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Sleep is essential for health and cogni-
tion, but the molecular and neural

mechanisms of sleep regulation are not
well understood. We recently reported
the identification of TARANIS (TARA)
as a sleep-promoting factor that acts in a
previously unknown arousal center in
Drosophila. tara mutants exhibit a dose-
dependent reduction in sleep amount of
up to »60%. TARA and its mammalian
homologs, the Trip-Br (Transcriptional
Regulators Interacting with PHD zinc
fingers and/or Bromodomains) family of
proteins, are primarily known as tran-
scriptional coregulators involved in cell
cycle progression, and contain a con-
served Cyclin-A (CycA) binding homol-
ogy domain. We found that tara and
CycA synergistically promote sleep, and
CycA levels are reduced in tara mutants.
Additional data demonstrated that
Cyclin-dependent kinase 1 (Cdk1) antago-
nizes tara and CycA to promote wakeful-
ness. Moreover, we identified a subset of
CycA expressing neurons in the pars lat-
eralis, a brain region proposed to be anal-
ogous to the mammalian hypothalamus,
as an arousal center. In this Extra View
article, we report further characterization
of tara mutants and provide an extended
discussion of our findings and future
directions within the framework of a
working model, in which a network of
cell cycle genes, tara, CycA, and Cdk1,
interact in an arousal center to regulate
sleep.

Of all the behaviors required for sur-
vival, sleep is one of the most time-con-
suming, and its loss is linked to many
deleterious effects on human health.1,2 It
has been demonstrated that people with
disrupted sleep schedules, such as shift

workers, have an increased risk of cancer,
heart disease and diabetes.3,4 Sleep depri-
vation also impairs cognitive and motor
functions.5 Although several theories have
been proposed,6-8 the functions of sleep
are not yet clear. Identification of genes
and neural circuits that control sleep may
facilitate elucidation of sleep function.

The Drosophila model for sleep is well
suited for discovering sleep regulatory
genes through genetic screens. We recently
reported the isolation of taranis (tara)
from an unbiased genome-wide forward-
genetic screen for short-sleeping mutants.9

Mutations in tara resulted in a reduction
of total sleep amount due to fewer and
shorter sleep bouts, suggesting that loss of
tara leads to defects in sleep initiation and
maintenance. We found that TARA is
expressed widely in neurons and the short-
sleeping phenotype of tara mutants can be
fully rescued with constitutive and ubiqui-
tous expression of tara. Importantly,
adult-specific pan-neuronal expression of
tara partially rescued the sleep phenotype,
which suggests that TARA has both adult
and developmental roles in sleep
regulation.

Sleep is controlled mainly by two
mechanisms: a circadian mechanism that
consolidates sleep to an ecologically rele-
vant time of day and a homeostatic
mechanism that ensures an adequate
amount of sleep is achieved.10 We exam-
ined the free-running locomotor rhythms
of tara mutants in constant darkness
(DD), and found that most of the severe
tara mutants were arrhythmic.9 However,
across multiple allelic combinations, the
severity of sleep reduction and the degree
of arrhythmicity were not highly corre-
lated. Moreover, tara mutants exhibited
reduced sleep compared with controls in
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constant light (LL), which renders both
control and mutant flies arrhythmic,
demonstrating that the short-sleeping
phenotype is not secondary to arrhyth-
micity. tara mutants also exhibited
reduced sleep in DD, suggesting that the
role of TARA in sleep is independent of
light. In both LL and DD, severe tara
mutants lost over 80% of sleep relative to
control flies, which is one of the strongest
phenotypes documented among sleep
mutants. Together, our data suggest that
tara regulates sleep amount indepen-
dently of the circadian mechanism and
the light input pathways. These observa-
tions leave a defective homeostatic mech-
anism as the probable cause of reduced
sleep in tara mutants. In future studies,

we will investigate whether and how
TARA controls sleep homeostasis.

To further characterize tara mutant
phenotypes, we examined several addi-
tional behaviors. First, we found that tara
mutants were more likely to wake up in
response to brief dim light than control
flies (Fig. 1A), which suggests that tara
mutants may be more easily aroused,
although it is possible that tara mutants
are more sensitive to light. Our finding is
consistent with previous findings that
most short-sleeping flies have lowered
arousal threshold,11 and demonstrate that
tara mutants can detect dim light. Next,
since sleep deprivation can lead to early
lethality in flies as well as mammals,12,13

we measured the lifespan of tara mutants.

