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The activity of ceftazidime-avibactam was assessed against 961 isolates of meropenem-nonsusceptible Enterobacteriaceae. Most
meropenem-nonsusceptible metallo-�-lactamase (MBL)-negative isolates (97.7%) were susceptible to ceftazidime-avibac-
tam. Isolates that carried KPC or OXA-48-like �-lactamases, both alone and in combination with extended-spectrum
�-lactamases (ESBLs) and/or AmpC �-lactamases, were 98.7% and 98.5% susceptible to ceftazidime-avibactam, respec-
tively. Meropenem-nonsusceptible, carbapenemase-negative isolates demonstrated 94.7% susceptibility to ceftazidime-
avibactam. Ceftazidime-avibactam activity was compromised only in isolates for which carbapenem resistance was medi-
ated through metallo-�-lactamases.

Carbapenems are bactericidal �-lactam antibiotics that are
recommended for therapy against infections caused by ex-

tended-spectrum �-lactamase (ESBL)- and/or AmpC-cepha-
losporinase-producing Enterobacteriaceae (1–4). Two clinically
important mechanisms of resistance to carbapenems among En-
terobacteriaceae have been identified. One is the production of
carbapenemases, such as serine carbapenemases (KPC and OXA)
and metallo-�-lactamases (VIM, IMP, and NDM) (5), and the
other is the production of ESBLs or Ambler class C �-lactamases
coupled with reduced expression or loss of function of one or
more outer membrane pore-forming proteins (6–8).

Avibactam is a non-�-lactam–�-lactamase inhibitor that
inhibits the activities of Ambler class A �-lactamases, including
ESBLs and Klebsiella pneumoniae carbapenemase (KPC), class C
�-lactamases, and some class D �-lactamases (9). Ceftazidime-
avibactam displays antibacterial activity in vitro against KPC-
producing clinical isolates of Enterobacteriaceae (10), including
isolates carrying ompK36 mutations (11), and against AmpC-pro-
ducing Enterobacter spp. and ESBL-producing K. pneumoniae
strains with impaired permeability (12). Ceftazidime-avibactam
also displayed low MICs (�8 �g/ml) against noncarbapenemase-
producing, carbapenem-nonsusceptible (NS) Enterobacteriaceae
isolated from patients in France (13). Moreover, while recogniz-
ing that ceftazidime is not hydrolyzed significantly by OXA-48,
but that blaOXA-48-containing isolates of Enterobacteriaceae com-
monly also carry genes encoding ESBLs that do hydrolyze ceftazi-
dime, ceftazidime-avibactam was found to be active against car-
bapenem-resistant, blaOXA-48-positive Enterobacteriaceae (12, 14).
In contrast, metallo-�-lactamase (MBL)-producing Enterobacte-
riaceae are generally not susceptible to carbapenems, nor are they
susceptible to ceftazidime-avibactam (9, 12), because avibactam
does not inhibit MBLs (15).

The aim of the present study was to characterize the in vitro
activity of ceftazidime-avibactam against contemporary carbap-
enem-nonsusceptible, bla (�-lactamase gene)-characterized clin-
ical isolates of Enterobacteriaceae collected from hospitalized pa-
tients over a 3-year time period in a global surveillance program
(International Network for Optimal Resistance Monitoring

[INFORM]). In the years 2012 to 2014, inclusive, the INFORM
program received 34,062 isolates of Enterobacteriaceae collected
by medical center laboratories in Europe (19 countries from 93
laboratories), Asia/Pacific (9 countries from 41 laboratories),
Latin America (6 countries from 26 laboratories), and the Middle
East/Africa (5 countries from 16 laboratories). Of the 34,062 iso-
lates of Enterobacteriaceae, 961 (2.8%) isolates were meropenem
nonsusceptible (used as a marker of nonsusceptibility to carbap-
enems), and these were the focus of this study.

