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The species Acinetobacter baumannii is one of the most important multidrug-resistant human pathogens. To determine its viru-
lence and antibiotic resistance determinants, the genome of the nosocomial blaNDM-1-positive A. baumannii strain R2090 origi-
nating from Egypt was completely sequenced. Genome analysis revealed that strain R2090 is highly related to the community-
acquired Australian A. baumannii strain D1279779. The two strains belong to sequence type 267 (ST267). Isolate R2090
harbored the chromosomally integrated transposon Tn125 carrying the carbapenemase gene blaNDM-1 that is not present in the
D1279779 genome. To test the transferability of the metallo-�-lactamase (MBL) gene region, the clinical isolate R2090 was
mated with the susceptible A. baumannii recipient CIP 70.10, and the carbapenem-resistant derivative R2091 was obtained. Ge-
nome sequencing of the R2091 derivative revealed that it had received an approximately 66-kb region comprising the transposon
Tn125 embedding the blaNDM-1 gene. This region had integrated into the chromosome of the recipient strain CIP 70.10. From the
four known mechanisms for horizontal gene transfer (conjugation, outer membrane vesicle-mediated transfer, transformation,
and transduction), conjugation could be ruled out, since strain R2090 lacks any plasmid, and a type IV secretion system is not
encoded in its chromosome. However, strain R2090 possesses three putative prophages, two of which were predicted to be com-
plete and therefore functional. Accordingly, it was supposed that the transfer of the resistance gene region from the clinical iso-
late R2090 to the recipient occurred by general transduction facilitated by one of the prophages present in the R2090 genome.
Hence, phage-mediated transduction has to be taken into account for the dissemination of antibiotic resistance genes within the
species A. baumannii.

Resistance of microorganisms to antimicrobial compounds
poses a public health problem of growing importance. The

development and dissemination of antibiotic resistance interfere
with treatment regimens and increase costs in health care facilities
(1). In particular, infections in immunocompromised patients
may turn dramatically due to failure of antimicrobial therapy.
Acinetobacter species are strictly aerobic, Gram-negative, cocco-
bacillary rods (2). They were isolated from a variety of habitats,
including soil, water, wastewater, and hospital environments (3,
4). Currently, the Acinetobacter genus comprises 52 species (http:
//www.bacterio.net/acinetobacter.html, http://www.ncbi.nlm
.nih.gov/Taxonomy/), some of which are important human
pathogens (5). Acinetobacter baumannii is the most prevalent spe-
cies in clinical environments (4), whereas it occurs more rarely in
natural habitats (6). A. baumannii usually is harmless for healthy
persons, although some particular A. baumannii strains may cause
severe infections in immunocompromised patients, which is a se-
rious problem in intensive care units.

Compared to other Gram-negative pathogens, few virulence
determinants have been identified in A. baumannii strains (6).
Most A. baumannii virulence determinants belong to the core
genome (7). However, a wide spectrum of resistance determinants
and its high robustness make A. baumannii a serious nosocomial
pathogen (8). It is able to rapidly acquire antibiotic resistance
genes (9) by horizontal transfer from other bacteria, thus increas-
ing its own virulence (10).

The multidrug-resistant A. baumannii strain R2090 was iso-
lated from a hospitalized Egyptian patient. To analyze its putative
and respective virulence and resistance determinants, the genome

of A. baumannii R2090 was completely sequenced. A correspond-
ing genome announcement was published recently (11). Here,
pathogenicity and resistance determinants of the isolate were
identified. Moreover, the relatedness of strain R2090 to other A.
baumannii strains was analyzed to gain epidemiological insights,
and the horizontal transmissibility of its blaNDM-1 carbapenemase
gene was demonstrated.