We found that tara mutants had a shorter
lifespan compared with control flies
(Fig. 1B), suggesting that reduced sleep in
tara mutants has consequences for overall
fitness, although we cannot rule out the
possibility that TARA influences longevity
independently of its effect on sleep.14 Like
another short-sleeping mutant, sleepless
(sss),15 tara mutants could not climb as
well as control flies (Fig. 1C). However,
despite their climbing defects, tara mutants
displayed increased locomotor activity com-
pared with controls, and behaved normally
in other behavioral assays. They exhibited
neither ether-induced leg shaking nor
bang-sensitive paralysis, and performed nor-
mally in a taste discrimination assay
(Fig. 1D). Altogether, our data suggest that

while loss of TARA leads to behav-
ioral deficits often associated with
reduced sleep, it has little effect on
other behaviors.

TARA contains a conserved
Cyclin-A (CycA) binding homology
domain, and CycA was previously
shown to promote sleep.16 These
observations led us to hypothesize that
tara interacts with CycA to regulate
sleep. Using multiple alleles and
RNAi-mediated knockdown, we dem-
onstrated that tara and CycA indeed
synergistically interact to promote
sleep. Our finding that TARA::GFP
fusion protein is enriched in neuronal
nuclei 9 is consistent with the previ-
ously described role for TARA as a
transcriptional co-regulator.17 How-
ever, TARA physically binds CycA
and regulates its levels at the post-tran-
scriptional level.9 Interestingly, the
TRIP-Br1 protein, one of the mam-
malian homologs of TARA, is
enriched in the cytoplasm of mamma-
lian cells.18 Thus, although TARA is
expressed mainly in the nucleus, a
small pool of TARA may also localize
to the cytoplasm. These observations
suggest the possibility that TARA reg-
ulates sleep through a non-transcrip-
tional mechanism independent of the
transcriptional mechanism controlling
cell cycle progression.

Although TARA may exert its
effect on sleep entirely through
post-transcriptional mechanisms, it
is possible that at least some of the

Figure 1. Behavioral phenotypes of tara mutants. (A) Percentage of control and tara flies (nD31¡64)
that were awakened by a 1 sec pulse of 100 lux light delivered at ZT16. Only flies that were asleep prior to
the light pulse are included. (B) Survivorship curves of female control and tara1/s132 flies (n D 66¡118).
(C) Percentage of control, tara1/C, taras132, and tara1/s132 flies (n D 37¡50) that crossed a 10 cm mark
within 10 sec against gravity. (D) Percentage of control and tara1/s132 flies (n D 46¡68) that chose food
with 25 mM sucrose, in the absence or presence of 3 mM quinine, over 5 mM sucrose. Control and tara
flies showed an equivalent preference for a higher concentration of sugar and an equivalent avoidance of
bitter tasting quinine. Mean § SEM is shown. *p < 0.05, **p < 0.01, ***p < 0.001, Chi-square test (A, D),
log rank test (B), and one-way ANOVA followed by Dunnett post hoc test relative to control flies (C).
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effect of TARA on sleep is through tran-
scriptional regulation. TARA and the
Trip-Br family of proteins have been
shown to act as coregulators of the E2F1-
DP1 transcription complex.19-22 How-
ever, we did not find evidence for a genetic
interaction between E2f1 and tara for
sleep regulation (Fig. 2). TARA may part-
ner with different transcription factors
depending on the biological context such
as sleep regulation versus cell cycle
progression.

Cyclins regulate cell cycle progression
through their modulation of Cyclin-
dependent kinases (Cdks). Previous work
showed that CycA can physically interact
with Cdk1,23 which raises the possibility
that Cdk1 may have a role in sleep as well.
Indeed our data suggest that CycA regu-
lates sleep through its modulatory action
over Cdk1 activity. We found that
reduced Cdk1 activity partially rescued
the short-sleeping phenotypes of tara and
CycA mutants,9 suggesting that Cdk1 is a
wake-promoting molecule. Since Cdk1 is
regulated through inhibitory phosphoryla-
tion of its T14 and Y15 residues, we
employed a mutant Cdk1-AF (T14A,
Y15F) that cannot be inhibited 24 to show
that increased activity of Cdk1 suppresses
sleep. Given that CycA and Cdk1 are
known to physically interact,23 a direct
relationship between CycA and Cdk1 for
sleep regulation is likely. Interestingly, we
found that both CycA and Cdk1 localize
to synaptic regions, which suggests a mod-
ulatory role for CycA and Cdk1 over syn-
aptic proteins. Identification of the

substrates of the Cdk1 kinase activity rele-
vant for sleep regulation is an important
next step we intend to pursue in future
experiments.

