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A library of compounds covering a broad chemical space was selected from a tuberculosis drug development program and was
screened in a whole-cell assay against Mycobacterium ulcerans, the causative agent of the necrotizing skin disease Buruli ulcer.
While a number of potent antitubercular agents were only weakly active or inactive against M. ulcerans, five compounds showed
high activity (90% inhibitory concentration [IC90], <1 �M), making screening of focused antitubercular libraries a good starting
point for lead generation against M. ulcerans.

Buruli ulcer (BU) is a neglected tropical disease that is charac-
terized by chronic necrotizing skin lesions. It is caused by

Mycobacterium ulcerans, a slow-growing mycobacterium that
produces the potent exotoxin mycolactone, which is the main
virulence factor responsible for the necrotizing pathology of BU
(1, 2). Standard specific treatment of BU involves 8 weeks of com-
bination therapy with streptomycin and rifampin, which may
have ototoxic, nephrotoxic, and hepatotoxic side effects (3).
While streptomycin can in principal be replaced by clarithromy-
cin or moxifloxacin (4), no replacement for rifampin is currently
available (5, 6). As a consequence, antibiotic therapy of BU may
become impossible if rifampin resistance in M. ulcerans emerges.

Since M. ulcerans is closely related to Mycobacterium tubercu-
losis (7), drug molecular targets may be conserved between the two
species (8). Therefore, repurposing tuberculosis (TB) drug candi-
dates for BU represents an attractive approach to overcome the
problem of very limited financial resources for BU drug discovery
and development. Here, we have tested a set of 83 compounds
from the tuberculosis lead generation and lead optimization drug
discovery programs of AstraZeneca. The set was selected based on
activity against M. tuberculosis and on chemical diversity compris-
ing advanced candidates and novel leads. For activity testing
against M. ulcerans, resazurin-based assays were performed essen-
tially as described previously (9). A good correlation between this
type of metabolic activity testing and the enumeration of CFU was
shown in a previous study (10). In brief, bacteria were incubated
with the compounds at a concentration of 10 �M for 1 week at
30°C. Then, resazurin was added (10%, vol/vol), and the plates
were further incubated overnight at 37°C followed by measure-
ment of fluorescence intensities. Subsequently, MICs correspond-
ing to 90% inhibition (IC90) of compounds active in the prescreen
were assessed by testing 2-fold serial dilutions. Values were inde-
pendently determined twice using two different low-passaged Af-
rican M. ulcerans strains (S1013 and S1047) (11).

The compound set, encompassing established tuberculosis
drugs and antimicrobials as well as advanced development com-
pounds, represented a broad chemical space of 54 clusters. Based
on the IC90 values, the compounds were classified into six differ-
ent activity categories that ranged from �0.1 �M to �10 �M.
These values were compared with the corresponding values ob-

tained earlier for M. tuberculosis, revealing that the activity pat-
terns for M. ulcerans and M. tuberculosis vary substantially (Fig. 1).
Only three compounds (represented by black dots in the gray-
shaded area in Fig. 1), the two aminopyrazoles 9 and 10 and the
pyrazolopyrimidine 11, were more active against M. ulcerans than
they were against M. tuberculosis. Twenty-one compounds (rep-
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FIG 1 Comparison of activities of all 83 compounds tested on M. ulcerans and
M. tuberculosis with MIC values grouped into six categories. The size of the
individual circles indicates the number of compounds identified within the
specific MIC range combination for M. tuberculosis and M. ulcerans. Com-
pounds belonging to the same activity category for the two pathogens are
marked in red. The three compounds showing higher activity against M. ul-
cerans than against M. tuberculosis are located in the gray-shaded area.
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resented by red dots in Fig. 1) belonged to the same activity cate-
gory for the two mycobacterial pathogens, whereas the majority
(59/83, 71%) of compounds (represented by black dots in the
white area) were more active against M. tuberculosis than they
were against M. ulcerans. While none of the compounds tested had
an IC90 value of �0.3 �M for M. ulcerans, 20/83 displayed activi-
ties of �0.3 �M for M. tuberculosis (Fig. 1). This lower sensitivity
of M. ulcerans may be related to factors such as low growth rate,
the extremely hydrophobic cell surface, and the production of an
extracellular matrix. However, no general correlation between
physicochemical properties of the compounds and differential
IC90 values of M. ulcerans/M. tuberculosis was found (Fig. 2). M.
ulcerans has undergone drastic genome reduction after emergence
from the environmental mycobacterium Mycobacterium mari-
num (12, 13), and loss of genes and massive pseudogene accumu-
lation may have caused loss of targets for some of the highly active
anti-TB compounds.

The 11 compounds with IC90 values of �3 �M against M.
ulcerans originated from seven chemically diverse compound
families of early and advanced stages of drug development (Table
1). As for the early stage compounds, 3/8 tested diarylthiazoles
(Table 1, compounds 1 to 8) showed IC90 values of �3 �M against
M. ulcerans. In M. tuberculosis, diarylthiazoles seem to target the
two-component system PrrB/PrrA (14); they also appeared as a
hit in a high-throughput screen against Mycobacterium bovis BCG
(15). The diarylthiazole fatostatin (compound 7) acts as an inhib-
itor of sterol regulatory element-binding proteins (SREBPs) (16,
17). In addition, 1/2 aminopyrazoles (compound 9), the only
pyrazolopyrimidine (compound 11), and 1/2 hydroxyquinolones
(compound 22) tested were highly active against M. ulcerans. For
quinolinyl pyrimidines and phenothiazines, inhibitors of the al-
ternative type II NADH dehydrogenases in M. tuberculosis (18,
19), no activity against M. ulcerans was observed. Since the target
enzymes are also present in M. ulcerans, the weaker activity of M.