MATERIALS AND METHODS
Isolation, cultivation, identification, and total DNA preparation of A.
baumannii strains. A. baumannii strain R2090 was recovered from a rec-
tal swab screening of a patient who was hospitalized in Egypt. A. bauman-
nii strains R2090, CIP 70.10, and R2091 were cultured in Trypticase soy
broth medium, and total DNA was extracted and purified using the
QIAamp DNA minikit (Qiagen, Hombrechtikon, Switzerland). Identifi-
cation of strain R2090 was performed by using the API 20NE system
(bioMérieux, La Balme-les-Grottes, France). In addition, the sequence of
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the strain’s 16S rRNA gene was established and compared to database
entries.

Resistance pattern assessment. Antibiotic susceptibility testing was
evaluated and interpreted according to the guidelines of the Clinical and
Laboratory Standards Institute (CLSI).

Transfer of the blaNDM-1 resistance gene region to the recipient
strain A. baumannii CIP 70.10. Mating-out assays were performed using
A. baumannii R2090 as a donor and A. baumannii CIP 70.10 as the recip-
ient strain. After overnight (o/n) growth in Trypticase soy liquid medium,
both strains were diluted (1:10), cultured for 1 h, and then mixed at a ratio
of 1 to 4 (donor/recipient) in a total volume of 2 ml. Subsequently, this
mixed culture was grown for 3 h at 37°C, and 200 �l of the culture was
plated onto selective Mueller-Hinton agar medium supplemented with
ticarcillin (100 �g/ml) and rifampin (100 �g/ml). Growing colonies were
checked by PCR for the presence of the �-lactamase gene blaNDM-1 and
also their resistance phenotypes (resistance to ticarcillin and carbapen-
ems).

Sequencing and annotation of the A. baumannii R2090, CIP 70.10,
and R2091 genomes. High-throughput sequencing on the Illumina
MiSeq system and bioinformatic analyses of the obtained genome se-
quences were accomplished as previously described for A. baumannii
R2090 and CIP 70.10 (11, 12). The genome sequence of A. baumannii
R2091 was established by applying a strategy similar to that described for
strains R2090 and CIP 70.10 (see above). An 8-kb mate-pair sequencing
library was constructed for strain R2091 and sequenced on the Illumina
MiSeq system. The assembly of obtained sequence reads was performed
by using the GS de novo Assembler software (version 2.8; Roche). Genome
sequences of all three strains (R2090, CIP 70.10, and R2091) were anno-
tated within the GenDB annotation platform (13) based on the annota-
tion of the reference strain A. baumannii AB307-0294 (GenBank acces-
sion no. CP001172) (14). Moreover, a COG annotation was performed by
means of WebMGA, with an E value threshold of 1 � 10�20 (15). In
addition, the genes discussed in this study were manually annotated, as
published recently (16–18), applying pairwise BLASTx comparisons of
encoded protein sequences.

Phylogenetic classification and multilocus sequence typing. Phylo-
genetic classification based on genome sequence information for the A.
baumannii strains sequenced in this study was performed using EDGAR
2.0 (19). For calculation of a core-genome-based phylogenetic tree, the
core genes of A. baumannii strains R2090 and CIP 70.10, as well as those of
all sequenced A. baumannii reference strains available in the public
EDGAR project EDGAR_Acinetobacter, were considered. Furthermore, a
Web service (http://enve-omics.ce.gatech.edu/ani/) was used to calculate
the average nucleotide identity (ANI) (20).

Moreover, the sequence types (ST) of A. baumannii strains R2090, CIP
70.10, and R2091 were determined using the A. baumannii multilocus
sequence typing (MLST) database (http://pubmlst.org/perl
/bigsdb/bigsdb.pl?db�pubmlst_abaumannii_pasteur_seqdef&page
�sequenceQuery&set_id�2). The MLST is based on the allelic sequences
of seven housekeeping genes (Pasteur scheme: cpn60, fusA, gltA, pyrG,
recA, rplB, and rpoB) and was used for assignment to a clonal complex
(CC), as defined previously (10, 21).