Recent work in Drosophila has demon-
strated that knockdown of Cdk1 signifi-
cantly reduces seizure duration in both
bang sensitive (bas) and bang senseless (bss)
mutants,25 which suggests that Cdk1 may
modulate ion channel activity and mem-
brane excitability. Several lines of evidence
show that ion channels have a dramatic
influence over sleep. Shaker, hyperkinetic,
ether-�a-go-go, redeye, and Rdl genes, which
encode a fast delayed rectifier potassium
channel,26 cytoplasmic b subunit of
Shaker,27 slow delayed rectifier potassium
channel,28 nicotinic acetylcholine recep-
tor,29 and GABAA receptor,30,31 respec-
tively, are all implicated in sleep and may
be potential phosphorylation targets of
Cdk1.

Previous work showed that CycA pro-
tein is expressed in a small number of neu-
ronal clusters including »14 neurons in
the pars lateralis (PL),16 a brain region
that together with the pars intercerebralis
(PI) is thought to be analogous to the
mammalian hypothalamus. In order to
manipulate the CycA expressing cells, we
made use of a Gal4 driver 32 that labels
just the dorsal cluster of CycA expressing
cells. Activation of these neurons led to
strong sleep suppression, suggesting that
they serve as an arousal center.9 Impor-
tantly, tara knockdown or Cdk1-AF
expression, specifically in PL neurons, also
suppressed sleep, suggesting that TARA,

CycA, and Cdk1 interact in these neurons
to control sleep. Given that increased
Cdk1 activity in PL neurons phenocopies
activation of those neurons, we propose a
model in which TARA upregulates CycA
levels to inhibit Cdk1, whose kinase activ-
ity increases neuronal excitability of wake-
promoting PL neurons (Fig. 3). Whether
Cdk1 activity leads to an overall increase
in the excitability of PL neurons is an
interesting question for future studies.

How TARA is regulated is another
interesting question. We did not observe
any changes in TARA levels in circadian
pacemaker neurons across the day
(Fig. 4), but it is possible that TARA lev-
els in PL neurons fluctuate depending on
the sleep-wake history. Alternatively,
TARA activity rather than its abundance
may be under circadian or homeostatic
control. Clues to a potential regulator of
TARA come from the fact that the PL-
Gal4 driver was generated using a frag-
ment of the corazonin (crz) promoter.32

Previous studies found that activation of
CRZ neurons using a Gal4 driver that
contains the full crz promoter increases
food consumption in starved flies,33 and
that a subpopulation of PL neurons
express Gustatory Receptor 43a (GR43a),
which functions as a nutrient sensor.34,35

Although the full crz promoter drives expres-
sion in a few neuronal groups outside the PL
region, it is plausible that PL neurons them-
selves are involved in the regulation of starva-
tion response. Starved flies sleep less,
presumably to forage for food.36 Moreover,
Trip-Br2 is involved in fat metabolism 37

Figure 2. tara and E2f1 appear not to interact for sleep regulation. (A) Sleep profile of background control (white circles), E2f1EY14408/C (gray dia-
monds), tarae01264/s132 (black triangles), and E2f1EY14408/C, tarae01264/s132 (open red squares) female flies (nD17¡21) in 30 min bins. The white and black
bars below the X-axis represent 12 h light and 12 h dark periods, respectively. (B) Total daily sleep amount for the same genotypes indicated in (A). (C)
Total daily sleep of the indicated genotypes (n D 16 for all genotypes). Mean § SEM is shown. ns: not significant, 2-way ANOVA followed by Tukey post
hoc test (B, C).
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and Trip-Br1 functions in pancreatic b-cells
to regulate insulin secretion.38 We speculate
that TARA functions in PL neurons to coor-
dinately regulate sleep and feeding in
response to metabolic as well as sleep-related
signals (Fig. 3). Interestingly, neurons
expressing Diuretic Hormone 44 (DH44) in
the PI have been implicated in both the regu-
lation of activity-rest rhythms 39 and the
detection and consumption of nutritive

sugars,40 which sug-
gests that multiple
neuronal groups
may be involved in
the coordination of
sleep and metabo-
lism. Both PL and
PI regions are pro-
posed to be analo-
gous to the
mammalian hypo-
thalamus,41 a major
sleep and feeding
center.42,43 It may
be that an unidenti-
fied subpopulation
of the hypothalamic
neurons function in
a manner analogous
to PL neurons to
integrate sleep and
metabolic signals.

