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Stenotrophomonas maltophilia harbors six lytic transglycosylases (LTs): mltA, mltB1, mltB2, mltD1, mltD2, and slt. LT deletion
increased susceptibility of S. maltophilia to aminoglycosides (AGs) and macrolides, and the underlying mechanisms were inves-
tigated. The expression of AG-modifying enzymes and efflux pumps was evaluated by quantitative reverse transcription-PCR
(qRT-PCR). Susceptibility to 1-N-phenylnaphthylamine, vancomycin, SDS, and bile salts was measured to assess outer mem-
brane permeability. In conclusion, increased outer membrane permeability contributes to LT deletion-mediated increase in ami-
noglycoside and macrolide susceptibility.

Lytic transglycosylases (LTs) are an important class of bacterial
enzymes recognized by their role in creating space within the

peptidoglycan (PG) sacculus for its biosynthesis and recycling, cell
division, and the insertion of macromolecular complexes span-
ning the cell wall, such as flagella, pili, and secretion systems (1).
Many bacteria encode an array of different LTs that may be func-
tionally redundant. With respect to their involvement in the bio-
synthesis and recycling of the PG sacculus, LTs are also linked to
the expression of chromosomal �-lactamase genes in some ampR-
�-lactamase-bearing Gram-negative bacteria (2). Therefore,
studies concerning LT-mediated antibiotic resistance primarily
focus on �-lactams over other antibiotics.

Stenotrophomonas maltophilia, a nonfermentative, Gram neg-
ative, aerobic bacillus, is an opportunistic pathogen responsible
for many nosocomial infections (3). It exhibits resistance to a
broad array of antibiotics. According to the sequenced genomes,
S. maltophilia harbors six putative LT genes: mltA, mltB1, mltB2,
mltD1, mltD2, and slt (4). However, very little research has been
published concerning the S. maltophilia LTs, except our recent
report, in which we demonstrated that inactivation of mltD1 con-
fers a partial basal-level �-lactamase derepression phenotype (5).
In this article, we assessed the relationship between LTs and sus-
ceptibility to antibiotics besides �-lactams in S. maltophilia.

S. maltophilia LT single deletion mutant (�mltA, �mltB1,
�mltB2, �mltD1, �mltD2, and �slt) strains and double mutant
(�mltD1 �mltB1 and �mltD1 �mltD2) strains and a triple mutant
(�mltD1 �mltB1 �mltD2) strain were prepared in our previous
study (5). To rule out growth rate-mediated changes in suscepti-
bility, first we assessed whether LT inactivation affected bacterial
growth by monitoring the optical density at 450 nm (OD450) in 24
h with an interval of 3 h. No growth differences were observed
between the wild-type KJ strain and its LT mutants (data not
shown). The drug susceptibilities of wild-type KJ and its derived
individual LT deletion mutants were assessed following Clinical
and Laboratory Standards Institute (CLSI) guidelines (6). Inacti-
vation of each LT did not significantly affect the susceptibility of S.
maltophilia to chloramphenicol, nalidixic acid, or tetracycline, as
the margin of error for the susceptibility test is in the 2-fold MIC
value range (Table 1). It is worth mentioning that each LT mutant

was more susceptible to aminoglycosides (AGs); the �mltB1 and
�slt mutants were the most susceptible (Table 1). Furthermore,
the �mltB1, �mltD1, �mltD2, and �slt mutants exhibited a prom-
inent decrease in macrolide resistance. Since LT inactivation had
never before been associated with an increased susceptibility to
AGs and macrolides, we focused on elucidating the underlying
mechanisms responsible for this phenotype.

Bacterial resistance to AGs can be mediated by target modifi-
cation through mutation or methylation of 16S rRNA, drug mod-
ification by AG-modifying enzymes (AMEs), drug extrusion by
efflux pumps, and changes in membrane permeability (7). The
known mechanisms responsible for macrolide resistance include
23S rRNA modification, macrolide hydrolysis or modification,
efflux pump extrusion, and changes in outer membrane permea-
bility (8). In this article, knocking out LT genes by homologous
recombination did not affect bacterial rRNA modification. Fur-
thermore, no homologs of ere, mph, and lin, which encode pro-
teins involved in macrolide hydrolysis and modification, were
found in S. maltophilia by whole-genome searching (8). There-
fore, we ruled out the possibility that rRNA and macrolide mod-
ification contributed to the LT deletion-mediated decrease in AG
and macrolide resistance.