Detection of putative pathogenicity determinants and antibiotic re-
sistance genes. Identification of the putative virulence factors and antibi-
otic resistance determinants in the genomes of the sequenced isolates was

performed using the databases MvirDB (22), ARG-ANNOT (23), CARD
(24), and Resfams (25). For the detection of determinants represented in
the databases MvirDB and ARG-ANNOT, BLASTp (26) was applied, with
an E value threshold of 1 � 10�100. The CARD database was accessed
using the Resistance Gene Identifier version 2 (http://arpcard.mcmaster
.ca/). Furthermore, a hidden Markov model (HMM) search (27, 28) was
performed, with an E value threshold of 1 � 10�100, to identify putative
resistance genes of the Resfams Core database. Moreover, the genomes
were searched for relaxases and key components of type IV secretion sys-
tems using CONJscan-T4SSscan (http://mobyle.pasteur.fr/cgi-bin/portal
.py#forms::CONJscan-T4SSscan) (29). Additionally, the PHAge Search
Tool (PHAST) was used on the nucleic acid level for the prediction of
integrated bacteriophages in the chromosomes (30).

Nucleotide sequence accession numbers. Genome sequences for A.
baumannii strains R2090, CIP 70.10, and the CIP 70.10 derivative strain
R2091 harboring the �-lactamase gene blaNDM-1 are accessible under the
EMBL/GenBank accession no. LN868200 (R2090), LN865143 to
LN865144 (CIP 70.10), and LN997846 to LN997847 (R2091).

RESULTS AND DISCUSSION
Origin of the clinical isolate A. baumannii R2090. Isolate R2090
was recovered during the course of hospital admission from a
rectal swab from a colonized Egyptian patient who was transferred
to a hospital in France. The obtained isolate showed resistance to
all �-lactam antibiotics, including carbapenems at high levels
(MICs for imipenem and meropenem, �32 �g/ml). The isolate
was considered a colonizing strain, since the patient had not de-
veloped any infection symptoms related to A. baumannii.

Sequencing, general features, and phylogenetic analysis of
the A. baumannii R2090 genome. Considering the multidrug
resistance pattern of the isolated A. baumannii strain R2090, it was
decided to sequence its genome to identify encoded antibiotic
resistance and virulence determinants and to analyze its related-
ness to known antibiotic-resistant A. baumannii reference strains,
thereby addressing epidemiological aspects.

The genome sequence of the isolate A. baumannii R2090 was
established by applying the Illumina MiSeq system, the GS de novo
assembler (version 2.8; Roche), and the bioinformatics tool
Consed (31), as described previously (11), combined with a PCR-
based strategy leading to the amplification of a gap-spanning frag-
ment that was sequenced to fill one remaining gap. Annotation of
orthologous genes was performed within the annotation tool
GenDB 2.4 (13) using the annotated genome sequence of A. bau-
mannii strain AB307-0294 as a reference (14). The features of the
R2090 chromosome sequence are depicted in Table 1 and Fig. 1.

Phylogenetic classification of A. baumannii R2090 was done
within the comparative genomics tool EDGAR (19) based on A.
baumannii core genes. The calculated phylogenetic tree (Fig. 2)
involving 1,885 core genes of 18 A. baumannii strains features
three main clusters and two outgroups. Clusters 1 and 2 represent
clonal complexes CC1 and CC2 (10, 21), respectively, whereas the
strains of cluster 3 and the two outgroup strains (SDF and CIP

TABLE 1 Genome features of A. baumannii strains R2090, R2091, and CIP 70.10

Strain/plasmid Size (bp)
G�C
content (%)