All study isolates were shipped to a central reference laboratory
at International Health Management Associates, Inc. (IHMA;
Schaumburg, IL, USA), where their identities were confirmed us-
ing a Bruker Biotyper matrix-assisted laser desorption ionization–
time of flight (MALDI-TOF) mass spectrometry instrument
(Bruker Daltonics, Billerica, MA, USA). All antimicrobial suscep-
tibility testing was performed by using in-house-prepared 96-well
broth microdilution panels, according to Clinical and Laboratory
Standards Institute (CLSI) standards (16, 17). Avibactam was
tested at a fixed concentration of 4 �g/ml in combination with
doubling dilutions of ceftazidime (16). MICs were interpreted us-
ing CLSI breakpoints (16), where available. Ceftazidime-avibac-
tam MICs were interpreted using U.S. FDA MIC breakpoints for
Enterobacteriaceae, with susceptibility at an MIC of �8 �g/ml and
resistance at an MIC of �16 �g/ml (18). U.S. FDA MIC interpre-
tative breakpoints were also used for tigecycline (19). For colistin,
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EUCAST MIC interpretative breakpoints against Enterobacteria-
ceae were used (20).

All 961 meropenem-nonsusceptible isolates were screened, us-
ing a combination of the microarray-based assay Check-MDR
CT101 kit (Check-Points, Wageningen, the Netherlands) and
published multiplex PCR assays, to detect and identify genes en-
coding carbapenemases (KPC, OXA-48, GES, IMP, VIM, NDM,
and SPM), ESBLs (TEM, SHV, CTX-M, VEB, PER, and GES),
original-spectrum �-lactamases (OSBLs) (TEM and SHV that did
not contain substitutions at amino acid positions 104, 164, or 238
[TEM] or 146, 238, or 240 [SHV] associated with ESBL activity),
and plasmid-mediated AmpC �-lactamases (ACC, ACT, CMY,
DHA, FOX, MIR, and MOX), as previously described (21). En-
zyme variants were identified by amplification of full-length
�-lactamase genes, followed by DNA sequencing, and these were
compared against the National Center for Biotechnology Infor-
mation database (www.ncbi.nlm.nih.gov) and the Lahey Clinic
website (www.lahey.org/studies). The distributions of KPC and
MBLs in these isolates were described recently in great detail (ref-
erence 22 and K. M. Kazmierczak, D. J. Biedenbach, M. Hackel, S.
Rabine, B. L. M. de Jonge, S. K. Bouchillon, D. F. Sahm, and P. A.
Bradford, unpublished data).

Of the 34,062 isolates of Enterobacteriaceae that were tested,
99.5% (33,877 isolates) were susceptible to ceftazidime-avibactam
(MIC, �8 �g/ml), and 2.8% were meropenem nonsusceptible
(Table 1). The considerably lower percentage of susceptibility to
imipenem (85.1%) compared to that to doripenem (97.3%) and
meropenem (97.2%) was attributable to the presence of 4,572
isolates of Proteeae species (13.4% of all isolates tested) in this set,
as these species demonstrated intrinsic elevated MICs for imi-
penem (data not shown) (16). Meropenem-nonsusceptible iso-
lates were more susceptible to ceftazidime-avibactam (83.5% sus-
ceptible) than to all other �-lactams tested, which showed rates of
susceptibility of �12% (Table 1).

Of the 961 meropenem-nonsusceptible isolates identified,
754 isolates (78.5%) possessed one (n � 738) or more (n � 16)
carbapenemase genes, whereas in 207 (21.5%) isolates, no carbap-
enemase gene could be identified (Table 2). Of the 754 carbapen-
emase-positive isolates, 132 isolates possessed only a metallo-�-
lactamase (MBL), 13 carried an MBL and a KPC or OXA-48-like
gene, and 609 harbored one or more serine carbapenemase genes
(KPC, OXA-48-like, or GES), with 548 of the 609 (90%) isolates
being K. pneumoniae. Against carbapenemase-positive, metallo-
�-lactamase-negative isolates (n � 609), susceptibility to ceftazi-
dime-avibactam was higher (98.7%) than that for any other agent
tested, including tigecycline (91.5%) and colistin (81.0%) (Table
1). Ceftazidime-avibactam was very active against KPC-positive
(98.7% susceptible), OXA-48-like (98.5% susceptible), and GES
(100%) carbapenemase-producing isolates of Enterobacteriaceae
(Tables 1 and 2). Ceftazidime-avibactam was also active against
meropenem-nonsusceptible carbapenemase-negative isolates
(94.7% susceptible) but did not demonstrate activity against iso-
lates with metallo-�-lactamases, as expected (Table 1).