Five putative AMEs, aminoglycoside phosphotransferase
(Smlt0191), AAC(2=)-Ic (Smlt1669), APH(3=)-IIc (Smlt2120),
streptomycin 3=-phosphotransferase (Smlt2336), and AAC(6=)-Iz
(Smlt3615), and an array of efflux pumps were found in the se-
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quenced S. maltophilia K279a genome (4). Of them, expression of
aph(3=)-IIc, aac(6=)-Iz, smeDEF, smeIJK, smeOP, smeVWX,
smeYZ, and macABCsm has been proven to be related to AG
and/or macrolide susceptibility in S. maltophilia (9–16). To assess
whether the LT inactivation-mediated decrease in AG and macro-
lide resistance was linked to AMEs and efflux pumps, the tran-
scripts of aph(3=)-IIc, aac(6=)-Iz, smeE, smeJ, smeP, smeW, smeX,
smeZ, and macBsm from wild-type KJ and the LT mutants were
quantified by quantitative reverse transcription-PCR (qRT-PCR).
Total RNAs from wild-type KJ and the LT mutants were prepared
from logarithmic-phase bacterial cultures and then reverse tran-
scribed into cDNA as previously described (14). The primers used
for qRT-PCR are listed in Table S1 in the supplemental material.
The 16S rRNA gene was chosen as the normalizing gene. The
relative quantities of mRNA from each gene of interest were de-
termined by the comparative cycle threshold method. The results
revealed that the transcripts of AME and efflux pump-encoding
genes in the LT mutants were comparable to that of the wild-type
KJ, except smeJ (see Fig. S1 in the supplemental material). The
smeJ transcript had a moderate increase in the �mltD1 and �slt
mutants compared to wild-type KJ (see Fig. S1); however, it can-
not account for the AG resistance decrease of both mutants, since
increased expression of the SmeIJK pump should enhance the AG
resistance (12). The possible reasons for the smeJ increase in ex-
pression in �mltD1 and �slt mutants will be discussed later.
Therefore, at the moment, we cannot attribute the AG and mac-
rolide resistance decrease of LT mutants to the decreased expres-
sion of the AME and efflux pump genes assayed.

AGs and macrolides have been reported to enter the Gram-
negative outer membrane by a self-promoted uptake mechanism
(17), which relies on specific properties of the outer membrane.
LTs are a family of enzymes that participate in peptidoglycan ho-
meostasis and further affect the envelope integrity of bacteria. The
loss of LTs has been reported to compromise membrane integrity
(18). Therefore, we considered the possibility that LT deletion
would have an impact on some aspect of the outer membrane. The
hydrophobic fluorescent probe 1-N-phenylnaphthylamine (NPN)
was used to study the permeabilizing effects of self-promoted up-
take molecules on bacterial cells (19). Overnight cultures were
subcultured into fresh LB broth and grown to mid-logarithmic
phase. The cells were harvested by centrifugation, washed with 5
mM HEPES buffer (pH 7.2), and the suspension’s optical density
was adjusted to an OD450 of 0.5 using the same buffer. Then,
100-�l aliquots of cell suspension were pipetted into 96-well mi-

crotiter plates, and NPN was added to a final concentration of 15
�M. Fluorescence was monitored after 5 min of incubation from
three parallel wells per sample using a fluorescence spectropho-
tometer at excitation and emission wavelengths of 355 nm and 402
nm, respectively. The outer membranes of Gram-negative bacte-
ria exclude the hydrophobic probe NPN. Fluorescence is emitted
by NPN only after it partitions into the membrane; therefore,
greater emission of fluorescence represents greater outer mem-
brane permeability to NPN. LT inactivation caused higher uptake
of NPN (Fig. 1A), suggesting there is a membrane defect and
therefore AG may be gotten into cells better.