Total no. of
genes

No. of rRNA
operons

No. of
tRNAs

No. of
CDSs

No. of genes with
predicted function

R2090 3,819,158 39.04 3,694 6 73 3,603 2,615
R2091 3,939,746 38.97 3,705 6 71 3,616 2,632
pABR2091 7,742 37.56 13 0 0 13 3
CIP 70.10 3,928,513 38.92 3,695 6 71 3,606 2,630
pABCIP70.10 7,742 37.56 13 0 0 13 3
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70.10) do not belong to clonal complex 1 or 2. The isolate A.
baumannii R2090 shows the highest degree of relatedness to strain
A. baumannii D1279779 (32). The high similarity of these two
strains was also confirmed by average nucleotide identity (ANI)

analysis, which resulted in an ANI of 99.92%. Strains R2090 and
D1279779 both belong to the ST267, as determined by the Pasteur
scheme via the corresponding Web tool PubMLST (21). The ref-
erence strain A. baumannii D1279779 originates from an indige-
nous Australian patient and represents the first fully sequenced
community-acquired A. baumannii isolate (32).

Comparative analyses of the two closely related A. bauman-
nii isolates R2090 and D1279779 regarding putative antibiotic
resistance and virulence determinants. A chromosome-wide
alignment of the two A. baumannii isolates R2090 and D1279779
applying progressiveMauve (33), visualized by Mauve (34) and
GenomeRing (35), revealed an inversion of about 50 kb around
the origin of replication in strain D1279779 in comparison to
strain R2090 (Fig. 3). Moreover, structural differences in six re-
gions �10 kb were detected (Fig. 3). Among these, two segments
represent two of the three predicted prophage regions (described
below). The four other regions comprised predicted mobile ge-
netic elements (insertion sequence [IS] elements, other putative
transposable elements, and a phage integrase gene). Regarding
possible virulence factors and resistance determinants, two of
these regions are of outstanding interest.

An approximately 20-kb region within the genome of strain
R2090 is located in the vicinity of a transposase gene
(ABR2090_2277). It harbored 13 genes of a putative type VI
secretion system (T6SS) (ABR2090_2264 to ABR2090_2276)
(36). Although a T6SS cluster was identified in most A. baumannii
strains, it is not encoded in strain D1279779 (32, 37). Other con-
served putative virulence genes of the species A. baumannii encod-
ing a heme acquisition system (38) and the biofilm-associated
protein Bap (39) were not identified in either strain R2090 or
D1279779 (32). While the gene encoding the Acinetobacter
trimeric autotransporter protein (Ata) (40) is truncated in strain
D1279779 (32), the corresponding gene in strain R2090 carries a
627-bp insertion in comparison to the reference gene (A1S_1032)
of A. baumannii strain ATCC 17978 (40, 41). Accordingly, Ata
seems to be defective in both strains (37). As proposed by Farrugia
et al. (32), the reduced biofilm formation activity of strain
D1279779 is presumably due to the loss of the genes ata and bap,
the T6SS cluster, and the heme acquisition system II. Strains

FIG 1 Circular representation of the A. baumannii R2090 chromosome. From
the inside to the outside, the circles represent the GC skew (1), the G�C
content (2), and the predicted protein-coding sequences (CDSs) on the reverse
(3) and forward strand (4), colored according to the assigned Clusters of Or-
thologous Groups of proteins (COG) classes. Circle 5 displays the chromo-
some coordinates. In the sixth circle, regions described in the text are marked.
These are related to predicted prophages (red), putative antibiotic resistance
genes (blue), and virulence determinants (green), as well as the transposon
Tn125 (orange). I, transposon Tn125 harboring blaNDM-1 gene; II, resistance-
nodulation-division (RND) efflux pump AdeIJK; III, siderophore cluster
(acinetobactin); IV, 	R2090-I; V, RND efflux pump AdeFGH; VI, type I pilus
cluster (Csu cluster); VII, type I pilus cluster (truncated); VIII, RND efflux
pump AdeABC; IX, siderophore cluster; X, siderophore cluster; XI, type I pilus
cluster (truncated); XII, type VI secretion system (truncated); XIII, 	R2090-
II; XIV, 	R2090-III, XV, N-acyl homoserine lactone (AHL) cluster.

