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Abstract

Cubic Hermite hexahedral finite element meshes have some well-known advantages over linear 

tetrahedral finite element meshes in biomechanical and anatomic modeling using isogeometric 

analysis. These include faster convergence rates as well as the ability to easily model rule-based 

anatomic features such as cardiac fiber directions. However, it is not possible to create closed 

complex objects with only regular nodes; these objects require the presence of extraordinary nodes 

(nodes with 3 or >= 5 adjacent elements in 2D) in the mesh. The presence of extraordinary nodes 

requires new constraints on the derivatives of adjacent elements to maintain continuity. We have 

developed a new method that uses an ensemble coordinate frame at the nodes and a local-to-global 

mapping to maintain continuity. In this paper, we make use of this mapping to create cubic 

Hermite models of the human ventricles and a four-chamber heart. We also extend the methods to 

the finite element equations to perform biomechanics simulations using these meshes. The new 

methods are validated using simple test models and applied to anatomically accurate ventricular 

meshes with valve annuli to simulate complete cardiac cycle simulations.
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1. Introduction

Computational models of cardiac biomechanics have been used to study normal cardiac 

physiology [Kerckhoffs et al. 2007] and pathological conditions such as heart failure 

[Kerckhoffs et al. 2010; Niederer et al. 2011]. Advances in non-invasive imaging technology 

have made it feasible to generate patient-specific ventricular models [Aguado-Sierra et al. 

2011; Krishnamurthy et al. 2013], but it remains difficult to create high-quality meshes that 

Correspondence to: Adarsh Krishnamurthy, adarsh@iastate.edu.

HHS Public Access
Author manuscript
Comput Aided Geom Des. Author manuscript; available in PMC 2017 March 01.

Published in final edited form as:
Comput Aided Geom Des. 2016 March ; 43: 27–38. doi:10.1016/j.cagd.2016.02.016.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



include anatomic features such as valve annuli automatically, owing to the irregular shape of 

the resulting cardiac geometry.

Cubic-Hermite finite element interpolation schemes have been popular in cardiac modeling 

because of their convergence properties in finite element simulations of ventricular 

biomechanics [Costa et al. 1996] and their ability to capture smooth geometries compactly. 

However, construction of cubic-Hermite geometric meshes have been limited to ventricular 

geometries below the valve plane due to difficulties in handling complex topologies of the 

atria and great veins (Figure 2). Most previous cardiac models using high-order meshes have 

been restricted to geometries described by a single set of parametric coordinates that are 

topologically equivalent to a cylinder [Vetter & McCulloch 1998]. However, such meshes 

require special boundary conditions at the cardiac apex to enable multiple overlapping nodes 

or “sector” elements [Bradley et al. 1997] to close the mesh. The restriction of using a single 

set of parametric coordinates enables enforcing continuity across element edges easier, but 

introduces element distortions.

Gonzales et al. [2013] removed the restriction of having a single set of parametric 

coordinates in the mesh. The mesh is discretized into a number of sub-regions, each with its 

own set of parametric coordinates. However, this introduces nodes with an irregular number 

of neighboring elements, known as extraordinary nodes, at the interface between the sub-

regions. Extraordinary nodes are routinely used in linear hexahedral meshes. However, in 

high-order meshes, enforcing smoothness (i.e., C0, G1, or C1 continuity) conditions along 

edges incident on extraordinary nodes become complicated. Gonzales et al. [2013] described 

new methods for constructing high-quality bicubic and tricubic Hermite finite element 

meshes of the human atria. Their meshes preserved smoothness between cubic Hermite 

elements by introducing an ensemble coordinate frame centered on the nodes and using a 

generalized local-to-global mapping to transform the derivatives. They used this mapping to 

construct static finite element meshes of the human atria that can be used to perform non-

deforming electrophysiology simulations. We make use of the same mapping in this paper to 

create finite-element meshes of a four-chamber heart and cardiac ventricles with valve 

annuli. In addition, we extend the mapping to displacements and coordinate frames, to 

perform deforming biomechanics simulations using these finite-element meshes.