Many of the carbapenemase-containing carbapenem-nonsus-
ceptible isolates carried additional �-lactamase genes. Approxi-
mately 50% of isolates with a KPC also possessed an ESBL and/or
plasmid-encoded AmpC �-lactamase. Similarly, 83%, and 86% of
MBL-positive and OXA-48-like-positive isolates, respectively,
possessed an ESBL gene, an AmpC gene, or both. The presence of
these ESBL and/or AmpC �-lactamases in these carbapenemase-

containing isolates did not significantly affect the susceptibility for
ceftazidime-avibactam, as shown by the MIC distributions of
these subsets of isolates (Table 2). The majority (94%) of the car-
bapenem-nonsusceptible Enterobacteriaceae that did not contain
a carbapenemase harbored ESBLs and/or Ambler class C �-lacta-
mases that were encoded by chromosomally located or plasmid-
carried genes. The presence of these �-lactamases, coupled with
reduced expression or loss of function of one or more outer mem-
brane pore-forming proteins, is most likely the reason for the
reduced susceptibility to carbapenems observed among these iso-
lates (6–8). Whereas susceptibility to carbapenems was lost in
these isolates, this resistance mechanism did not impact the activ-
ity of ceftazidime-avibactam, with 94.7% of the isolates remaining
susceptible to this combination.

If future clinical results confirm the in vitro data described
here, ceftazidime-avibactam might be useful in the chemotherapy
of infections caused by carbapenem-nonsusceptible Enterobacte-
riaceae. To understand this potential, it is helpful to summarize
susceptibility to ceftazidime-avibactam by the carbapenem resis-
tance mechanism. In general, only the presence of an MBL gene
was associated with resistance to ceftazidime-avibactam (this
study and references 12, 23, and 24). Isolates nonsusceptible to
carbapenems by other mechanisms, such as KPC (this study and
references 10, 12, and 23–28) and OXA-48 (this study and refer-
ences 12, 14, and 24) carbapenemases were susceptible to ceftazi-
dime-avibactam. Additionally, carbapenem-nonsusceptible En-
terobacteriaceae that carried noncarbapenemase �-lactamase
genes, such as those encoding an ESBL or AmpC enzyme, were
susceptible to ceftazidime-avibactam (this study and reference
12). This is in agreement with a recent surveillance analysis of
Enterobacteriaceae isolates from the United States (25). A further
noteworthy point is that intrinsic imipenem resistance among
Proteeae species (16) did not affect susceptibility to ceftazidime-
avibactam (Table 1).

This study identified only a few isolates (n � 19; �0.1% of
Enterobacteriaceae) for which the reduced ceftazidime-avibactam
susceptibility could not be explained by the presence of avibac-
tam-insensitive �-lactamases, i.e., MBLs. The mechanisms of re-
duced susceptibility in those isolates remain to be investigated but
might be attributable to target modifications (29). Additionally,
the presence of avibactam-insensitive �-lactamases (e.g., other
MBLs) that were not detected with the PCR assays cannot be ex-
cluded. Upregulated efflux is a less-likely mechanism, as it was not
implicated in reduced susceptibility to ceftazidime-avibactam in a
direct test of that hypothesis (30). Interestingly, a carbapenem-
resistant clinical isolate of K. pneumoniae carrying blaKPC-3 was
recently described that was resistant to ceftazidime-avibactam
(31). The inferred amino acid sequence encoded by the blaKPC-3 in
that isolate was unaltered, similarly implying a non-�-lactamase-
mediated mechanism of ceftazidime-avibactam resistance.