FIG 2 Phylogeny of different A. baumannii strains, as analyzed within the comparative genomics tool EDGAR based on core genes for all isolates. Phylogenetic
analyses within EDGAR were essentially done as described previously (16, 19). Strains belonging to a specific clonal complex (CC) are labeled on the right-hand
side. Strains SDF, R2090, D1279779, BJAB0715, ZW85-1, ATCC 17978, and CIP 70.10 belong to neither CC1 nor CC2.
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R2090 and D1279779 possess a similar gene layout concerning
genes predicted to contribute to biofilm formation. However, no
reliable prediction of biofilm formation capabilities can be given
by these in silico analyses, since biofilm formation is a multifactor-
regulated process. Moreover, R2090 possesses two truncated type
I pilus gene clusters (ABR2090_1456 to ABR2090_1457 and
ABR2090_2049to ABR2090_2050) (37) also specifying functions
in biofilm formation. Further putative virulence factors predicted
to be involved in iron acquisition, DNA uptake, and twitching
motility do not show significant differences between the two
strains (identities of corresponding gene products, �99.65%).

Another 11-kb region (Fig. 3 and 4) lacking in strain D1279779
is flanked by two insertion sequences of ISAba125 (ABR2090_
0672 and ABR2090_0680) and carries the metallo-�-lactamase
gene blaNDM-1 (ABR2090_0673). This structure corresponds to
the previously identified composite transposon Tn125 (42, 43).
Due to the presence of the carbapenemase gene blaNDM-1, the iso-
late was indeed highly resistant to all �-lactams, including carbap-
enems. Since the blaNDM-1 gene is located on a composite trans-
poson, it was speculated that the whole element is mobile. To test
the transmissibility of the predicted mobile element, strain R2090
was mated with another susceptible A. baumannii strain.

Transfer of the blaNDM-1 resistance region from the clinical
A. baumannii strain R2090 to the susceptible A. baumannii
recipient strain CIP 70.10. The most important difference be-
tween the clinical A. baumannii strain R2090 and the closely
related reference strain D1279779 is the integration of the me-
tallo-�-lactamase resistance region blaNDM-1 in R2090. A cor-
responding region is missing in strain D1279779. Since the
blaNDM-1 gene was located on the mobile genetic element Tn125,
the question arose as to whether the element was acquired by
horizontal gene transfer (HGT). To test the transmissibility of the
blaNDM-1 resistance region, a mating-out experiment between
R2090 and the susceptible recipient strain A. baumannii CIP 70.10
was performed. Upon selection on agar medium supplemented
with ticarcillin and rifampin, derivative strains arose with a fre-
quency of 1/106 (per recipient titer). PCR analyses and resistance
testing confirmed that A. baumannii CIP 70.10 received the
blaNDM-1 gene and expressed the corresponding resistance pheno-

FIG 3 Comparison of the genomes of the A. baumannii isolates R2090 and
D1279779. Visualization of the progressiveMauve (35) alignment with de-
fault settings of the chromosomes of strains R2090 and D1279799 was done
by application of the visualization tool GenomeRing (37). Each chromo-
some is represented by a colored path (blue, A. baumannii R2090; red, A.
baumannii D1279779). The chromosomes’ start and end positions are la-
beled by triangles in the corresponding color. The outer and inner circles
represent the forward and reverse orientations, respectively. All subblocks
with a minimum block length of 10,000 bp are presented. Insertions in the
R2090 chromosome are labeled and denote (I) the transposon Tn125, (II)
prophage 	R2090-I, (III) an 
17-kb region adjacent to the transposase
gene ABR2090_2200, (IV) the truncated type VI secretion system cluster,
(V) prophage 	R2090-III, and (VI) an 
13-kb region adjacent to an inte-
grase gene (ABR2090_2768). Prophage 	R2090-II is not displayed in a
separate block, as it possesses relatively high similarity to a prophage region
in strain D1279779.