Cardiac biomechanics simulations make use of the finite strain theory to model deformation 

of the myocardial tissue. This is because the tissue undergoes large deformations during the 

cardiac cycle. In addition, the tissue properties are non-linear and anisotropic; the cardiac 

muscle tissue is stiffer along the axial direction of the cells called the fiber direction. Hence, 

the constitutive models used for cardiac mechanics make use of hyperelastic, exponential 

stress-strain relationships with the parameters being different for the fiber and the two cross-

fiber directions. In order to capture these large deformations accurately, the displacements of 

the nodes in the deformable mesh need to be consistently mapped across extraordinary 

nodes. We make use of the local-to-global mapping used for the geometry to map the global 

displacements to the local coordinate frame.

The cardiac cells in the myocardium are oriented in specific directions across the cardiac 

wall. The orientation follows a helical pattern from the outside epicardial surface to the 
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inside endocardial surface. In simple ventricular models, this helical orientation can be 

easily described using a single angle with respect to the circumferential direction of the 

ventricle. However, using a single fiber angle to describe the fiber direction introduces 

discontinuity in the direction vectors across edges that are incident on extraordinary nodes. 

In addition, the fiber angles themselves cannot be converted to the local element coordinates 

directly using the local-to-global map since the local element parametric directions are not 

consistent across different regions in meshes with extraordinary nodes. Hence, we convert 

the fiber angles to local orthogonal coordinate frames and then use the local-to-global map 

to convert these to consistent fiber directions across element boundaries. However, the use of 

coordinate frames instead of fiber angles also necessitates the use of a different method for 

interpolating coordinate frames within the element to capture the changes in the fiber 

direction smoothly. We make use of the smooth interpolation of coordinate frames in the 

log-Euclidean space. The coordinate frame is converted to the log-Euclidean space by taking 

its matrix logarithm, interpolated linearly, and converted back to Euclidian space using the 

matrix exponential.

In this paper, we extend the generalized local-to-global mapping to perform isogeometric 

biomechanics simulations with cubic-Hermite meshes that have extraordinary nodes. The 

main contributions of the paper include:

• Extending the local-to-global mapping to map displacements and fiber directions in 

the local elements.

• Methods to construct the element stiffness matrices in local element coordinates 

using the local-to-global mapping (using global perturbations) in meshes with 

extraordinary nodes.

• Assembling the element stiffness matrices to create a global stiffness matrix in 

ensemble coordinates.

• Evaluating the computational error and convergence of solution in simple meshes 

with extraordinary nodes.

• Application of the methods to perform biomechanics simulations in ventricular 

models with valve annuli and in four-chamber cardiac models.

2. Related and Previous Work

Cubic-Hermite meshes have been popular in isogeometric finite element analysis, since the 

representation allows all DOFs to be concentrated at the element corners, without the need 

for element edge or body nodes. This simplifies the topology or the connectivity information 

of cubic-Hermite meshes when compared to cubic-Bézier patches, even though both 

representations are equivalent. In addition, all mathematical derivations that use cubic-

Bézier patches are also valid for cubic-Hermite patches. Several researchers have derived the 

conditions for continuity of piecewise polynomial surface patches; we just list a few that 

were used to motivate the current work. The paper by DeRose [1990] and the review by Du 

& Schmitt [1990] derive the conditions for G1 continuity for cubic-Bézier patches in the 
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presence of extraordinary nodes. Che et al. [2005]; Wang & Zhang [2010] extend the 

discussion to include continuity of adjacent NURBS surfaces.

Isogeometric analysis using NURBS surfaces and basis functions were first developed by 

Hughes et al. [2005] for general finite element analysis. However, the method developed by 

Nielsen et al. [1991] for modeling cardiac geometry and mechanics can be considered 

isogeometric analysis since the same cubic-Hermite basis functions were used to interpolate 

the cardiac geometry and the finite element dependent variable. The methods developed by 

Nielsen et al. [1991] were restricted to meshes that have only regular nodes. This work 

extends the finite element analysis to meshes that have extraordinary nodes. We make use of 

the general framework developed by Gonzales et al. [2013] to construct cubic-Hermite 

meshes with extraordinary nodes and extend it to perform biomechanics simulations.

Cubic-Hermite elements have been shown to have better convergence properties compared 

to linear hexahedral or tetrahedral elements in cardiac electrophysiology simulations. 

