (2)

The equation is based on the idea that different categorizations are 

possible for object x . The set R represents this set of categories and the 

processing rate υ(x,i) with i ∈ R  expressing the speed of the particular 

categorization that x belongs to category i. This i can, for example, refer 

to the property of having a particular color or a certain orientation.

Descending deeper into the formalization, the processing rate is 

defined as:

						                     (3)

This equation introduces three important factors that are η(x,i) , 

the strength of the sensory evidence that x belongs to category i, βi, 

a decision bias for category i, and the relative attentional weight for x 

given by its own weight ωx divided by the weights for all objects in the 

visual field. All objects in the visual field are contained in the set S. The 

weights are defined by the weight equation:

						                     (4)

which again includes the sensory evidence for x as η(x,j) and a new 

variable Πj, which is a selection bias for category j, the pertinence value. 

These are summed over the set of all categories R.

F (t) =






1 − e−vx(t−t0), if t > t0

0, else

vx =
�

i∈R

v(x, i)

v(x, i) = η(x, i)βi
wx�

z∈S wz

wx =
�

j∈R

η(x, j)πj
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The present approach concentrates on the parameters attentional 

weight ω, processing speed υ, and overall processing capacity C. The 

processing speed describes how quickly a representation in VSTM is 

built up. The sum of all the processing speed available is the processing 

capacity. The attentional weight corresponds to the relative advantage 

of a stimulus and expresses how much attention is allocated to this 

object in comparison to the others. (The biases Π and β are both held 

constant in the context of the present experiments and are hence not 

estimated.)

Based on this admittedly swift introduction of the formalization the 

reader may deem TVA too cumbersome for dealing with comparably 

simple salience displays. This formalization, however, offers advantages. 

Firstly, TVA allows precise quantification and provides psychologically 

meaningful parameters, such as processing speed, which can be applied 

to a broad range of perceptual and attentional phenomena. Secondly, 

salience research can be related to other phenomena that have already 

been studied with TVA, such as, for example, feature-difference (bot-

tom-up) and feature-relevance (top-down) interactions (Nordfang et 

al., 2013). Finally, because of its precise quantitative nature, the TVA 

framework can be used for generating quantitative hypotheses.

Modeling TOJ Data by TVA
TVA was initially applied to multi-element displays of highly over-

learned stimuli, such as letters or numbers from which all or several 

belonging to a certain category had to be reported. The stimuli have to 

be masked to derive the assumed performance. Both features—highly 

overlearned and maskable stimuli—have so far restricted the general 

applicability of TVA. As already mentioned, Tünnermann et al. (2015) 

discussed a TOJ model derived from TVA equations which renders 

TVA applicable to all kinds of visual stimuli and also does away with 

the necessity of masking. They did so by introducing a temporal-order 

task and relating the psychometric functions derived from this task 

mathematically to the distributions assumed by TVA. In the follow-

ing section, we will explain briefly how TOJ data can be modeled with 

TVA. For more detail, we refer the reader to the original article.

In the TOJ paradigm, the temporal order of two onsets has to be 

judged. We call these two targets Tprobe and Treference. In the experiments 

presented later, they will have different properties according to the ex-

perimental variable, but at present these names are just used to make 

them distinguishable. They appear with a variable interval between 

them. The dependent variable is the amount of judgments for Tprobe. 

If Tprobe precedes Treference with a large interval, judgments in favor of 

Tprobe will be frequent. If the other stimulus leads, the proportion of 

judgments for Tprobe will be low. If Tprobe and Treference are comparable, 

and the two stimuli are presented simultaneously, the participants’ 

performance should reach chance level.

However, subjective perception can deviate markedly from objec-

tive events. Such judgments can, for example, be systematically influ-

enced by attention. If one of the stimuli is attended-to in advance, this 

stimulus will be perceived earlier. This phenomenon is called prior 

entry (Spence & Parise, 2010). In terms of the judgments, this effect 

becomes evident in an increased proportion of reporting the attended 

stimulus as being perceived first.

TOJ data can be fitted with psychometric functions. Possible 

mathematical descriptions of psychometric functions include the cu-

mulative distribution of the normal distribution, logistic, Weibull, and 

Gumbel functions, of which the former two are most widely employed 

(for more formal descriptions and how to fit these functions see Kuss, 

Jäkel, & Wichmann, 2005; Wichmann & Hill, 2001a, 2001b). These 

functions have at least two parameters, the most important of which 

describe the center of the function and its slope. The center, at which 

both judgments are equally likely, is usually interpreted as the point of 

subjective simultaneity (though see Weiß & Scharlau, 2011). The slope 

is an indicator of discrimination performance. Importantly, it is a mat-

ter of debate which of the functions mentioned above should be used 

because none of them is particularly supported by theory. Hence, also 

the interpretation of the functions and their parameters is limited.

In contrast to psychometric functions, TVA offers parameters 

deeply rooted in psychological theory. As an additional advantage, 

they can also be interpreted readily. For instance, the parameter v cor-

responds to processing speed. Its unit is stimuli processed per second. 

This model carries more information than the point of subjective 

simultaneity and discrimination performance which measure only 

performance, not the processes that drive this performance.

Each data point of a psychometric function is equivalent to the pro-

portion of one event being encoded first. This connection is illustrated 

in Figure 1 for the judgment of a salient and a non-salient stimulus 

(the main conditions in the experiments reported below). Each of the 

points, sampled from the psychometric function, depends on the proc-

ess depicted above the function: According to the TVA-based model, 

each of the two bars represents a race to VSTM. The results of these two 

races are compared which determines the participant’s judgment. Each 

race is influenced by the objective onset and its speed. The process is, 

however, still a stochastic process—that is, these variables do not fully 

determine the outcome.

As proposed by Tünnermann et al. (2015) the chance of onset Tprobe 

being encoded first can be described with the parameters of TVA. It 

can be expressed by three parameters which include υp (the process-

ing speed of Tprobe), υr (the processing speed of Treference), and Δt which 

incorporates the SOA and the maximal ineffective exposure duration 

as Δt = SOA + t0
p − t0

r, where t0
p and t0

r are the maximal ineffective 

exposure durations for the two stimuli. They are assumed to be equal 

in the context of the present experiments.