FIG 4 Schematic representation of transposon Tn125 harboring the blaNDM-1 gene. The A. baumannii R2090 chromosomal region (approximately 18.7
kb) harboring the transposon Tn125 is located between coordinates 682069 and 700811. Coding sequences are labeled by either their gene name or locus
tag. Lengths of coding sequences are drawn to scale, except for the chemotaxis gene cheA. Annotation of genes was adopted from previous publications
(42, 56).
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type (resistance to ticarcillin and carbapenems). One representa-
tive derivative clone, designated R2091, was chosen for further
analysis to determine the extent of the transferred resistance gene
region and its integration site in the host chromosome. For this
purpose, the complete genome sequences of the derivative R2091
and the corresponding recipient strain CIP 70.10 were established.

Comparative genome sequence analyses of the derivative
strain R2091 carrying the blaNDM-1 resistance region and the
corresponding susceptible A. baumannii recipient strain CIP
70.10. The genome sequences of strain R2091 carrying the
blaNDM-1 resistance gene and the corresponding susceptible recip-
ient strain CIP 70.10 were established using the Illumina MiSeq
system, essentially as described for the clinical A. baumannii iso-
late R2090 (see above). Sequencing statistics and genome features
for the two strains are summarized in Table 1 (11, 12). In compar-
ison to the genome of strain CIP 70.10, that of the derivative strain
R2091 was 11,233 bp larger, which almost corresponds to the size
of transposon Tn125 carrying the blaNDM-1 gene. The G�C con-
tent of the R2091 genome was determined to be 38.97%, and it
contained 3,616 coding sequences. The gene contents of strains
CIP 70.10 and R2091 are nearly identical, except for 11 additional
genes that are present only in the derivative R2091. These acces-
sory genes were located on the transposon Tn125 (see below).

To determine the chromosomal background of the derivative
strain R2091 carrying the blaNDM-1 gene, multilocus sequence typ-
ing (MLST) and ANI analyses were carried out. The obtained re-
sults confirmed that R2091 features the chromosomal back-
ground of the recipient strain CIP 70.10. Both strains belong to
sequence type 126 (ST126) and showed an ANI of 99.96%,
whereas the clinical strain R2090 was assigned to ST267 and dis-
played an ANI of 97.73% to R2091. However, a chromosome-
wide alignment by means of Mauve (34) of strains CIP 70.10 and
R2091 (Fig. 5) revealed an approximately 65-kb region in R2091
(coordinates 3233306 to 3298533 bp) featuring a significantly
lower ANI of 97.95% (Fig. 3). A large part of the 65-kb segment
contains homologous genes, except for an 11-kb region (bp

3247000 to 3287300) representing the described transposon
Tn125 harboring the blaNDM-1 gene. An alignment of the chromo-
somes of strains R2090 and R2091 confirmed that the 65 kb orig-
inates from the clinical strain R2090 (see Fig. S1 in the supplemen-
tal material). Precisely, a 66,182-bp region surrounding the
transposon Tn125 was identical between the R2090 and R2091
chromosomes, except for two single nucleotide polymorphisms
(SNPs).

These analyses uncovered that a 66-kb region carrying the
blaNDM-1 gene had been transferred from the clinical strain R2090

FIG 5 Pairwise alignment of the region carrying Tn125 (blaNDM-1) between the A. baumannii strain R2091 and the corresponding recipient strain CIP 70.10
obtained by using Mauve. Chromosome coordinates are plotted on the x axis, and the y axis denotes the percent sequence identity, with 100% representing
completely identical sequences. (A) Chromosomal regions of strains CIP 70.10 and R2091 featuring comparatively low sequence similarity. Rectangles below the
similarity plot represent coding sequences (CDSs). Colored rectangles denote the insertion sequence (IS) elements ISAba125 (red), a transposase gene (blue), and
the gene blaNDM-1 (green). (B and C) Enlarged regions, in which possible homologous recombination events have occurred, are shown. First (B) and last (C) SNPs
of the region featuring low sequence similarity are boxed. Beyond these SNPs, the chromosomal sequences of the strains are completely identical, except for very
few minor mismatches presumably representing mutation events in one or the other genome or sequencing errors.