Vincent et al. [2015] compared the convergence behavior of linear Lagrange, cubic-Hermite, 

and cubic Hermite-style serendipity interpolation methods for finite element simulations of 

cardiac electrophysiology in static meshes. They found that the high-order methods reach 

converged solutions with fewer degrees of freedom and longer element edge lengths than 

traditional linear elements. Recently, Kapl et al. [2015] reported that optimal convergence in 

isogeometric finite element analysis occurs for bilinear two-patch geometries and C1 splines 

of polynomial degree at least 3. Extending on this result, Collin et al. [2015] inferred that 

optimal convergence of C1 isogeometric spaces occur with analysis-suitable G1 geometry 

parametrizations. In our simulations, we expect the same convergence advantages of cubic-

Hermite elements over linear hexahedral or tetrahedral elements in biomechanics 

simulations with deforming meshes.

Subdivision has been extensively used in computer graphics and animation to overcome the 

difficulty of enforcing continuity across adjacent surface patches. In addition, the continuity 

of subdivision surfaces around extraordinary nodes has been well characterized [Doo & 

Sabin 1978; Catmull & Clark 1978]. However, the use of subdivision surfaces has been 

limited in finite element analysis. Gonzales et al. [2013] make use of the Li-Kobbelt 

interpolatory subdivision scheme [Li et al. 2005] as an intermediate step to calculate the 

local element derivatives. In addition, for estimating the internal derivatives of cubic 

Hermite volumes, a volume subdivision scheme such as the one developed by Bajaj et al. 

[2002] is required. We briefly explain the methods used to estimate the cubic-Hermite 

derivatives in this paper.

There have been detailed histological studies [Streeter Jr et al. 1969; LeGrice et al. 1995; 

Costa et al. 1999] in isolated canine specimens to measure the anisotropic structure of the 

myocardium. The myocardium consists of a mesh of myofibers embedded in laminar sheets 

separated by cleavage planes. Statistical analysis of fiber architecture variation in a 

population of human hearts has revealed that fiber orientations are well preserved between 

individuals [Lombaert et al. 2011]. This suggests that the fiber orientations in a human heart 

can be modeled using measurements from normal adult humans after accounting for 

variations in ventricle size and shape. The fiber angles in the epicardial (outside) surface of 
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normal hearts are measured to be −60° to the circumferential direction, while they are 

measured to be 60° to the circumferential direction in the endocardial (inside) surface. The 

fiber angles across the ventricular wall usually vary linearly between these two angles.

To overcome the problems associated with interpolation of fiber angles in meshes with 

extraordinary nodes, we make use of a coordinate-frame interpolation. This is 

mathematically similar to interpolation of tensor fields. However, interpolating tensor fields 

in normal Euclidean space results in null or non-positive-definite interpolated tensors 

[Fillard et al. 2006] that are not representative of coordinate frames. Affine invariant 

Riemannian frameworks have been proposed which overcome these artifacts but are 

computationally expensive [Pennec et al. 2006]. In this paper, we make use of tensor 

interpolation using a log-Euclidian framework. This method has the advantage of being 

simpler to implement using our existing cubic Hermite interpolation framework, while 

preserving the orthogonality of the interpolated coordinate frame [Arsigny et al. 2005].

Newer imaging techniques such as diffusion-tensor magnetic resonance imaging (DT-MRI) 

can be used to image the fiber directions of the muscles in the ventricular walls directly. 

Comparing histological measurements of the orientation of muscle fibers and sheets with 

DT-MRI measurements have confirmed that the fiber and sheet-normal directions coincide 

with the primary ([Hsu et al. 1998], [Holmes et al. 2000], [Scollan et al. 2000]) and tertiary 

[Helm et al. 2005] eigenvectors of the diffusion tensors. Hence, our method of tensor 

interpolation in the log-Euclidean frame can also be used to interpolate the fiber-sheet 

directions in a model of the ventricle with a set of local orthogonal material coordinate axes 

calculated from measured diffusion tensors.

3. Review of Cubic Hermite Interpolation

In this section, we provide a summary of the geometric interpolation for extraordinary nodes 

developed by Gonzales et al. [2013]. This section has been included in this paper for 

completeness. In Section 5, we make use of this interpolation method and extend it to 

perform biomechanics finite element analysis with deforming meshes.