Pan-neuronal
knockdown of tara
had a stronger effect

on sleep than tara knockdown restricted to
PL neurons,9 which suggests that TARA
also acts in other neuronal groups. A num-
ber of neuronal populations have been
implicated in the regulation of sleep. These
include the mushroom body,44-46 the fan
shaped body,47 the PI,48 octopaminergic
neurons,48 and the large ventral lateral
clock neurons.30,49 Knockdown of tara in
these neuronal groups did not result in any

significant changes in sleep amount.9 Fur-
ther investigation of the anatomical loci of
TARA function may reveal additional
sleep-relevant neuronal populations.

A number of Drosophila sleep factors
have been identified in recent years
(Table 1), but TARA is particularly
interesting because it forms a sleep-regu-
latory gene network with other cell cycle
genes, and functions in an arousal center
previously unknown for its role in sleep
regulation. Interestingly, several studies
have shown that cell cycle regulators
have additional functions in adult neu-
rons. For instance, Cyclin E plays a role
in memory formation and synaptic plas-
ticity in mice 50; knockdown of several
Cyclin/Cdk family members rescues the
seizure phenotype of bas and bss mutants
in Drosophila 25; and Cyclin-B1 is upre-
gulated in the hypothalamus of patients
afflicted with temporal lobe epilepsy.51

It is unknown whether Trip-Br proteins
regulate sleep and wakefulness in mam-
mals. Further studies of TARA and its
mammalian homologs as well as the PL
neurons and the neural circuit they par-
ticipate in may provide valuable insights
into the molecular and neural mecha-
nisms of sleep regulation.

Experimental procedures
E2f1EY14408 was obtained from the

Bloomington Stock Center and out-
crossed to a w¡ isogenic background
(iso31) for 5 generations. Homozy-
gous E2f1EY14408 are lethal, suggesting
that EY14408 is a null or a strong
reduction of function allele. All other
stocks were described previously.9 The
sleep assay and whole-mount immu-
nostaining of adult brains were per-
formed as previously described.9 To
assess arousability, flies were subjected
to a 1 sec pulse of »100 lux light at
Zeitgeber Time (ZT) 16. Only flies
that were asleep at the time of light
pulse were included in the data analy-
sis, and the proportion of flies that
started moving within the next 5 min
was determined for each genotype.
To determine longevity, tara1/s132

mutant and control flies were main-
tained in a 12 hr: 12 hr LD cycle at
25�C throughout their lifespan.
Groups of »30 flies (»15 males and

Figure 3. Working model of how TARA promotes sleep. TARA upregu-
lates CycA, which negatively regulates Cdk1 activity in the PL neurons.
We propose that increased activity of Cdk1 leads to an increase in the
excitability of PL neurons, which promotes wakefulness and feeding. We
further speculate that TARA levels and/or activity are modulated by sleep
debt and satiety. The two diagrams depict PL neurons when flies have
high sleep debt and satiety (left) and when they have low sleep debt
and satiety (right), respectively. The mammalian counterparts are indi-
cated in parentheses, and broken lines represent connections that need
further investigation.

Figure 4. TARA protein levels do not cycle in circadian pacemaker neurons. (A) Immunostaining
of TARA::GFP in male fly brains on the 3rd day in DD. We used transgenic flies that carry an artificial
exon encoding GFP inserted into an intron of tara in the genome 52 and therefore are expected to pro-
duce endogenous levels of TARA protein fused to GFP. Brains were dissected at indicated circadian
times (CT) and stained for GFP (green) and PDF (red), which was used to identify small ventral lateral
neurons (sLNvs), the pacemaker neurons in DD. Scale bar 10mm. (B) Quantification of TARA::GFP signal
in sLNvs. Data from 11¡16 brain hemispheres are presented. Mean§ SEM is shown. ns: not significant,
2-way ANOVA followed by Tukey post hoc test (B).
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Table 1. Genes involved in sleep regulation in Drosophila.