Krahn et al.

3036 aac.asm.org May 2016 Volume 60 Number 5Antimicrobial Agents and Chemotherapy

http://aac.asm.org


to the recipient strain CIP 70.10, in which it was integrated into
the chromosome, presumably through homologous recombina-
tion. Four possible mechanisms have to be considered for the
observed transfer of the resistance gene region from the donor to
the recipient strain: (i) plasmid-mediated conjugative transfer, (ii)
outer membrane vesicle (OMV)-mediated transfer, (iii) transfor-
mation, or (iv) phage-mediated transduction.

Plasmid-mediated transfer can be excluded, since strain R2090
lacks any plasmid. Moreover, a type IV secretion system (T4SS),
required for mating-pair formation and conjugative DNA transfer
to a recipient cell (44), is not encoded in the genome of isolate
R2090, as determined by application of the bioinformatics tool
CONJscan-T4SSscan (29). DNA transfer mediated by outer mem-
brane vesicles (OMV) seems to be unlikely because of the size of
the transferred region and its chromosomal location. Some Acin-
etobacter species are known to be able to transfer DNA via OMVs
(45, 46). However, the transferred region in the case of strain
R2090 seems to be too large for OMV-mediated transmission,

since so far, only 10- to 25-kb fragments were observed to be
transferred involving OMVs (45–47). Uptake of free DNA from
the medium also is unlikely, although some A. baumannii strains
previously were shown to be capable of natural transformation. A.
baumannii CIP 70.10 encodes a type IV pilus (T4P) system and a
channel formed by the proteins ComA/ComEC implicated in
DNA uptake from outside the cell (48). However, transformation
efficiency was shown to be very low for strain CIP 70.10 (49).
Moreover, DNA uptake of fragments �50 kb by natural transfor-
mation currently has to be considered a great challenge for the cell
(50), and nucleases may restrict incoming DNA (51).

Finally, larger DNA fragments can be transferred by phage-
mediated general transduction. Application of the phage search
tool PHAST (30) led to the prediction of two intact (from coordi-
nates 1165468 to 1215544 and from 2514187 to 2568847) and one
presumptive prophage region (from coordinates 2635367 to
2687628) in the R2090 genome (Fig. 6). The putative prophages
show similarity to the reference phage B	-B1251 (YMC/09/02/

FIG 6 Predicted prophage regions within the A. baumannii R2090 chromosome. Putative prophage regions, as identified by application of the bioinformatics
tool PHAST (30), each about 50 kb in size, are represented to scale. According to this analysis, 	R2090-I (ABR2090_1106-1176) and 	R2090-II
(ABR2090_2421-2489) seem to be intact (scores, 91 and 110, respectively), whereas the completeness of 	R2090-III (ABR2090_2555-2624) is not clear (score,
90). Phage-related genes are colored according to predicted functions of encoded gene products.
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B1251 ABA BP) (52). Overall, 36 of the 62 CDSs of the reference
phage were identified at least once in the R2090 chromosome,
featuring identities of at least 90% at the amino acid sequence
level. Manual analyses of the prophage regions revealed that they
are each approximately 49 to 52 kb in size and comprise 69 to 71
CDSs (Fig. 6). The genes in the prophage regions are similar to
those in other A. baumannii prophages, which were predicted to
be intact (53). Genes known to be essential for phage activity, such
as those specifying DNA processing, replication, structural com-
ponents, morphogenesis, phage integration, and cell lysis, were
identified (Fig. 6). Furthermore, the prophage regions 	R2090-II
and 	R2090-III are bordered by putative attachment sites attL
and attR (21 bp and 63 bp in size, respectively). Accordingly, pro-
phage 	R2090-II was predicted to be intact by means of the bioin-
formatics tool PHAST (score, 110), whereas 	R2090-III was clas-
sified as questionable (score, 90), despite the predicted attachment
sites. Although no valid attachment sites were identified for
	R2090-I, it was categorized as intact by PHAST (score, 91).
However, the activities of these phages remain to be confirmed.