FIG 2 Physicochemical properties of the compounds analyzed in relation to activity on M. tuberculosis and M. ulcerans. Displayed are scatter plots of ClogP,
molecular weight (MW), polar surface area (PSA), and ion class of all compounds tested. The M. tuberculosis activities are shown in log scale along the x axes,
while the M. ulcerans activity ranges are depicted in different colors.
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TABLE 1 Structure, activity, and properties of the compound families active against M. ulcerans

Compound no. Structure
M. ulcerans
MIC (�M)

M. tuberculosis
MIC (�M) MW/ClogP Compound feature/public domain ID

1 1–3 0.1–0.3 379/5.0 Fatostatin analog

2 1–3 1–3 310/4.8 Fatostatin analog ChEMBL1824662

3 1–3 0.3–1.0 364/5.9 Fatostatin analog

4 3–10 0.3–1.0 297/3.7 Fatostatin analog

5 3–10 0.3–1.0 348/5.7 Fatostatin analog

6 3–10 0.3–1.0 373/3.8 Fatostatin analog ChEMBL1824673

7 �10 1–3 294/5.3 Fatostatin ChEMBL1455549

8 �10 1–3 315/5.5 Fatostatin analog

9 0.3–1.0 1.0–3.0 371/6.4 Aminopyrazole

10 3–10 �10 371/6.4 Aminopyrazole

11 0.3–1.0 1–3 278/1.5 Pyrazolopyrimidine

12 3–10 0.1–0.3 475/1.4 GyrA_NBTI-analog

13 �10 0.1–0.3 458/0.8 GyrA_NBTI PubChem_15983305

(Continued on following page)
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tuberculosis NADH dehydrogenase inhibitors against M. ulcerans
may be attributed to reduced permeability.

Of the advanced antibacterial agents tested, the quinolones had
differential activity on M. ulcerans. While a prulifloxacin analogue
(compound 14) and ciprofloxacin (compound 15) exhibited good
activity, this was not the case for two novel bacterial topoisomer-
ase II inhibitors (NBTI; compounds 12 and 13) (20–22). Further-

more, two GyrB inhibitors, a pyrrolamide (compound 16) (23,
24), an aminopyrazinamide (compound 18) (25), and 1/3 of the
tested oxazolidinones (compound 19) showed activity of �1 �M.
The other two oxazolidinones, compounds 20 and 21, with com-
pound 21 being a recent anti-TB clinical candidate interfering
with protein translation by binding to the mycobacterial 50S ri-
bosomal subunit (26), displayed only moderate activity (3 to 10

TABLE 1 (Continued)

Compound no. Structure
M. ulcerans
MIC (�M)

M. tuberculosis
MIC (�M) MW/ClogP Compound feature/public domain ID

14 1–3 1–3 349/�0.7 GyrA_Fluoroquinolone Ulifloxacin ChEMBL345937

15 1–3 1–3 331/�0.7 GyrA_Fluoroquinolone Ciprofloxacin ChEMBL1077975

16 0.3–1.0 �0.1 514/1.0 GyrB_Pyrrolamide PubChem_25223515

17 3–10 �0.1 578/1.1 GyrB_Pyrrolamide PubChem_11996283

18 0.3–1.0 0.3–1.0 479/4.2 GyrB_Aminopyrazinamide

19 0.3–1.0 0.1–0.3 427/1.7 Oxazolidinone PubChem_10251911

20 3–10 0.1–0.3 337/0.2 Oxazolidinone linezolid ChEMBL126

21 3–10 0.1–0.3 465/0.6 Oxazolidinone posizolid/AZD5847 ChEMBL131854

22 1–3 1–3 333/3.1 Hydroxyquinolone PubChem_51423561

23 �10 �10 296/1.5 Hydroxyquinolone ChEMBL1310374
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�M) against M. ulcerans. The natural product doxycycline, be-
longing to the family of tetracyclines, was not active against M.
ulcerans. Members of the quinolone family targeting GyrA have
already been evaluated in vitro and in vivo, and for ofloxacin, cip-
rofloxacin, sparfloxacin, moxifloxacin, and sitafloxacin, activity
against M. ulcerans was shown (5, 27–31). Our results provide
further evidence that the M. ulcerans DNA gyrase is a vulnerable
target. In contrast, selected compounds of the nitroimidazole
family (32, 33), including PA824 (34), did not show any activity
against M. ulcerans, reconfirming published results (5).

Most of the compounds active against M. ulcerans were re-
ported to be specific inhibitors and noncytotoxic. As a class, the
diarylthiazoles (compounds 1 to 8) were shown to be inactive in
cytotoxicity assays (14). Similarly, the gyrase inhibitors, such as
quinolones (compounds 12 to 15) (20–22) and pyrrolocarboxam-
ides (compound 16 and 17) (23, 24), are advanced leads from
tuberculosis drug discovery programs and were demonstrated to
be noncytotoxic. The other well-characterized advanced antibac-
terial compounds, oxazolidinones (compounds 19 to 21) (26), are
specific inhibitors of bacterial protein biosynthesis and do not
possess any cytotoxicity. Further profiling and structure activity
relationship exploration is required to assess the full potential of
these chemical classes as anti-BU candidates.

With the TB drug pipeline currently being filled with more
potent and novel drug candidates, our results demonstrate that
repurposing may in fact lead to the development of new treatment
options for BU.
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