A noteworthy feature of the study reported here was that a
substantial proportion of the meropenem-nonsusceptible isolates
did not contain any gene related to currently known carbapen-
emases but rather contained an ESBL gene, AmpC gene, or both.
Ceftazidime-avibactam showed good activity against these iso-
lates (96.4% susceptible [188 of the 195 isolates]). The proportion
of noncarbapenemase-mediated meropenem-nonsusceptible iso-
lates of Enterobacteriaceae (207/961) should not be taken as an
estimate of prevalence, because INFORM is not a prevalence-
based surveillance program. However, prevalence-based studies
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TABLE 1 In vitro activities of ceftazidime-avibactam and comparative antimicrobial agents tested against Enterobacteriaceae collected by the
INFORM global surveillance program from 2012 to 2014

Organism group (n) Antimicrobial agent

MIC values (�g/ml) MIC interpretation (%)a

MIC50 MIC90 MIC range Susceptible Intermediate Resistant

All Enterobacteriaceae (34,062)b Ceftazidime-avibactam 0.12 0.5 �0.015 to �128 99.5 0.5
Ceftazidime 0.25 64 �0.015 to �128 75.6 1.9 22.5
Cefepimec �0.12 �16 �0.12 to �16 77.3 4.9 17.8
Aztreonam 0.12 64 �0.015 to �128 74.3 1.9 23.8
Piperacillin-tazobactam 2 128 �0.25 to �128 84.0 5.9 10.1
Doripenem 0.06 0.25 �0.008 to �4 97.3 0.5 2.2
Ertapenem (n � 20,885)d 0.015 0.25 �0.002 to �1 94.5 1.6 3.9
Imipenem 0.25 2 �0.03 to �8 85.1 7.6 7.3
Meropenem 0.03 0.12 �0.004 to �8 97.2 0.4 2.4
Amikacin 2 8 �0.25 to �32 96.3 1.5 2.2
Colistine �0.12 �4 �0.015 to �4 83.1 16.9
Tigecycline 0.5 2 �0.015 to �8 92.9 5.7 1.4
Levofloxacin 0.06 �4 �0.03 to �4 75.0 2.5 22.5

Meropenem nonsusceptible (961) Ceftazidime-avibactam 1 �128 �0.015 to �128 83.5 16.5
Ceftazidime �128 �128 0.06 to �128 5.3 2.3 92.4
Cefepime �16 �16 �0.12 to �16 5.4 9.0 85.6
Aztreonam �128 �128 �0.015 to �128 8.9 0.8 90.3
Piperacillin-tazobactam �128 �128 0.5 to �128 3.2 3.7 93.1
Doripenem �4 �4 0.03 to �4 9.6 13.2 77.2
Ertapenem (n � 534) �1 �1 0.015 to �1 2.8 0.8 96.4
Imipenem �8 �8 0.06 to �8 12.2 5.2 82.6
Meropenem �8 �8 2 to �8 0.0 16.2 83.8
Amikacin 16 �32 �0.25 to �32 58.1 22.0 19.9
Colistin �0.12 �4 �0.015 to �4 81.4 18.6
Tigecycline 1 2 0.06 to �8 91.0 7.5 1.5
Levofloxacin �4 �4 �0.03 to �4 18.6 4.3 77.1

Meropenem nonsusceptible, MBL
negative (816)