In terms of these parameters, the probability of Tprobe being encoded 

first can be expressed as:

						                     (5)

where 1 − e−vp|∆t| describes the probability that Tprobe is fully encoded 

before Treference starts the race to VSTM. The probability evp|∆t|  is the 

probability of the event that Tprobe is not encoded before Treference starts 

its race. Then the probability of encoding Tprobe first is given by Luce’s 

Pp(vp, vr, ∆t) = 1 − evp|∆t| + evp|∆t|
�

vp

vp + vr

�

for ∆t < 0
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choice axiom vp

vp+vr
=

� ∞
0 vpe−vpt · e−vrtdt. For Δt ≥ 0 it holds 

that:

	 Pp(vp, vr, ∆t) = evr|∆t|
�

vp

vp + vr

�

for ∆t ≥ 0              (6)

Here, analogously, evr|∆t|  denotes the probability that Treference is 

not encoded before Tprobe starts its race. If this happens, the probability 

of Tprobe being encoded first is given by Luce’s choice axiom.

To estimate the TVA parameters introduced in this section, a 

suitable statistical modeling is needed. We use Bayesian statistics for 

modeling and data analysis because Bayesian methods are particularly 

well-suited for inference under an assumed model (Little, 2006). We 

implemented a generative model based on the mathematical descrip-

tion of TVA, visualized in the hierarchical graphical Bayesian model of 

Figure 2. Table 1 shows how the variables (nodes) are formally defined. 

The graphical model describes the relation between the raw data and 

the TVA parameters on the group level. As an intermediate step, the 

TVA parameters are estimated per participant. The graphical model 

depicted in Figure 2 belongs to one group or condition in an experi-

ment. Each further condition is modeled analogously. If there are at 

least two groups, their group parameters represented at the very top 

can be compared. On the group level, the mean of attentional weight 

is represented by node ωsp m. Because of technical reasons the variance 

of the estimated attentional weight is represented as a separate variable 

node ωsp τ. Similarly, the capacity mean and variance are represented 

by the upper two C nodes. Additionally, we can infer the group-level 

processing speed for both targets as represented by the upper υ nodes. 

However, they do not provide additional information because they 

depend on the weight and capacity, as indicated by the direction of the 

arrows. For further information on the exact nature of the Bayesian 

parameter estimation process, please refer to Appendix A.

The following four experiments test the viability of the proposed 

method in salience research. To this end, we combined TOJs with 

salience displays. In Experiment 1, the order of stimulus onsets had 

to be judged. This experiment was most similar to common TOJ 

experiments. In Experiment 2, stimulus offsets were judged, and the 

stimuli of Experiment 3 flickered for a short duration. We investigated 

whether salience increased processing speed and attentional weights. 

Finally, Experiment 4 was conducted to show the applicability to the 

luminance dimension as well as the sensitivity of the method.

Figure 1.

Cognitive model. The bars in the upper part represent the 
races to VSTM. Formally, these races depend on the process-
ing rates. The rates υsp and υsr from the salience condition of 
the experiments are shown exemplarily. The proportion of 
“salient first” judgments depends on the comparison of both 
races. SOA = Stimulus Onset Asynchrony.

nsj,i

ysj,i

θsj,i

vspj vsrj

wspj wsrj Csj

Cs mCs τ
wsp m wsp τ vsp vsr

i SOAs
j participants

Figure 2.

Hierarchical Bayesian graphical model of the data of the sa-
lience condition. The salience condition is indicated by the 
index s . The same model applies for the neutral condition n. 
The group level, the variables in the highest layer, estimate 
TVA parameters for a particular condition. This layer was com-
pared to the neutral condition (see Table 1). SOA = Stimulus 
Onset Asynchrony. 

Variable Explanation

Attentinal weight (probe)

Attentinal weight (reference)

Processing rate (probe)

Processing rate (reference)

Processing capacity

Participant processing rate (probe)

Participant processing rate (reference)

Probability of “Probe first”

Count “Probe first” response

Table 1. 

Variables of the Hierarchical Bayesian Graphical Model 

(See Figure 2)

wnpj
∼ Normal(wnp m, wnp τ )

wnrj = 1 − wnpj

vnp = mean(vnpj ) j ∈ participants

vnr = mean(vnrj ) j ∈ participants

Cnj ∼ Normal(Cn m, Cn τ )

vnpj = Cnj · wnpj

vnrj = Cnj · wnrj

θsj,i ← PA(vnp, vnr, SOA)

ynj,i = Binomial(θnj,i , nsj,i)
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Method

Participants
A total of 20 students at Leuphana University of Lüneburg (5 

male and 15 female; Mage = 23.9 years, range 20–33) participated in 

Experiment 1. Seven participants took part in an additional session 

and one participant in three sessions. Within Bayes methodology, such 

variation can be taken into account in the parameter estimation for the 

individual participants which improves precision. The higher precision 

on the individual level also affects the parameter estimation on the 

group level. All participants reported normal or corrected-to-normal 

visual acuity and received a payment of 8 Euro per hour.

Apparatus
The experiment was conducted in a dimly lit experimental booth.

A Windows 7 computer with a dedicated graphic card and an 

Iiyama Vision Master Pro512 22 inches (40.4 cm  × 30.3 cm) CRT 

monitor was used for stimulus presentation. The refresh rate was set 

to 100 Hz, the resolution to 1,024 × 768 pixels with 32-bit colors. The 

vsync signal was used for timing the experiment. The experiment was 

programmed using PsychoPy (Peirce, 2007). The distance to the screen 

was 50 cm. Participants responded with the hand corresponding to the 

location that had to be reported. The control key on the bottom left 

and the enter key on the bottom right corner of the keyboard were 

used for responses.

Stimuli
Each trial started with a fixation cross in the center of the screen. 

After a delay of 900 ms, the participants saw a 17 × 17 array of bars. 

The array corresponded to 34.99° × 34.99° of visual angle. Bar length 

was 1.07° of visual angle and width 0.18°. The fixation cross occupied 

the middle of the array. The background color of the screen was set to 

gray, RGB (96, 96, 96) equivalent to 6.98 cd/m2 , while bars and fixation 

cross were white, RGB (224, 224, 224) equivalent to 66.2 cd/m2 . Each 

Experiment 1

Experiment 1 is based on the hypothesis that the onset of an orienta-

tion singleton achieves an increased attentional weight and is hence 

encoded to VSTM more quickly. It was carried out as a proof of con-

cept to show that TVA can be successfully applied to salience research 

via the general TOJ method outlined by Tünnermann et al. (2015). To 

this end, it had to meet the requirements of both salience studies and 

TOJ research, requiring us to combine multi-element displays from 

salience research with temporally distributed targets in the most direct 

way possible.