The outer membrane of Gram-negative bacilli is a general bar-
rier for high-molecular-weight antibiotics such as vancomycin or
macrolides. The vancomycin susceptibility can be used as an in-
dicator for evaluating the outer membrane permeability of Gram-
negative bacteria for high-molecular-weight substances. Next, we
investigated whether LT inactivation altered the outer membrane
permeability for high-molecular-weight substances. The suscep-
tibility of LT mutants to vancomycin was evaluated. Compared to
that of wild-type KJ, the MICs of the �mltB1, �mltD1, �mltD2,
and �slt mutants to vancomycin decreased (Table 1). The elevated
outer membrane permeability for high-molecular-weight sub-
stances in the �mltB1, �mltD1, �mltD2, and �slt mutants can
provide an explanation for the increased macrolide susceptibility
observed in the �mltB1, �mltD1, �mltD2, and �slt mutants.

In view of the outer membrane permeability alteration in LT
mutants, we hypothesize that LT inactivation causes the mem-
brane defect. To further support this hypothesis, the susceptibility
of LT mutants to sodium dodecyl sulfate (SDS) and bile salts was
assessed. The logarithmic-phase wild-type KJ and LT mutant cells
were treated with 0.01% SDS or left untreated. CFU was deter-
mined after 10 min of incubation without shaking. The percentage
of survival was defined as the CFU ratio of the SDS-additive group
to the SDS-free counterpart. The SDS susceptibility increased in
the �mltB1, �mltB2, �mltD1, and �mltD2 mutants compared to
that in wild-type KJ (Fig. 1B). For the bile salts susceptibility assay,
the logarithmic-phase bacterial cells of 5 � 105 CFU/�l were 10-
fold serially diluted. Then, 2 �l of bacterial cells was spotted onto
the bile salts-containing MacConkey agars. The growth of bacte-
rial cells was observed after 18 h of incubation at 37°C. The sus-
ceptibility of �mltB1, �mltD1, and �mltD2 mutants to bile salts
obviously increased (Fig. 1C). Taken together, these results fur-
ther support that LT inactivations cause a membrane defect.

Since individual LT mutants display increased membrane sus-

TABLE 1 Antimicrobial susceptibilities of S. maltophilia KJ and its derived LT deletion mutants

Strain

MIC (�g/ml)a

CHL NAL TET AMK GEN KAN ERY LM VAN

KJ wild type 8 8 16 1,024 1,024 256 64 256 512
�mltA mutant 8 4 16 256 256 128 32 128 256
�mltB1 mutant 8 4 16 64 128 64 8 16 128
�mltB2 mutant 8 4 16 256 128 128 32 256 256
�mltD1 mutant 8 4 16 128 512 128 32 32 64
�mltD2 mutant 8 4 16 128 256 128 32 32 128
�slt mutant 8 8 16 64 128 64 32 64 128
�mltD1 �mltB1 mutant 8 4 16 256 512 64 32 64 128
�mltD1 �mltD2 mutant 8 8 16 128 512 128 32 64 128
�mltD1 �mltB1 �mltD2 mutant 8 8 16 256 512 128 32 128 128
a CHL, chloramphenicol; NAL, nalidixic acid; TET, tetracycline; AMK, amikacin; GEN, gentamicin; KAN, kanamycin; ERY, erythromycin; LM, leucomycin; VAN, vancomycin.
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ceptibility to NPN, SDS, and bile salts (Fig. 1), it would be inter-
esting to determine whether inactivation of more than one LT
simultaneously would show an additive change in the membrane
permeability. The �mltD1 �mltB1, �mltD1 �mltD2, and �mltD1
�mltB1 �mltD2 mutants were thus assessed. Simultaneous inac-
tivation of multiple LTs did not further increase the membrane
susceptibility to aminoglycoside, macrolides, NPN, SDS, and bile
salts (Table 1, Fig. 1).

Cavallari et al. have demonstrated that LT mutations in Pseu-
domonas aeruginosa do not affect membrane permeability and
that these LT mutants exhibit no changes in susceptibility to to-
bramycin (2). In contrast to the observations in P. aeruginosa, LT
inactivation in S. maltophilia increases the outer membrane per-
meability for self-promoted uptake compounds and high-molec-
ular-weight substances, thus resulting in increased susceptibility
to AGs and macrolides. The alteration in the outer membrane
integrity of LT mutants can be an envelope stress to S. maltophilia.
This may be the reason why smeJ transcripts of the �mltD1 and
�slt mutants are increased (see Fig. S1 in the supplemental mate-
rial), since smeIJK is a member of �E-mediated envelope stress
response regulon in S. maltophilia (12). To our knowledge, this is

the first report linking LT inactivation to a decrease in AG and
macrolide resistance.
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