It is thus conceivable that after phage-mediated lysis of R2090
donor cells, random DNA fragments were packaged into the cap-
sid of the phage and subsequently transferred to the recipient cell
via infection (transduction). Fragments of �100 kb were previ-
ously shown to be transferable by phage-mediated transduction
(54). DNA introduced into a recipient cell by transduction can be
integrated into the chromosome via RecA-dependent recombina-
tion (51) and thus may become manifested in the host’s genome.
Inspection of both ends of the transferred 66-kb fragment com-
prising the blaNDM-1 gene led to the identification of 180-bp and
774-bp flanking regions that are identical to corresponding re-
gions present in the recipient chromosome of strain CIP 70.10.
These sequences presumably are long enough to represent the
target sites for homologous recombination (51, 55), leading to the
integration of the resistance gene region into the chromosome of
the recipient CIP 70.10.

Concluding remarks. The carbapenem-resistant A. bauman-
nii strain R2090 originated from a colonized Egyptian patient who
was admitted to a hospital in France. Interestingly, the isolated
strain appeared to be closely related to A. baumannii strain
D1279779 belonging to the ST267. The D1279779 reference strain
was obtained from an indigenous Australian patient and repre-
sents a community-acquired isolate. The close relatedness of an
Egyptian and Australian A. baumannii isolate again reflects the
dissemination of opportunistic pathogenic bacteria due to long-
distance travel opportunities, and it sheds light on A. baumannii
epidemiology. The main difference between strains R2090 and
D1279779 is that the isolate R2090 harbors a gene encoding the
New Delhi metallo-�-lactamase NDM-1, which mediates carbap-
enem resistance. The presence of this gene severely complicates
the treatment of A. baumannii infections by application of �-lac-
tam antibiotics. Basically, it was not possible to deduce how the
blaNDM-1 gene was acquired by strain R2090, since it is not located
on a mobile plasmid but appeared to be integrated in the host’s
chromosome. However, the �-lactamase resistance gene is
flanked by two different insertion sequence elements (ISAba125
and ISCR21) that potentially enable movement (translocation) of
the blaNDM-1 gene. It has been shown experimentally that the re-
sistance gene region could be transferred from the strain R2090 to
a susceptible A. baumannii recipient strain. Commonly, mobile
plasmids are involved in the horizontal transfer of resistance de-

terminants between bacteria. However, since strain R2090 does
not contain any plasmid, another mechanism must account for
the resistance gene transfer observed. Natural transformation,
outer membrane vesicle-mediated transfer, or transduction facil-
itated by phages have to be considered for horizontal gene trans-
fer. The first two mechanisms were previously shown to enable the
transfer of relatively short DNA fragments. In the case of strain
R2090, an approximately 66-kb fragment was transferred to the A.
baumannii recipient strain CIP 70.10. Since isolate R2090 pos-
sesses three presumably intact prophages integrated in its chro-
mosome, it is very likely that activation of one of these prophages
may have facilitated transduction of the blaNDM-1 gene. Although
general transduction accomplished by phages is not as efficient as
conjugative plasmid-mediated gene transfer, it has to be taken
into account for the dissemination of resistance genes among
Acinetobacter strains. Hence, phages may contribute to the adap-
tation of pathogenic Acinetobacter species to selective pressure
caused by the presence of antibiotics.
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