The participants judged the temporal order in which two targets 

appeared in a display of 17 × 17 bars. A center section of these displays 

is exemplarily shown in Figure 3. The salience display consisting of ho-

mogeneous background stimuli was shown first. The targets appeared 

later. One of the targets could differ in orientation whereas the other 

one was always non-salient—that is, of the same orientation as the 

background elements.

This combination of multi-element displays and stimulus on-

sets is the direct way of checking the applicability of the method. 

Unfortunately, however, it is questionable whether target onsets allow 

salience effects to show up. Firstly, the blanks at the locations of the 

future targets may act as salient stimuli because they violate the back-

ground pattern (Li, 2002). Secondly, results on the temporal course of 

salience suggest that salience is used to gradually distribute attention 

over the display (Dombrowe et al., 2010): After a 30 ms delay, the sali-

ence effect is very small in comparison to its peak at 120 ms. Salience 

information thus might not be available initially. Finally, the onset in-

formation may be so strong that it masks any effects of salience. Because 

the present experiment serves as a proof of concept, this is no severe 

disadvantage. If the methodology works as expected, we will be able 

to precisely describe the reported temporal order with the help of the 

proposed model independent of whether an effect of salience is present 

on the group level. Following this proof of concept, Experiments 2 and 

3 will look into effects of salience themselves.

Figure 3.

Visualization of the stimulus sequence of Experiment 1 to 4. Stimuli are identical to those of the experiments, but displays 
have been scaled for visibility. The salience display was shown 150 ms before the probe event. The event to be judged was 
the onset (Experiment 1), offset (Experiment 2), or flicker (Experiment 3 and 4; depicted as white coronae). Only the salience 
conditions are shown. These conditions comprise a salient probe stimulus. The neutral conditions of the experiments featured 
a non-salient probe stimulus equal to the reference stimulus. These conditions are not depicted. The arrow depicts the flow of 
time. SOA = Stimulus Onset Asynchrony.
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bar stimulus belonged to one of three logical categories which were not 

necessarily visually distinguishable. These categories are background 

elements, target Treference and target Tprobe. While the background ele-

ments and Treference were always homogeneously oriented, the orienta-

tion of Tprobe varied between a 0° difference to the background in the 

neutral condition and the maximal orientation contrast of 90° in the 

salience condition. The orientation of the non-salient elements was 

chosen randomly for each trial. The targets were presented at fixed 

positions on the left and right of the fixation cross with an eccentricity 

of 8.24° of visual angle. Both positions were empty when the array was 

initially presented. Tprobe was always presented 150 ms after the onset 

of the array of background elements. This duration was not jittered 

because salience effects decay over time as reported by, for example, 

Donk and van Zoest (2008), and the TOJ required a temporal window 

of -100 ms to +100 ms around this value. Treference was shown with an 

SOA of -100, -80, -60, -40, -20, 0, 20, 40, 60, 80 and 1 ms, respectively. 

After a display duration of 300 ms, all bars vanished. The number of 

trials varied with the SOA because the variance is expected to increase 

towards the 0 SOA. Twenty-four trials were present for each of the 

-100, -80, 80, and 100 ms SOA, 32 trials for the -60, -40, 40 and 60 ms 

SOA, and 48 trials for the -20, 0, and 20 ms SOA. The participants had 

to respond via a keystroke with either the left ctrl or the right enter 

key. The side at which Tprobe appeared was chosen randomly. The next 

trial started automatically with a delay of 1 s with a 100 ms jitter.

Procedure
Participants were instructed to fixate the cross in the center of the 

screen throughout each trial. Their task was to report which element 

occurred first, the left or the right one, and press the left or right key, 

respectively. There was no time pressure. The experiment started with 

a training phase of 40 trials that included feedback about errors. There 

was no feedback after the training. After 50 trials each, a break was 

initiated which was ended by a keypress. The experiment lasted ap-

proximately 45 min.

Results
The judgments whether the left or right stimulus appeared first were 

converted into the judgment whether Tprobe appeared first. Remember 

that Tprobe is the stimulus that stands out from its surroundings in the 

salience condition.

As can be seen in Figure 4, the participants generated typical sig-

moid TOJ data. All individual data showed this pattern which allowed 

us to apply the model (see the section “Modeling TOJ data by TVA” 

for details).

Bayesian statistics yields a full probability distribution of the model 

parameters, a point estimate of the parameter, which is provided by the 

mode of the respective distribution, and an easily interpretable measure 

of the certainty with which the parameter was estimated. Broad prob-

ability distributions correspond to vague estimates. This information is 

expressed by the highest density interval (HDI) of the distribution, the 

interval on the x-axis in which 95% of the likely parameters lie.

The most interesting variables in the hierarchical Bayesian graphi-

cal model are on the group level because they allow us to compare the 

difference between the salience and neutral condition. The relation be-

tween the weight for Tprobe in the salience condition ωsp and its counter-

part in the neutral condition ωnp shows if salience has an influence on 

attention parameters (see Figure 5). The parameter distribution for the 

weights are depicted in Figure 5. The parameter estimations show that 

wsp = .507 and ωnp = .516 differ only slightly. Interestingly, the value .5 

is not among the 95% of the most probable parameters for ωnp—that is, 

attention is not distributed equally across the two targets in the neutral 

condition. Because all elements were equally salient in this condition, 

visual properties cannot be the cause of the higher attentional weight 

for Tprobe. The temporal properties, however, offer an explanation: Tprobe 

was always shown 150 ms after display onset. This fixed interval made 

it predictable. In order to measure the effect of salience unbiased by 

that of temporal expectation, we subtracted the deviation from the 

expected neutral weight .5 in the ωnp parameter from the ωsp param-

SOA (ms)
Figure 4.

Plot of raw data (mean of judgment frequency per SOA over 
all participants) and posterior predictive for the salient and 
neutral condition of Experiment 1. This plot shows predicted 
data based on the estimated parameters. SOA = Stimulus On-
set Asynchrony.
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Figure 5.

Estimated attentional weights (ω) for the probe stimuli of Ex-
periment 1, salience condition (ωsp = weight for the salient 
probe) in blue and neutral (ωnp = weight for the neutral probe) 
in red. The weights for the reference stimuli are 1 minus the 
weight of the respective probe.
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eter. The corrected weight is ωsp clean = .493. The correction shifts the 

weight of the salience condition ωsp in the opposite of the expected 

direction, which would be an increased weight for the salient stimulus. 