Cubic-Hermite hexahedral finite element meshes are tri-variate brick volumes with 8 nodes, 

where each of the six faces consist of a cubic-Hermite surface patch. The element nodes 

have 8 element degree of freedom (DOF): the value, 3 first derivatives, 3 second cross-

derivatives, and 1 triple derivative. In rectangular Cartesian coordinates for geometry and 

biomechanics simulations, there are 3 coordinates for each DOF. Hence, for biomechanics 

problems, each element has 8 nodes × 8 DOF × 3 Coordinates = 192 DOFs. In 3D cubic-

Hermite isogeometric finite element analysis, the geometry and the dependent variables 

(nodal displacements in mechanics) are interpolated using the same trivariate basis functions 

Ψi, i = 1...64,

(1)
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The basis functions are obtained as the product of 3 univariate cubic-Hermite basis 

functions: one for each direction,

(2)

These equations are used to interpolate the dependent variable at the parametric point (ξ1, ξ2, 

ξ3) in the world coordinate frame (x1, x2, x3).

In meshes with no extraordinary nodes, the continuity preserved at regular nodes (4 adjacent 

elements in 2D and 8 adjacent elements in 3D) since nodal DOFs are shared. Bradley et al. 

[1997] showed that G1 continuity is preserved across adjacent elements as long as the nodal 

derivatives are shared by nodes of the adjacent elements. In addition, they introduced a 

scalar scale factor, Si, for each element node,

(3)

(4)

which when multiplied with the unit nodal derivative, preserved C1 continuity. If the scale 

factor is chosen as the length of the incident edges, then C1 continuity is enforced based on 

the arc-length parametrization. This makes physical sense for finite element analysis, since 

the continuity is independent of the parametrization used for interpolation.

In Equation 3, the subscript ne corresponds to the local element derivative at the element 

node while the subscript NG stands for the global node number. In addition to the scalar 

scale factors for the first derivatives, the scalar scale factors for the mixed second derivatives 

and the third derivative can be computed as product of the corresponding first derivative 

scale factors using

(5)

3.1. Cubic Hermite Interpolation with Extraordinary Nodes

The same parametric direction cannot be used to interpolate within the elements on either 

side of an element edge incident on an extraordinary node. As a result, even maintaining C0 

continuity is difficult since it is not possible to share the local element derivative directions 

using only a scalar scale factor at an extraordinary node. In order to maintain continuity, 

Gonzales et al. [2013] introduced a new coordinate frame centered on each node, called the 

ensemble coordinates, and constructed a generalized local-to-global map to transform the 

global ensemble derivatives to the local element derivatives.
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The ensemble frame is shown in green in Figure 3 and is denoted by s. The parametric 

directions from one of the elements surrounding the extraordinary node are used to construct 

the ensemble frame. The generalized local-to-global map is then used to convert the global 

ensemble derivatives to the local element derivatives using

(6)

(7)

The second and third-order mixed derivatives are selected from the element whose 

derivatives are chosen to coincide with the ensemble frame. The local-to-global 

transformation map for these higher-order derivatives are constructed from the first-order 

derivatives using the chain rule

(8)

In order to maintain continuity, the local element derivative along the shared edge of both 

adjacent elements needs to be the same. Enforcing this in practice while constructing 

complex finite element meshes is tedious. To make the process tractable, Gonzales et al. 

[2013] used an interpolatory subdivision scheme developed by Li et al. [2005] to subdivide 

the meshes twice (Figure 4). The nodes from the twice-subdivided mesh are then used to 

estimate the local element derivatives. It is also possible to perform exact evaluation of the 

derivatives by computing the limit surface of the subdivision mesh. However, in practice, it 

is easier to estimate the derivatives from the twice-subdivided mesh to enforce C0 continuity. 

Since the subdivided nodes are shared between the elements that share element edges, C0 

continuity is enforced along all element edges, including those incident on extraordinary 

nodes. In addition, G1 continuity could be enforced in the local region surrounding an 

extraordinary node if the subdivided nodes are coplanar. G1 continuity along element edges 

is enforced if the subdivided nodes on either side of the edge are collinear with the shared 

edge node. Please refer to the review by Du & Schmitt [1990] for the necessary and 

sufficient conditions to enforce G1 continuity with Bézier patches. The same conditions can 

be extended to cubic-Hermite patches with extraordinary nodes since cubic-Hermite 

representation is equivalent to the cubic-Bézier representation.