Ceftazidime-avibactam 1 4 �0.015 to �128 97.7 2.3f

Ceftazidime 128 �128 0.06 to �128 5.9 2.7 91.4
Cefepime �16 �16 �0.12 to �16 5.6 9.4 85.0
Aztreonam �128 �128 �0.015 to �128 4.7 0.6 94.7
Piperacillin-tazobactam �128 �128 0.5 to �128 2.6 3.8 93.6
Doripenem �4 �4 0.03 to �4 11.2 15.0 73.8
Ertapenem (n � 452) �1 �1 0.015 to �1 2.4 0.4 97.2
Imipenem �8 �8 0.06 to �8 14.1 5.5 80.4
Meropenem �8 �8 2 to �8 0.0 17.4 82.6
Amikacin 16 �32 �0.25 to �32 57.9 25.2 16.9
Colistin �0.12 �4 �0.015 to �4 81.5 18.5
Tigecycline 1 2 0.06 to 8 91.4 7.4 1.2
Levofloxacin �4 �4 �0.03 to �4 16.5 3.7 79.8

Meropenem nonsusceptible,
carbapenemase positive, MBL
negative (609)

Ceftazidime-avibactam 1 4 �0.015 to �128 98.7 1.3
Ceftazidime 128 �128 0.06 to �128 5.6 2.9 91.5
Cefepime �16 �16 �0.12 to �16 5.1 9.4 85.5
Aztreonam �128 �128 �0.015 to �128 3.6 0.3 96.1
Piperacillin-tazobactam �128 �128 2 to �128 0.5 2.0 97.5
Doripenem �4 �4 0.5 to �4 4.8 10.2 85.0
Ertapenem (n � 329) �1 �1 0.25 to �1 0.9 0.3 98.8
Imipenem �8 �8 0.5 to �8 0.8 3.5 95.7
Meropenem �8 �8 2 to �8 0.0 8.4 91.6
Amikacin 16 �32 �0.25 to �32 52.1 32.0 15.9
Colistin �0.12 �4 �0.015 to �4 81.0 19.0
Tigecycline 1 2 0.06 to 8 91.5 7.7 0.8
Levofloxacin �4 �4 �0.03 to �4 14.8 3.9 81.3

KPC positive, MBL negative
(476)g

Ceftazidime-avibactam 1 4 �0.015 to 128 98.7 1.3
Ceftazidime �128 �128 1 to �128 2.1 3.4 94.5
Cefepime �16 �16 �0.12 to �16 2.9 10.7 86.4
Aztreonam �128 �128 2 to �128 0.4 0.2 99.4
Piperacillin-tazobactam �128 �128 2 to �128 0.6 2.1 97.3
Doripenem �4 �4 0.5 to �4 2.1 8.4 89.5
Ertapenem (n � 269) �1 �1 0.25 to �1 1.1 0.4 98.5
Imipenem �8 �8 0.5 to �8 0.4 1.1 98.5
Meropenem �8 �8 2 to �8 0.0 3.6 96.4

(Continued on following page)
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TABLE 1 (Continued)

Organism group (n) Antimicrobial agent

MIC values (�g/ml) MIC interpretation (%)a

MIC50 MIC90 MIC range Susceptible Intermediate Resistant

Amikacin 32 �32 �0.25 to �32 44.6 40.1 15.3
Colistin �0.12 �4 �0.015 to �4 82.6 17.4
Tigecycline 1 2 0.06 to 8 91.6 7.4 1.0
Levofloxacin �4 �4 �0.03 to �4 12.8 3.2 84.0

OXA-48-like positive, MBL
negative (134)h

Ceftazidime-avibactam 0.5 2 0.03 to 64 98.5 1.5
Ceftazidime 64 �128 0.06 to �128 17.9 1.5 80.6
Cefepime �16 �16 �0.12 to �16 12.7 4.5 82.8
Aztreonam 128 �128 �0.015 to �128 14.9 0.8 84.3
Piperacillin-tazobactam �128 �128 32 to �128 0.0 1.5 98.5
Doripenem �4 �4 0.5 to �4 14.9 16.4 68.7
Ertapenem (n � 62) �1 �1 �1 0.0 0.0 100
Imipenem 8 �8 1 to �8 2.2 12.0 85.8
Meropenem �8 �8 2 to �8 0.0 26.1 73.9
Amikacin 8 �32 0.5 to �32 78.4 3.0 18.6
Colistin �0.12 �4 �0.015 to �4 75.4 24.6
Tigecycline 1 2 0.12 to 4 91.0 9.0 0.0
Levofloxacin �4 �4 �0.03 to �4 20.9 6.7 72.4