As explained earlier, the effect is small and hence again, ωnp and ωsp clean 

differed only slightly.

The processing rates for the stimuli are very similar. All are in the 

range of 23.3 Hz to 24.9 Hz. This result is to be expected when both 

weights and capacities are similar (see Figure 6).

The processing capacity was similar in both conditions with Cs  = 

49.4 Hz and Cn = 48.1 Hz (see Figure 7). The distribution of its differ-

ence is centered on 0. Hence a difference is very unlikely. Importantly, 

this allows one to compare the attentional weights across conditions 

because it can be assumed that the same process distributes the same 

resources differently in the two conditions.

The posterior predictive (Figure 4) serves two purposes: It is a plau-

sibility check of the model and compresses the evidence for the param-

eters in a prediction for new data. Because the parameters are given as 

distributions, the certainty of the predicted data can be indicated by the 

color gradient in the figure. For the current experiment, the conditions 

are strongly overlapping—that is, salience does not affect processing 

speed or attentional weights, and consequently the judgments are simi-

lar in both conditions.

Discussion
Staying close in design to the well-established TOJ paradigm while us-

ing multi-stimulus displays yielded plausible data that resembled psy-

chometric functions. The TVA-based model was successfully applied 

to model the data. It was possible to estimate parameter distributions 

for individual participants as well as on the group level. These rates 

are comparable to what has been found in earlier TVA studies (e.g., 

Finke et al., 2005). In sum, this allows us to use TOJs on multi-element 

displays in order to compute TVA-based attentional parameters.

Although one stimulus was clearly salient due to its 90° orienta-

tion difference, this salience did not increase its attentional weight nor 

its processing rate in comparison to its counterpart from the neutral 

condition. Salience thus had no influence on the distribution of atten-

tion as measured by TVA parameters. This result cannot be attributed 

to a lack of sensitivity: The fact that the neutral weight (.5) was located 

outside of the HDI for the neutral condition (likely due to the fixed 

time of the Tprobe onset) indicates the sensitivity of the approach. That 

is, if present, even small differences between attentional parameters of    

Treference and Tprobe should have been detected.

The absence of a salience effect on attentional parameters might 

be explained by the lack of a delay between the property which is sup-

posed to guide attention (the local contrast) and the events which are 

relevant for the TOJ—that is, the onsets. TVA assumes that the sensory 

evidence for onset and local contrast is available equally fast. In the 

V1-salience model by Li (2002), however, it is assumed that salience 

is computed by pyramidal cells and interneurons that interact locally 

and reciprocally in their layer. The onset, however, can be processed 

by a simple feed-forward network (VanRullen & Koch, 2003). If the 

sensory evidence for salience is indeed not available fast enough, this 

would explain why the attentional weights are unaffected by salience. 

This explanation also fits the results of Dombrowe et al. (2010) on the 

time course of salience.

The following experiments changed the temporal feature of the 

targets. The events to be judged are target offsets in Experiment 2 and 

brief flickers in Experiment 3.
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Figure 6.

Estimated processing rates (υ) for Experiment 1. The process-
ing rates of the salience condition (υsp = processing rate for 
the salient probe; υsr = processing rate for the reference in 
the salient probe displays) are shown in blue, those of the 
neutral condition (υnp = processing rate for the neutral probe; 
υnr = processing rate for the reference in the neutral probe 
displays) in red. The darker distributions belong to the probe 
stimulus and the lighter distributions belong to the reference 
stimulus.
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Figure 7.

Estimated processing capacities (C) for Experiment 1 in the 
salience condition (Cs = capacity for salient stimulus) in blue 
and the neutral condition (Cn = capacity for neutral stimulus) 
in red. The difference of 0 is in the highest density interval 
(HDI) if both distributions are subtracted, which indicates 
that the overall processing capacity was similar in both con-
ditions.

http://www.ac-psych.org


Advances in Cognitive Psychologyresearch Article

http://www.ac-psych.org2016 • volume 12(1) • 20-3828

Experiment 2

In Experiment 2, the onsets used in Experiment 1 were replaced with 

offsets. Offsets are susceptible to attentional effects (Vingilis-Jaremko, 

Ferber, & Pratt, 2008). We hypothesized that the presence of the 

salience-generating property prior to the event (offset) should cue the 

event and hence lead to a higher attentional weight. Again, this should 

lead to a quicker encoding into VSTM. The offset at the potentially sali-

ent position occurred 150 ms after the onset of the display. As shown 

by Donk and Soesman (2010), effects of orientation salience should be 

present in this time range.

Method

Participants
A total of 20 participants (9 male and 11 female; Mage = 22.6, range 

19–47), including the authors, participated in Experiment 2. All of 

them were students or members of Leuphana University of Lüneburg 

or Paderborn University. Each participant reported normal or correct-

ed-to-normal visual acuity and completed one session. All participants 

except for the authors received a payment of 8 Euro per hour.

Apparatus
The apparatus was the same as in Experiment 1.

Stimuli
The same stimuli as in Experiment 1 were used. Because this time 

the temporal order of offsets had to be judged, all elements (background 

elements, Treference and Tprobe) were shown after the initial presentation of 

the fixation cross. The offsets of the two targets occurred with the same 

timing as the onsets in Experiment 1.

Procedure
The procedure was the same as in Experiment 1 except that partici-

pants were instructed to judge which element disappeared first. This is 

depicted in Figure 3.

Results
Similar to Experiment 1, the data resembled psychometric functions. 

Hence, it was possible to apply the model and estimate the parameters. 

A summary of the raw data is given in Figure 8. 

The attentional weights on the group level are, again, most informa-

tive about whether attention was deployed unequally. In contrast to 

Experiment 1, the attentional weight for the probe in the salience con-

dition, ωsp clean = .393, clearly differed from the equal weight distribution, 

as shown in Figure 9. As in Experiment 1, the attentional weight ωnp = 

.526 in the neutral condition deviated from the balanced value of.5. We 

suppose this deviation to be a consequence of the timing which differed 

for probe and reference stimulus. The weight in the salience condition 

was again corrected (uncorrected ωsp = .423), such that the small shift 

in weight likely due to timing does not affect the measurement of sali-

ence. The processing rate for the salient υsp = 23.4 Hz was lower than 

the processing speed for the neutral condition υnp = 31.6 Hz (see Figure 

10 for their distributions). The processing capacity, as shown in Figure 

11, was constant over the conditions which allowed the comparison of 

weights across conditions. The comparison of the judgment data and 

the posterior predictive in Figure 8 shows that the model is able to fit 

the data and provides a reasonable description for them.