4. Interpolation of Fiber Directions

We make use of a coordinate-frame interpolation of fiber directions to ensure smooth 

interpolation of the fiber directions in the presence of extraordinary nodes. In modeling the 

fiber architecture of the atria, Gonzales et al. [2013] used a fixed fiber angle for each region 

that were based qualitatively on published diagrams of atrial fiber tracts, since measuring the 
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fiber angles in the atria is difficult owing to their thin walls. Hence, an interpolation method 

was not needed for the atria, since the transmural variation of fiber directions in the atria was 

not modeled. However, in the cardiac ventricles, the fiber directions vary significantly in the 

transmural direction, which necessitates a method for interpolation. In this section, we 

describe a coordinate-frame interpolation method based on the log-Euclidean 

transformation.

The coordinate frame corresponding to the fiber and cross-fiber directions at each nodal 

location is represented using a 3 × 3 orthogonal matrix, F whose columns represent the 

vectors along the three orthonormal coordinate directions. In order to interpolate the 

coordinate frame, we convert it to the log-Euclidean space by taking the matrix logarithm. 

However, for the matrix logarithm to be real, the matrix needs to be invertible and each 

Jordan block belonging to a negative eigenvalue occurs an even number of times. In order to 

satisfy this condition for any coordinate frame, we construct a synthetic symmetric matrix, 

T, with synthetic but unique and positive eigenvalues, using eigen composition as shown 

below,

(9)

In Equation 9, the values of d11, d22, and d33 are chosen to be unique, positive, and in sorted 

order (d11¡d22¡d33, (5,10,20), for example). The matrix logarithm L of the matrix T,

(10)

is then used to interpolate the coordinate frames within an element. The matrix logarithm of 

a positive definite matrix is symmetric and hence, has only six independent components. We 

make use of the same basis function values as the geometry to interpolate the components of 

L, similar to scalar quantities in Euclidian space. The fiber coordinate interpolation takes 

advantage of the local-to-global mapping to interpolate the six independent components of 

L. At any evaluation point inside the element, the coordinate frame can then be computed by 

computing the matrix exponential of the interpolated Le,

(11)

and then computing the eigenvectors, vi (i = 1, 2, 3) of the resulting matrix. The eigenvalues 

of Te are then used to sort the eigenvectors to make sure that the order of vectors in the 

coordinate frame is preserved. Since the eigenvalues are only used for sorting the 

eigenvectors, there are no stability issues during interpolation as long as they are positive 

and unique.
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5. Finite Element Analysis with Extraordinary Nodes

Performing mechanics finite element simulations on meshes with extraordinary nodes 

require three key modifications to the cubic-Hermite finite element formulation. The first 

modification deals with a local-to-global mapping of global parameters and dependent 

variables. The second modification is to the perturbations used to calculate the element 

tangent stiffness matrix. The final modification is to use the local-to-global mapping to 

assemble the global stiffness matrix from the element stiffness matrices.

In Section 3.1, the generalized local-to-global mapping is used to map the local element 

derivatives to the ensemble derivatives. The finite element equations are solved with values 

in the ensemble frame as the dependent variables. It can be noted that the local-to-global 

mapping for all DOFs (first derivatives, second and third mixed derivatives) are linear. This 

suggests that the local-to-global mapping can be represented using a single matrix of size n 
× n, where n is the number of DOFs at each element node. Going further, the 

transformations for all 8 element nodes can be combined to a single transformation map that 

converts the local element DOF to the global ensemble DOF at the global node. This 

unification of the local-to-global map simplifies the equations for converting the values of 

the dependent variables in the ensemble frame to the local element coordinate frame using

(12)

In Equation 12 the local-to-global map is represented as Γ, and u corresponds to the element 

DOFs. This generalized local-to-global mapping directly maps the element DOF to the 

ensemble DOF uG at the corresponding global nodes. The local-to-global transformation 

map is invertible as long as the first derivatives in the local or the global ensemble frames are 

not degenerate.

5.1. Element Stiffness Matrix Calculation

In our cubic-Hermite finite element formulation, the equilibrium geometry (nodal 

deformations) is computed using Newton iteration. The tangent stiffness matrix for the 

whole system at the current deformed configuration is computed and is then solved using 

Newton iteration. This is performed by first computing the local element tangent stiffness 

matrices and then assembling them to compute the global tangent stiffness matrix.