Protein function Gene Reference

Neurotransmission Dopamine transporter Kume et al., 200553

Dopamine 1-like receptor 1 Ueno et al., 201254

5-hydroxytryptamine (serotonin) receptor 1A Yuan et al., 200655

Tyramine b hydroxylase Crocker and Sehgal, 200856

Tyrosine decarboxylase 2 Crocker and Sehgal, 200856

Octopamine receptor in mushroom bodies Crocker et al., 201057

Resistant to dieldrin (GABAA receptor) Agosto et al., 2008; Chung et al., 201431,58

Wide awake Liu et al., 201459

GABA transaminase Maguire et al., 201560

nicotinic Acetylcholine Receptor a4 Shi et al., 201429

nicotinic Acetylcholine Receptor a2 Wu et al., 201461

NMDA receptor 1 Tomita et al., 201562

Pigment-dispersing factor Parisky et al., 200830

Ecdysone receptor Ishimoto and Kitamoto, 201063

Sex Peptide Isaac et al., 200964

Myoinhibiting peptide precursor Oh et al., 201465

Sex peptide receptor Oh et al., 201465

short neuropeptide F precursor Shang et al., 201366

Diuretic hormone 31 Kunst et al., 201467

SIFamide Park et al., 201468

SIFamide receptor Park et al., 201468

Ion channel signaling Shaker Cirelli et al., 200526

Hyperkinetic Bushey et al., 200769

quiver (sleepless) Koh et al., 200815

Ca2C-channel protein a1 subunit T Jeong et al., 201570

Calcineurin B Nakai et al., 2011; Tomita et al., 201171,72

Calcineurin A1 Nakai et al., 2011; Tomita et al., 201171,72

sarah Nakai et al., 201172

Sulfonylurea receptor (ATP-sensitive potassium channel subunit) Allebrandt et al., 201373

Transient receptor potential cation channel A1 ortholog Roessingh et al., 201574

Cell cycle regulation Cyclin A Rogulja and Young, 201216

Regulator of cyclin A1 Rogulja and Young, 201216

taranis Afonso et al., 20159

Cyclin-dependent kinase 1 Afonso et al., 20159

Synaptic development Fmr1 Bushey et al., 200975

homer Naidoo et al., 201276

Neuroligin 4 Li et al., 201377

Neurexin 1 Larkin et al., 201578

Cellular signaling Rolled (ERK) Foltenyi et al., 2007; Vanderheyden et al., 2013)79,80

Epidermal growth factor receptor Foltenyi et al., 200780

spitz Foltenyi et al., 200780

Star Foltenyi et al., 200780

rhomboid Foltenyi et al., 200780

Gold tip Guo et al., 201181

Notch Seugnet et al., 201182

Delta Seugnet et al., 201182

bunched Seugnet et al., 201182

basket Takahama et al., 201283

foraging Donlea et al., 201284

crossveinless c Donlea et al., 201485

Metabolism Insulin-like receptor Metaxakis et al., 201486

Ribosomal protein S6 kinase Metaxakis et al., 201486

forkhead box, sub-group O Metaxakis et al., 201486

Lipid storage droplet-2 Thimgan et al., 201087

brummer Thimgan et al., 201087

fatty acid binding protein Gerstner et al., 201188

Circadian period Hendricks et al., 200089

cycle Hendricks et al., 2000; Shaw et al., 200212,90

Immune/stress response Heat shock protein 83 Shaw et al., 200212

Relish Williams et al., 200791

bipolar oocyte (bip) Naidoo et al., 201276

(Continued on next page)
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»15 females) were collected into food
vials within 2 d of eclosion. Males and
females were kept together for 2 days,
after which they were separated into
groups of »30 females or males. Flies
were transferred to fresh food every
2 days, and the number of dead flies
counted. Climbing, leg shaking, bang
sensitivity, and taste discrimination
assays were performed as described,15

except that flies had to climb 10 cm
within 10 sec to be counted as successful
climbers and were allowed to feed for
30 min, and 5 or 25 mM sucrose and
3 mM quinine were used.
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