Discussion
Replacing the onset from Experiment 1 with the offset led to a distinct 

and measurable salience effect. The attentional weights shifted away 

from the salient to the non-salient stimulus. Contrary to theory, the sa-

SOA (ms)
Figure 8.

Plot of raw data (mean of judgment frequency per SOA over 
all participants) and posterior predictive for the salient and 
neutral condition of Experiment 2. This plot shows predicted 
data based on the estimated parameters. SOA = Stimulus On-
set Asynchrony.
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Figure 9.

Estimated attentional weights (ω) for the probe stimuli of Ex-
periment 2, salience condition (ωsp = weight for the salient 
probe) in blue and neutral (ωnp = weight for the neutral probe) 
in red. The weights for the reference stimuli are 1 minus the 
weight of the respective probe.
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lient stimulus received less attentional weight and hence was processed 

slower than the non-salient target which in turn means that the offset 

of the salient target raced slower to VSTM.

This finding is not in line with the results by Vingilis-Jaremko et 

al. (2008), which originally motivated the use of offset events. Other 

findings on time perception and from designs based on response time, 

however, are better compatible with the results of Experiment 2. For ex-

ample, New and Scholl (2009) reported that the subjective duration of 

an attended stimulus is longer than the duration of an unattended one 

which contributes to a delayed perceived offset of the attended stimu-

lus. Similarly, Rolke, Ulrich, and Bausenhart (2006) showed that the 

response to a cued offset takes longer than the response to an uncued 

offset. They conclude that attention delays the perceived stimulus offset. 

Furthermore, the absence of a stimulus can be salient if it violates the 

local pattern (Li, 2002). Replacing the stimuli with gaps might hence 

have caused an unwanted manipulation of salience. Although we can-

not offer a full explanation yet, it is likely that the unexpected direction 

of the effect caused by salience is due to the offset event. This event does 

not only probe salience but also manipulates it. Independent from this 

unexpected finding, Experiment 2 however substantiated the validity 

of the method proposed in the present paper. The TVA-based analysis 

was applicable to the data and yielded interpretable parameters.

Experiment 3 makes a final attempt at disclosing effects of salience 

with this method by keeping the salience display as constant as pos-

sible.

Experiment 3

Although a salience effect was measured successfully in Experiment 

2, its direction was unexpected. We hypothesized that the offset event 

was responsible for this because it changed the salience display perma-

nently. Therefore, a short flicker was used in Experiment 3. The flicker 

prevents a permanent change of the salience display. Again, salience 

is supposed to increase the attentional weight and thus speed up the 

processing of the probe stimulus. 

Method

Participants
A total of 19 persons (2 male and 17 female; Mage = 22.0, range 

19–28) participated in Experiment 3. All of them were students at 

Leuphana University of Lüneburg. Each participant completed one 

session, reported normal or corrected-to-normal visual acuity and 

again received a payment of 8 Euro per hour.

Apparatus
The apparatus was the same as in Experiment 1.

Stimuli
The same stimuli as in Experiment 1 were used. To avoid the effects 

of both onset and offset, the targets flickered. The flicker was realized 

by removing each target for 80 ms. The timing was otherwise similar 

to Experiments 1 and 2.
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Figure 10.

Estimated processing rates (υ) for Experiment 2. The process-
ing rates of the salience condition (υsp = processing rate for 
salient probe; υsr = processing rate for reference in salience 
displays) are shown in blue, those of the neutral condition 
(υnp = processing rate for neutral probe; υnr = processing rate 
for reference in neutral displays) in red. The darker distribu-
tions belong to the probe stimulus and the lighter distribu-
tions belong to the reference stimulus.

0.00

0.02

0.04

0.06

0.00

0.02

0.04

0.06

C
s

C
n

40 50 60 70 80
processing capacity (Hz)

de
ns

ity

Figure 11.

Estimated processing capacities (C) for Experiment 2 in the 
salience condition (Cs, in blue) and the neutral condition (Cn, 
in red). The difference of 0 is in the highest density interval 
(HDI) if both distributions are subtracted, which indicates 
that the overall processing capacity was similar in both con-
ditions.
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Procedure 
The procedure was the same as in Experiment 1 except that the 

participants were instructed to judge whether the first flicker was on 

the left or the right of the fixation cross. This procedure is depicted in 

Figure 3.

Results
As in the previous experiments, it was possible to apply the model to 

the TOJ data and to derive the parameters. For illustration, the aver-

aged responses per SOA are given in Figure 12. 

As already suggested by the different trends in the figure, the at-

tentional weights show a clear and distinct advantage for the salient 

Tprobe which is ωsp clean = .643 in comparison to the non-salient target 

ωnp = .518. We again found a small attentional effect due to the fixed in-

terval between onset of the display and the event occurring at the Tprobe  

stimulus and corrected for it as explained in the results of Experiment 1 

(uncorrected ωsp = .658). The estimated weight distributions are shown 

in Figure 13. 

This result also means that processing speed changed: The salient 

element is processed faster υsp = 27.5 Hz than its non-salient coun-

terpart from the neutral condition υnp = 20.6 Hz while the reference 

stimulus from the salience condition is processed slower υsr = 13.2 Hz 

than its counterpart υnr = 18.09 Hz. All estimated rate parameters are 

shown in Figure 14. The rates can be interpreted as a shift of resources 

from the non-salient reference stimulus to the salient probe stimulus 

in the salience condition.

The overall processing capacity, again, was the same in both con-

ditions as shown in Figure 15. Hence, weights are interpretable as a 

redistribution of the same resources.

Also and as the final result of modeling, the posterior predictive 

shows a distinct shift between the salient and neutral condition as de-

picted in Figure 12. The two conditions show almost no overlap. This 

shift indicates that the salient Tprobe is perceived earlier, in perfect accord 

with the parameters and summary of the raw data discussed above.

Discussion
Experiment 3 yielded a salience effect that increased the attentional 

weight on the salient stimulus and hence its processing speed. This is 

in line with both the salience and TVA literature and shows that TVA 

can be used to quantify the effects of salience on processing. This quan-

tification happens in terms of the individual processing speed and the 

attentional weight. The attentional weight describes the allocation of at-

tention across all relevant stimuli and has the advantages of measuring 

the salience in relation to the other stimulus in the display. Attentional 

weights are directly comparable if overall capacity is the same. The 

processing speed is a second possible measure of salience. Though 

attentional weight is theoretically more sound, processing speed is 

directly comparable even if the capacity does not stay the same. 