The element tangent stiffness matrix is calculated using finite difference by perturbing the 

current deformed degrees of freedom and recalculating the resulting residual forces. This 

perturbation needs to be performed with respect to the global ensemble frame in order to 

apply the same deformations to the local element nodes belonging to neighboring elements 

that share the global node. In a mesh with only regular nodes, perturbing the global degrees 

of freedom is equivalent to a constant multiple of the same perturbation in the local 

coordinate frame; it is scaled by the scalar scale factor (Section 3). In the presence of 

extraordinary nodes, the global perturbations have to be converted to local perturbations for 

each element adjacent to the extraordinary node. This is achieved by applying the inverse of 

the local-to-global transformation map to the perturbation using
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(13)

Figure 6 shows an example of mapping the deformations of the first derivative DOF. The 

perturbation in the global ensemble frame shown in the middle is transformed to the local 

element frame as shown in the right using the inverse of the local-to-global transformation 

map. After the perturbations are transformed to the local element coordinate frame, the 

element stiffness matrix is computed as before using finite difference.

5.2. Global Stiffness Matrix Assembly

The element stiffness matrices computed using the method explained in Section 5.1 are in 

the local element coordinate frame. However, the components of the global tangent stiffness 

matrix are in the ensemble frame for each global node. The final step required for including 

extraordinary nodes is to convert the element stiffness matrix values from the local 

coordinate frame to the global ensemble frame. Again, we make use of the general local-to-

global mapping to convert the stiffness values to the global coordinate frame. We apply the 

transformation to the residual forces that are the result of the perturbations to convert them 

to the global coordinate frame, which are then used for assembly.

The assembly of the global stiffness matrix is straightforward after converting the element 

stiffness matrix components to the global ensemble frame since the residual forces are with 

respect to the common global ensemble coordinate frame. Finally, after assembling, the 

global system is solved using Newton method for the dependent variables (nodal 

deformations) that are also in the global coordinate frame.

6. Finite Element Analysis of Simple Meshes

Two tests were performed on simple meshes to analyze the correctness of the solution as 

well as to compute the errors due to the presence of extraordinary nodes.

To estimate the correctness of the local-to-global mapping in the presence of a change in the 

interpolating variable, two simple meshes consisting of 2 cubic-Hermite elements were 

constructed. Both meshes had the same geometric location of the nodes; however, the 

parametric directions were reversed in one element of the second mesh making the 

parametric directions inconsistent (Figure 7). The same boundary conditions were then 

applied to both meshes and the deformed geometry was calculated using the new finite 

element methods described in this paper. The two resulting deformed geometries were then 

compared and the deformations were found to be the same to within the tolerance used for 

the simulation (0.001). The spatial variation of the difference in the displacement solution 

between the regular and reversed mesh is shown in Figure 8. In addition, both the meshes 

took the same number of iterations to converge to the solution. This shows that the global 

solution is independent of the local element parametrization.

To understand the errors in the solution in the presence of extraordinary nodes, two meshes 

of a simple cuboid geometry were constructed. The first mesh was constructed using 16 

elements and 50 regular nodes, while the second mesh was constructed using 12 elements 
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with 34 nodes of which 8 nodes were extraordinary (Figure 9). The nodes of the meshes at 

one end were fixed and the nodes in the opposite end were pulled to deform the geometry. 

The top view of the deformed geometry is shown in Figure 10.

To compare the solution obtained in both cases, a scatter plot showing the nodal 

displacements at their corresponding x-coordinate is shown in Figure 11(a). In addition, a 

scatter plot of the calculated strain values at the Gauss points for both meshes is shown in 

Figure 11(b). It can be seen that while the nodal displacements are very similar in both 

cases, the standard deviation in the strain values is higher in the case with extraordinary 

nodes. However, the values are still within the error tolerances in both cases (< 5%).

We compared the effect of the presence of extraordinary nodes on the convergence of results 

in the simple meshes. We compared the convergence of the regular mesh using both cubic-

Hermite elements and linear hexahedral elements to the convergence of the cubic-Hermite 

mesh with extraordinary nodes. The convergence properties were measured by counting the 

number of newton iterations the simulations took to obtain a solution with an error lower 

than the user-defined convergence value. It can be seen that the cubic-Hermite mesh 

converges the fastest, in spite the mesh having many more DOFs (1200). The presence of 

extraordinary nodes did not significantly affect the convergence, and the mesh with 

extraordinary nodes consistently converged to the solution within a few extra iterations than 

the mesh with regular cubic-Hermite elements. On the other hand, the linear mesh was 

consistently slower to converge even with fewer DOFs (150). These results show that the 

convergence advantages of cubic-Hermite elements are retained for biomechanics 

simulations in the presence of extraordinary nodes.