Meropenem nonsusceptible, MBL
negative, carbapenemase
negative (207)

Ceftazidime-avibactam 2 4 0.06 to �128 94.7 5.3
Ceftazidime 128 �128 0.12 to �128 6.8 1.9 91.3
Cefepime �16 �16 �0.12 to �16 7.2 9.7 83.1
Aztreonam 128 �128 0.03 to �128 7.7 1.5 90.8
Piperacillin-tazobactam �128 �128 0.5 to �128 8.7 9.2 82.1
Doripenem 2 �4 0.03 to �4 30.4 29.0 40.6
Ertapenem (n � 123) �1 �1 0.015 to �1 6.5 0.8 92.7
Imipenem 1 �8 0.06 to �8 53.1 11.6 35.3
Meropenem 4 �8 2 to �8 0.0 44.0 56.0
Amikacin 8 �32 �0.25 to �32 74.9 5.3 19.8
Colistin �0.12 �4 �0.015 to �4 83.1 16.9
Tigecycline 1 2 0.06 to 8 91.3 6.3 2.4
Levofloxacin �4 �4 �0.03 to �4 21.7 2.9 75.4

MBL positive (145)i Ceftazidime-avibactam �128 �128 0.5 to �128 3.4 96.6
Ceftazidime �128 �128 0.5 to �128 2.1 0.0 97.9
Cefepime �16 �16 �0.12 to �16 4.1 6.2 89.7
Aztreonam 64 �128 �0.015 to �128 32.4 2.1 65.5
Piperacillin-tazobactam �128 �128 0.5 to �128 6.9 2.8 90.3
Doripenem �4 �4 2 to �4 0.0 3.4 96.6
Ertapenem (n � 82) �1 �1 0.12 to �1 4.9 2.4 92.7
Imipenem �8 �8 0.5 to �8 1.4 3.4 95.2
Meropenem �8 �8 2 to �8 0.0 9.7 90.3
Amikacin 16 �32 1 to �32 59.3 4.1 36.6
Colistin �0.12 �4 �0.015 to �4 80.7 19.3
Tigecycline 1 4 0.06 to �8 88.3 8.3 3.4
Levofloxacin �4 �4 0.06 to �4 30.3 7.6 62.1