With a value of ωsp clean = .642, the shift from the neutral weight of  

.5 is very clear. Note that the TOJ method is rather conservative in this 

respect because both targets have to be encoded. This makes extreme 

values for the attentional weight close to 0 or 1 very unlikely. 

To the best of our knowledge, this is the first study in which TOJs 

manipulated by salience were sufficiently sampled to show the full 

psychometric function and the occurrence of systematic shifts in the 

report probability. The occurrence of this shift was already assumed 

by Donk and Soesman (2011). Because only one-half of the suspected 

psychometric function was sampled in their experiment, the actual 

function was not derivable. Both the data presented in Figure 12 and 

the posterior predictive show the expected shift in the function which 

speeded processing of a flickering salient element compared to a flick-

ering non-salient element. This experiment shows that salience can 

lead to prior entry as already reasoned by Donk and Soesman.

SOA (ms)

Figure 12.

Plot of raw data (mean of judgment frequency per SOA over 
all participants) and posterior predictive for the salient and 
neutral condition of Experiment 3. This plot shows predicted 
data based on the estimated parameters. SOA = Stimulus On-
set Asynchrony.
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Figure 13.

Estimated attentional weights (ω) for the probe stimuli of Ex-
periment 3, salience condition (ωsp) in blue and neutral con-
dition (ωnp) in red. The weights for the reference stimuli are 1 
minus the weight of the respective probe.
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The size of the change in attentional weights (as inferred from the 

HDI and the posterior predictive) indicates that the proposed method 

will be appropriate to prove effects of different size, including small 

effects: There is nearly no overlap between the expected psychometric 

functions for the salient and neutral condition. This means that smaller 

shifts will also be detectable, as, for instance, can be expected when 

smaller local differences would be used. The small but reliable effect of 

fixed time of the Tprobe shows that the method is sensitive enough for 

small effects.

The arguments why to prefer the TVA model over the classical 

analysis by psychometric functions are theoretical ones, as explained 

in the Introduction. We, however, also conducted a conventional 

analysis of psychometric functions which the interested reader finds 

in the Appendix. It is in accord with the present results but provides 

less information.

Experiment 4

Experiment 3 showed the feasibility of the proposed method. 

Experiment 4 was designed as a test of the generality of our approach. 

We furthermore analyzed feature differences smaller than the admit-

tedly large difference between 0° and 90° in Experiments 1 to 3. To this 

end, we used a high-salience condition and a low-salience condition, 

operationalized by stimulus luminance.

Method

Participants
A total of 30 persons (14 male and 16 female; Mage = 25.7, range 

19–48), including all authors, participated in Experiment 4. All were 

students or members of Paderborn University. Each participant com-

pleted one session, reported normal or corrected-to-normal visual 

acuity and again received a payment of 8 Euro per hour (except for 

the authors).

Apparatus
The apparatus was the same as in Experiment 1.

Stimuli
The same stimuli as in Experiment 1 were used, except that sali-

ence was manipulated in the luminance dimension. In the low-salience 

condition, a dark gray probe with RGB (80, 80, 80) (4.03 cd/m2) was 

used. In the high-salience condition, the probe was black RGB (0, 0, 0) 

(0.31 cd/m2). To keep the experiment as short as possible, the neutral 

condition without a salient probe was omitted. We did this because 

Experiment 3 already showed what can be theoretically assumed: This 

condition yields a weight of .5 for the target—that is, attention is dis-

tributed equally between the two visually equal targets. 

Procedure
The procedure was the same as in Experiment 3.

Results
Again, the raw data were typical TOJ data (see Figure 16). The atten-

tional weight for the probe in the high-salience condition ωhp = .582 

was higher than in the low-salience condition ωlp = .539, which implies 

a difference of .043 in attentional weight. The parameter distributions 

are shown in Figure 17.

Figure 18 depicts the processing rates. This figure shows that the 

difference between the high- and low-salience condition lies mainly 
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Figure 14.

Estimated processing rates (υ) for Experiment 3. The process-
ing rates of the salience condition (υsp = rate for the salient 
probe; υsr = rate for the reference in the salient display) are 
shown in blue, those of the neutral condition (υnp = rate for 
the neutral probe; υnr = rate for the reference in the neutral 
probe display) in red. The darker distributions belong to the 
probe stimulus and the lighter distributions belong to the 
reference stimulus.
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Figure 15.

Estimated processing capacities (C) for Experiment 3 in the 
salience condition (Cs; blue) and the neutral condition (Cn; 
red). The difference of 0 is in the highest density interval (HDI) 
if both distributions are subtracted, which indicates that the 
overall processing capacity was similar in both conditions.
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in the processing of the non-salient reference stimulus: High- and 

low-salience probes were processed nearly equally fast with a rate of 

υhp = 18.7 and υlp = 18.3. The processing speed of the reference stimu-

lus, however, varied strongly with condition, with a rate of υhr = 13.3 in 

the high-salience and one of υlr = 17.1 in the low-salience condition. 

This is important for the theoretical explanation (see below).

The overall processing capacity was very similar with Ch = 32.2 for 

the high-salience condition and Cl = 35.1 for the low-salience condi-

tion, as depicted in Figure 19.

The posterior predictive, presented in Figure 16, shows an asym-

metrical distribution. This accords to the processing speeds shown in 

Figure 18: The processing of the reference targets is affected more than 

the processing of the probes.

SOA (ms)
Figure 16.

Plot of raw data (mean of judgment frequency per SOA over 
all participants) and posterior predictive for the high-salience 
and low-salience condition of Experiment 4. This plot shows 
predicted data based on the estimated parameters. SOA = 
Stimulus Onset Asynchrony.
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Figure 17.

Estimated attentional weights (ω) for the probe stimuli of 
Experiment 4, high-salience condition (ωhp) in blue and low-
salience condition (ωlp) in red. The weights for the reference 
stimuli are 1 minus the weight of the respective probe.
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Figure 18.

Estimated processing rates (υ) for Experiment 4. The process-
ing rates of the high-salience condition (υhp = rate for the 
highly salient probe; υhr = rate for the reference in the high-
salient probe displays) are shown in blue, those of the low-
salience condition (υlp = rate for the lowly salient probe; υlr = 
rate for the reference in the low-salient probe displays) in red. 
The darker distributions belong to the probe stimulus and 
the lighter distributions belong to the reference stimulus.
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Figure 19.