7. Application to Cardiac Modeling

7.1. Complex Cardiac Models

Using the local-to-global mapping, an anatomically accurate, four-chamber finite element 

mesh of the heart was generated from segmented CT images (Figure 1(a)). The model 

includes all the orifices and valve annuli that are present in a regular heart. It consists of 474 

cubic-Hermite elements and 958 nodes. A bi-ventricular model with the four valve annuli 

was created using the same method (Figure 1(b)). In addition, biomechanics simulations 

were then performed using this mesh. This mesh consists of 162 cubic-Hermite elements 

and 332 nodes. Both meshes were constructed in the software Blender using normal cardiac 

dimensions, similar to the methods described by Krishnamurthy et al. [2015]. A plugin for 

Blender was implemented to perform the subdivision and estimate the nodal derivatives. It 

can be seen that the use of cubic-Hermite elements along with extraordinary nodes allows 

for compact representation of complex cardiac models with fewer elements.

7.2. Fiber Directions in Cardiac Models

The coordinate frame interpolation was used to model the fiber direction in the ventricular 

model with valve annuli. A rule-based approach was used to model the fibers; the outside 

epicardial surfaces were assigned −60° with respect to the circumferential direction and the 

inside endocardial surface were assigned +60° with respect to the circumferential direction. 
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Figure 13 shows the fiber directions in a human cardiac ventricle represented as sprites. The 

fiber directions follow a left-handed helical pattern from outside to inside. The use of 

coordinate frame interpolation results in smooth variation in the fiber direction throughout 

the myocardial tissue.

In Figure 13, the sprites are colored with respect to the local parametric direction ξ1. 

However, along the edges that are incident on extraordinary nodes, there is no consistent 

local parametric direction on either side. Hence, this coloring does not appear to be 

consistent. However, it can be seen that the interpolated direction represented by the sprites 

transition smoothly across these edges that are incident upon extraordinary nodes.

7.3. Simulation of Full Cardiac Cycle in a Ventricular Model

A complete cardiac cycle was simulated by coupling the bi-ventricular finite element mesh 

with a lumped-parameter closed-loop circulation model using the methods described in 

Krishnamurthy et al. [2013]. The valve annuli were fixed from moving along the long axis 

(vertical direction) of the heart. In addition, certain nodes on the outer ring of the four valve 

annuli were constrained to prevent rigid body motion. After constraining the nodes, pressure 

boundary conditions corresponding to the left and right ventricular pressures were applied to 

the inner surfaces of both ventricles. To simulate cardiac contraction, active forces (tension) 

were produced internally in the elements and were used to solve for the equilibrium 

geometry. The equilibrium geometry at each time-step was solved using the finite element 

analysis methods described in this paper and the resulting nodal solution was output at each 

time-step.

The resting properties of the myocardium were modeled using the transversely-isotropic 

form of the constitutive model developed by Holzapfel & Ogden [2009]. In this model, the 

anisotropy in the fiber and cross-fiber directions of the myocardium is modeled using a 

separate exponential term with different exponents. The strain energy in this model is given 

by

(14)

In Equation 14, I1 corresponds to the first invariant of the right Cauchy-Green strain tensor, 

I4f corresponds to the components of the right Cauchy-Green strain tensor in the fiber 

direction. The parameter values reported by Krishnamurthy et al. [2013] were used for the 

simulations in this paper.

The active contraction model developed by Lumens et al. [2009] is used to model the muscle 

contraction. The pressure boundary conditions to be applied to the inner surfaces of the left 

and right ventricles were obtained using a lumped-parameter circulation model [Arts et al. 

2005]. The parameters reported in Krishnamurthy et al. [2013] were again used for both 

these models. Several cardiac cycles were simulated until the volume changes in both 

ventricles reached steady state. This happened within 5 full beats in this simulation. Figure 

14 show the pressure and volume time courses for both ventricles. Figure 14(c) shows the 

pressure-volume loops for the left and right ventricles. It can be seen that the volume ejected 
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by both ventricles in each beat is the same. This shows that the simulation has reached 

steady state.

8. Conclusions

We have developed a method by which we can perform cardiac biomechanics simulations on 

cubic-Hermite meshes with extraordinary nodes. These meshes are capable of representing 

complex geometries with fewer elements. This reduces the computational time since 

computing the element stiffness matrix for each element is the most computationally 

intensive operation in higher-order finite element analysis. In addition, locally varying 

quantities such as the fiber direction have been incorporated into these meshes. Using our 

method, meshes with locally varying properties can be generated and hence, this method can 

be used to model complex materials such as the muscle tissue.