a MICs were interpreted according to CLSI breakpoints (16), with the exception of the following: ceftazidime-avibactam, for which MICs were interpreted using the MIC
interpretative criteria according to the FDA (18); tigecycline, for which MICs were interpreted using the MIC interpretative criteria according to the FDA (19); and colistin, for
which EUCAST breakpoints were applied (20).
b The 34,062 Enterobacteriaceae isolates were composed of the following: Citrobacter amalonaticus (n � 21), Citrobacter braakii (n � 109), Citrobacter diversus (n � 1), Citrobacter
farmeri (n � 4), Citrobacter freundii (n � 1,033), Citrobacter gillenii (n � 1), Citrobacter koseri (n � 707), Citrobacter murliniae (n � 5), Citrobacter sedlakii (n � 3), Citrobacter
youngae (n � 1), Citrobacter, species not determined (n � 4), Enterobacter aerogenes (n � 1,350), Enterobacter amnigenus (n � 1), Enterobacter asburiae (n � 250), Enterobacter
cancerogenus (n � 1), Enterobacter cloacae (n � 2,207), Enterobacter gergoviae (n � 4), Enterobacter hormaechei (n � 1), Enterobacter kobei (n � 93), Enterobacter ludwigii (n � 24),
Escherichia coli (n � 11,770), Escherichia fergusonii (n � 1), Escherichia hermannii (n � 2), Escherichia vulneris (n � 1), Hafnia alvei (n � 4), Klebsiella oxytoca (n � 1,900),
Klebsiella ozaenae (n � 1), Klebsiella pneumoniae (n � 9,098), Klebsiella variicola (n � 7), Kluyvera ascorbata (n � 2), Morganella morganii (n � 979), Pantoea agglomerans (n � 2),
Proteus hauseri (n � 3), Proteus mirabilis (n � 2,235), Proteus penneri (n � 42), Proteus rettgeri (n � 2), Proteus vulgaris (n � 995), Providencia alcalifaciens (n � 14), Providencia
rettgeri (n � 141), Providencia stuartii (n � 161), Raoultella ornithinolytica (n � 57), Raoultella planticola (n � 13), Raoultella terrigena (n � 2), Serratia liquefaciens (n � 16),
Serratia marcescens (n � 785), Serratia odorifera (n � 1), Serratia rubidaea (n � 1), and Serratia ureilytica (n � 7).
c For cefepime, the susceptible-dose-dependent (SDD) interpretive category replaced the intermediate category in 2014.
d Ertapenem was not tested against isolates collected in 2014.
e Colistin was tested with a final concentration of 0.002% polysorbate-80 in each panel well.
f The 19 MBL-negative isolates that were resistant to ceftazidime-avibactam (MIC, �8 �g/ml) were composed of the following: C. braakii (n � 1), E. aerogenes (n � 1), E. coli
(n � 2), K. oxytoca (n � 2), K. pneumoniae (n � 11), P. vulgaris (n � 1), and S. marcescens (n � 1).
g Includes two isolates carrying KPC-2 and OXA-163 and one isolate carrying KPC-2 and GES-6; does not include 6 isolates carrying KPC and MBL.
h Includes isolates carrying OXA-48 (n � 116), OXA-244 (n � 9), OXA-181 (n � 4), and OXA-163 (n � 5); two of these carry both OXA-163 and KPC-2. Does not include 7
isolates carrying OXA-48-like and MBL.
i The 145 isolates that were MBL positive were composed of the following: C. freundii (n � 8), E. asburiae (n � 4), E. cloacae (n � 31), E. coli (n � 5), K. oxytoca (n � 7), K.
pneumoniae (n � 73), P. mirabilis (n � 8), P. rettgeri (n � 1), P. stuartii (n � 3), and S. marcescens (n � 5). Also included are 13 isolates carrying MBLs and serine carbapenemases:
VIM-1 and KPC-2 (n � 4), IMP-4 and KPC-2 (n � 2), VIM-4 and OXA-48 (n � 2), VIM-31 and OXA-48 (n � 1), NDM-1 and OXA-48 (n � 3), and NDM-1 and OXA-232 (n � 1).
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have been performed, and the frequency of noncarbapenemase-
mediated mechanisms among carbapenem-nonsusceptible Enter-
obacteriaceae has been found to be 77.2 to 98.6% (13, 32–34).
These estimates exceeded the proportion observed here, but that is
likely because those collections included ertapenem-nonsuscep-
tible isolates, against which meropenem can retain some activity,
whereas that was not the case in the present work (35). In one of
these examples, consisting of carbapenem-nonsusceptible but
carbapenemase-negative isolates collected in France (13), the cef-
tazidime-avibactam MICs were �4 �g/ml (MIC90, 1 �g/ml), in
good agreement with the global surveillance data reported here.

In conclusion, the analyses presented here of global surveil-
lance data for ceftazidime-avibactam and comparator agents
tested against carbapenem-nonsusceptible Enterobacteriaceae
should prove helpful in identifying potential anti-Enterobacte-
riaceae therapies when therapeutic options are limited through
reduced susceptibility to currently available agents. Ceftazidime-
avibactam is a potent agent in vitro against meropenem-nonsus-
ceptible Enterobacteriaceae, except for isolates in which carbap-
enem resistance is mediated through MBLs.
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