Estimated processing capacities (C) for Experiment 4 in the 
high-salience condition (Ch; blue) and the low-salience con-
dition (Cl; red). The difference of 0 is in the highest density 
interval (HDI) if both distributions are subtracted, which indi-
cates that the overall processing capacity was similar in both 
conditions.
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Discussion
Experiment 4 expanded the scope of the present method to the lu-

minance dimension and tested two quantitative levels of salience. As 

expected, both singletons received increased attentional weight, and 

this increase scaled with their salience: The highly salient probe re-

ceived more attentional weight than the less salient probe. Thus, this 

fourth experiment shows that the proposed method is applicable to 

features other than orientation, which is a promising result for further 

generalization. Furthermore, Experiment 4 indicated that quantitative 

differences in salience lead to quantitative differences in attentional 

weights. This result promises to enlarge the scope of our method to a 

general quantitative model of salience. Note, however, that this differ-

ence seems to be caused by slower processing of the reference stimuli. 

Faster processing of the highly salient compared to the less salient 

probe contributed only slightly to this difference.

General Discussion

The Theory of Visual Attention (TVA) can serve as a foundation for 

quantifying visual salience. We showed this by conducting four experi-

ments. All experiments substantiate the soundness of the model, which 

combines TOJs and TVA.

Experiment 1 demonstrated the applicability of the suggested 

method in general. This was achieved by combining salience displays 

and TOJs. Experiment 2 tested the effects of salience on attentional 

weights and processing speed. Although in principle successful—the 

experiment indeed measured effects on weight and speed—it was not 

entirely satisfying because attentional weights favored the non-salient 

stimulus, which was processed faster than the salient one.

As we reasoned that the offsets we used in Experiment 2 might not 

have been optimal because they caused (possibly) salient gaps in the 

bar array, we replicated the experiment with flickering stimuli. This 

experiment showed the full relevant data pattern: The salient stimulus 

received more attentional weight and was processed faster than the 

non-salient one. Attention was withdrawn from the non-salient stimu-

lus and redistributed to the salient one.

In Experiment 4, we applied the flicker procedure to the lumi-

nance dimension in order to demonstrate its applicability to other 

stimulus dimensions as well as its sensitivity and its usefulness for a 

quantification of salience effects. All aims were successfully reached by 

Experiment 4: Salient stimuli drew attention towards themselves, and 

there was a difference in weights and processing speeds between highly 

and less salient stimuli.

Beyond comparison of individual model parameters, both experi-

ments have shown that salience redistributes resources according to 

feature differences. Attention which is dedicated to the salient stimulus 

is withdrawn from the reference stimulus. Importantly, this relation is 

not predefined by the TVA model. Because the processing rate of each 

stimulus is modeled as an independent process, it is possible that only 

the salient stimulus gains while the speed of the race stays constant for 

the reference stimulus. (Such a rate increase would result in a capacity 

difference between conditions.) Although we focused on a measure of 

salience, this may be understood as evidence for parallel processing 

rather than a guided serial processing as in the Guided Search models 

by Wolfe (e.g., 1994, 2007) that predict an increase of attention for sali-

ent stimuli.

Independent of the salience-related results, the proposed method 

of combining salience displays with TOJs and TVA parametrization 

was successful in all four experiments: All yielded psychometric func-

tions as well as plausible parameters including the attentional weights 

and processing speeds of the two targets as well as the overall process-

ing capacity.

To sum up, the combined TVA/TOJ method proposed in the present 

paper seems a promising tool. Further studies could test and model 

the quantitative relationship between salience values and attentional 

weights in more detail, for instance, by employing several levels of sali-

ence instead of only two. Also, different salience dimensions could be 

compared directly via attentional weights, relating the salience of, say, 

a colored singleton to an orientation or luminance singleton. This is, 

however, beyond the scope of the present article.

We propose the presented procedure to measure the strength of 

salience because this strength can be quantitatively expressed in a theo-

retically meaningful parameter of a tried and tested theory. Different 

from earlier approaches, the method is not limited to specific salience 

dimensions because the task is largely independent of the type of ele-

ments. Also, it is not limited to a reference stimulus like the methods 

proposed by Nothdurft (2000), and Huang and Pashler (2005). 

A further advantage is that no assumptions about contested issues 

such as the relative contribution of top-down and bottom-up influ-

ences have to be made to apply the present approach. While Theeuwes 

(2004, 2010, 2013), for example, takes the stance that salience captures 

attention inevitably, other researchers claim that all salience effects are 

modulated by top-down task sets (e.g., Ansorge & Becker, 2014; Folk, 

Remington, & Johnston, 1992; Yantis & Egeth, 1999). Our method 

provides a useful salience measure for both perspectives. Furthermore, 

interactions between bottom-up and top-down influences can be 

studied within the TVA framework. Nordfang et al. (2013) have de-

veloped a TVA extension that tackles this problem (see also Bundesen, 

Vangkilde, & Petersen, 2015). Both feature contrast and task relevance 

are modeled as individual variables affecting the attentional weight. 

That is, these authors already proposed a model for the interaction 

of bottom-up and top-down influences on attention. Its empirical ap-

plication is, however, restricted to the partial report and the stimuli 

suitable for the partial report, whereas our TOJ-based approach can 

deal with all kinds of stimuli.

Besides effects of salience, we consistently detected a small effect 

on the attentional weight in the neutral conditions of Experiments 1 to 

3. All visual features were equal for the two targets in these conditions, 

except for their timing. While Treference varied according to the SOA, 

Tprobe was always shown at a fixed point in time. With this procedure, 

the strength of salience is not distorted by the time course of salience. 

As a trade-off, we accepted the chance that an effect of predictability 

occurred—which indeed was the case. The formal model, however, al-
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lowed to correct for it. Note that this finding is well in line with results 

from Vangkilde, Coull, and Bundesen (2012), who investigated the ef-

fect of temporal predictability on perception. They examined effects of 

timing on t0, the minimal effective exposure duration, and the process-

ing speed υ, whereas we detected an influence on the attentional weight 

ω of the predictable stimulus and its υ parameter. The precision with 

which the small effect was detected is promising for future studies. 