Compact cubic Hermite meshes are ideally suited for patient-specific cardiac modeling. 

Since these meshes have fewer degrees of freedom, they can be used to create template 

meshes from population averaged cardiac dimensions. These template meshes can then be 

modified using image registration algorithms to create patient-specific cardiac meshes from 

images obtained using computed tomography (CT) or magnetic resonance (MR) 

automatically. Since creating an anatomically accurate patient-specific mesh is the most 

tedious and time-consuming step of the process, using these meshes can significantly reduce 

the total time for patient-specific modeling.

The finite element method used in this paper only rely on C0 continuity of geometry and 

dependent variables between the elements for mechanics simulations. However, the methods 

used for constructing the cubic-Hermite finite element mesh and the local-to-global mapping 

are more general and can be used to enforce higher order G1 continuity by modifying the 

twice-subdivided mesh suitably. Enforcing high-order continuity might help reduce the total 

DOFs in the analysis and might improve convergence by requiring fewer iterations to reach a 

converged solution.

Using anatomically accurate heart models for biomechanics simulations will enable 

modeling of complex interactions that were not previously possible with ventricular models 

that do not include the valve plane. One example is to model mitral valve regurgitation by 

linking it to changes in the mitral valve annuli during the heart cycle. The four-chamber 

mesh can be used to model the effect of atrial geometry on the heart function. Anatomically 

accurate boundary conditions can be imposed on the cardiac geometry, resulting in the 

model replicating the motion of the cardiac walls and the valve plane accurately during the 

cardiac cycle.
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Figure 1. 
Topologically complex four-chamber model and a ventricular model with valve annuli at the 

end-diastolic and end-systolic states of the cardiac cycle. A cut-section(top) and a PV-

loop(bottom) is shown inset.

Krishnamurthy et al. Page 16

Comput Aided Geom Des. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Cubic-Hermite cardiac finite element meshes have previously been used for modeling 

ventricular geometry that do not include the valve annuli or the atria.
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Figure 3. 
An ensemble (global) coordinate frame centered on each node is used to maintain continuity 

of geometry and solution fields across adjacent elements.
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Figure 4. 
The cubic Hermite derivatives around extraordinary nodes are estimated by subdividing the 

mesh twice and using the resulting mesh to calculate the local element derivatives.
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Figure 5. 
Interpolation of fiber angles in meshes with inconsistent parameteric direction results in 

fiber direction discontinuity along the region boundaries. To prevent this, we interpolate the 

coordinate frames using log-Euclidean transformation resulting in smooth interpolation of 

fiber directions
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Figure 6. 
To compute the element stiffness matrix, the global perturbation in the ensemble coordinate 

frame is transformed to the local element coordinates using the inverse of the local-to-global 

transformation map.
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Figure 7. 
Two simple meshes consisting of 2 cubic-Hermite elements were constructed to evaluate the 

correctness of the local-to-global mapping. The local parametric directions were not 

consistent in the second mesh.
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Figure 8. 
The deformation in both meshes were similar to within the tolerance used for the simulation 

(0.001) ensuring that the solution is independent of the direction of the local 

parametrization.
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Figure 9. 
Two meshes of cuboid geometry; the first consisting of only regular nodes and the second 

consisting of 8 extraordinary nodes.
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Figure 10. 
Top-view of the deformation of the two cuboid meshes.
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Figure 11. 
Scatter plot of the nodal deformation with respect to the x-coordinate and the Scatter plot of 

the strains calculated at Gauss points with respect to the x-coordinate of the Gauss point.
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Figure 12. 
The presence of extraordinary nodes did not significantly alter the convergence of results on 

the simple meshes. The mesh with the extraordinary nodes usually converged to the user-

defined convergence value within one extra newton iteration when compared to the cubic-

Hermite mesh.
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Figure 13. 
Fiber directions rendered at different locations in a ventricular model of the heart with valve 

annuli. The sprites are colored based on the angle with respect to the local parametric 

direction.
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Figure 14. 
Pressure and volume time-course output from the full beat simulation of the bi-ventricular 

heart model with valve anulli. Figure 14(c) shows the simulated pressure-volume loops for 

the left and right ventricles.
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