A further aspect concerning the timing of the experiment is the 

presentation duration of the display prior to the TOJ. Although we kept 

it equal in all conditions, decreasing and increasing the duration of the 

salience display is possible. By this procedure, effects of presentation 

duration—as in research on the time course of salience—can be related 

to attentional weight. Note however that the TOJ might not be optimal 

for this because it requires a minimal time range for the two stimuli to 

be presented.

Besides the advantages of theory and Bayesian analysis, there are 

also drawbacks to the method proposed in the present paper. A weak 

point is that a TOJ requires a temporal event that can stand out against 

the salience manipulation without overriding it. For the attentional 

weight advantage of salient stimuli, the type of change did matter. 

Salience has, as demonstrated by Experiment 1, next to no influence 

on the attentional weight when onsets are detected. The precision of 

the approach can, however, be used to further investigate the reason for 

this finding, for example, to test whether onset information is available 

before salience information.

To sum up, the metrics of TVA allow a precise, general, and sensi-

tive quantification of the effects of salience. This metric can be meas-

ured in plausible parameters backed by theory. Different from earlier 

approaches, the present method is not limited to specific stimuli, and 

presentation duration can be controlled well to take the time course 

of salience into account. Given the sensitivity of the method, it is 

likely that gradual changes of local differences can be tested. Also, the 

method allows combining salience from different dimensions and thus 

offers the possibility to examine whether salience effects exhibit an un-

derlying general metric. That is, the approach discussed in the present 

paper might offer a new method of quantifying visual salience.
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Appendix A

Bayesian Parameter Estimation for 
the Proposed Model

We use Bayesian statistics for the formalization of the model and data 

analysis because Bayesian methods are particularly well-suited for in-

ference under an assumed model (Little, 2006). We thus implemented 

a generative model based on the mathematical description of TVA to 

perform Gibbs sampling (Plummer, 2003) to obtain posterior distribu-

tions of all relevant parameters and comparisons.

We employed the hierarchical Bayesian graphical model as shown 

in Figure 2 for analyzing the data. The discrete y nodes correspond to 

the collected data and represent the response for Tprobe as the first target. 

The n node represents the total amount of trials per SOA. θ represents 

the probability of a success of the binomial distribution at each SOA. 

This probability and the TVA parameters introduced in the TVA sec-

tion are computed according to the equations in Table 1. This describes 

the model for a neutral condition, in which no stimulus is salient. The 

salience condition, in which one of the stimuli was salient, was mod-

eled analogously.

Besides the data, priors are a mandatory part of Bayesian data 

analysis. Usually, these priors express previous knowledge about a vari-

able. To keep the priors and resulting analysis unbiased by assumptions 

and previous data (which the reader might not agree with) we based 

the priors on the theoretical extrema of these parameters. This type 

of prior is called non-informative. The priors of weight and process-

ing capacity are bound by 0 on the lower end. Also, the weight cannot 

exceed 1. The processing capacity is not limited explicitly by theory, but 

the chosen maximum processing capacity of the prior (500 Hz) would 

imply that a race to VSTM could be completed in 2 ms which is highly 

unlikely. As recommended by Gelman (2006) we decided for a t-half-

distribution, the positive half of a t-distribution, for the variance priors 

of our hierarchical model. The priors are given in Table A1.

Given the model, priors and collected data, the parameters are 

computed by Gibbs Sampling (Plummer, 2003). Mathematically, it 

is guaranteed that for an infinitely long process the result is perfectly 

representative of the true posterior. Limited by computing time and 

resources, the process is, however, not guaranteed to converge. Hence, 

it is crucial for a Bayes analysis to check the samples for representative-

ness. The parameters which have been used for Gibbs Sampling are a 

burn-in period of 5,000 iterations, 100,000 samples and a thinning of 

10 in four chains. As explained by Kruschke (2010, p. 131), there is no 

optimal way of checking representativeness but rather several ways that 

are useful. The four chains converged for all reported posterior distri-

butions. This was checked by examining the trace plots, the histograms 

(density plots), and the shrink factor. Additionally, the accuracy of the 

samples was checked by the effective sample size. All these parameters 

indicated that our chains indeed converged.

Table A1. 

Prior Distributions

wnp m ∼ dunif(0, 1)

wnp τ ∼ dt(0, 1, 1)T (0, )

Cn m ∼ dunif(0, 500)

Cn τ ∼ dt(0, 1, 1)T (0, )

Note. The index m denotes the mean and the index τ denotes the 
precision for the processing capacity Cn and the attentional weight 
ωnp.
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Appendix B

Analysis of Experiment 3 by 
Psychometric Functions

For the interested reader we present an exemplary analysis of 

Experiment 3 with the common method of psychometric functions. 

Function parameters were computed by Bayesian statistics as described 

by Kuss et al. (2005).The following is a short summary of the technical 

details that are presented more elaborately in the article by Kuss et al.

We chose the logistic function:

with z(α) = 2ln(1/α − 1). α = 0.1. The function is parametrized by the 

threshold m = Flogistic
-1(0.5) and with ω = Flogistic

-1(1 − α) − Flogistic
-1.

The results for the salience condition are ms = 32.4 and ωs = -194, 

and mn = -mn =-2.08 and ωn = -195 for the neutral condition shown in 

Figure B1.

Based on these parameter distributions, a posterior predictive was 

computed. This posterior predictive is depicted in Figure B2. The width 

parameter ω is difficult to interpret. In general, a steeper function 

corresponds to smaller uncertainty in the judgment—that is, better 

performance. By contrast, the shift of the threshold m has a straightfor-

ward interpretation: The salient probe has an increased probability of 

being reported first compared to its non-salient counterpart from the 

neutral condition. The m parameter is usually interpreted as the point 

of subjective simultaneity; an m parameter different from zero in posi-

tive direction indicates that the salient stimulus is perceived faster than 

its non-salient counterpart. In sum, the results of the logistic function 

analysis do not contradict the TVA-based analysis.

Flogistic =
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Figure B1.

Estimated parameters of logistic functions for Experiment 3. 
Point of subjective simultaneity (m) and difference limen (ω) 
for the salience condition (ms and ωs) in blue, for the neutral 
condition (mn and ωn) in red.

SOA (ms)
Figure B2.

Plot of raw data (mean of judgment frequency per SOA over 
all participants) and posterior predictive for the salient and 
neutral condition of Experiment 3. This plot shows predicted 
data based on the estimated parameters of both logistic 
functions. SOA = Stimulus Onset Asynchrony.
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