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Granulomas are a hallmark of tuberculosis. Inside granulomas, the pathogen Mycobacterium tuberculosis may enter a metaboli-
cally inactive state that is less susceptible to antibiotics. Understanding M. tuberculosis metabolism within granulomas could
contribute to reducing the lengthy treatment required for tuberculosis and provide additional targets for new drugs. Two key
adaptations of M. tuberculosis are a nonreplicating phenotype and accumulation of lipid inclusions in response to hypoxic con-
ditions. To explore how these adaptations influence granuloma-scale outcomes in vivo, we present a multiscale in silico model of
granuloma formation in tuberculosis. The model comprises host immunity, M. tuberculosis metabolism, M. tuberculosis growth
adaptation to hypoxia, and nutrient diffusion. We calibrated our model to in vivo data from nonhuman primates and rabbits
and apply the model to predict M. tuberculosis population dynamics and heterogeneity within granulomas. We found that bacte-
rial populations are highly dynamic throughout infection in response to changing oxygen levels and host immunity pressures.
Our results indicate that a nonreplicating phenotype, but not lipid inclusion formation, is important for long-term M. tubercu-
losis survival in granulomas. We used virtual M. tuberculosis knockouts to predict the impact of both metabolic enzyme inhibi-
tors and metabolic pathways exploited to overcome inhibition. Results indicate that knockouts whose growth rates are below
�66% of the wild-type growth rate in a culture medium featuring lipid as the only carbon source are unable to sustain infections
in granulomas. By mapping metabolite- and gene-scale perturbations to granuloma-scale outcomes and predicting mechanisms
of sterilization, our method provides a powerful tool for hypothesis testing and guiding experimental searches for novel antitu-
berculosis interventions.

Tuberculosis (TB), caused by inhalation of the pathogen Myco-
bacterium tuberculosis, is a leading cause of death worldwide

(1, 2). The main sites of infection during TB are lung granulomas,
dense collections of immune cells and bacteria that develop fol-
lowing infection (3). Understanding M. tuberculosis dynamics
within granulomas could aid in development of new antibiotic
therapies, since M. tuberculosis growth rates, heterogeneity, and
dynamics can affect antibiotic efficacy (3–7).

Two in vitro-observed adaptations of M. tuberculosis, suspected
to be important in the ability of M. tuberculosis to persist in the
host lung, are (i) the adoption of a nonreplicating phenotype and
(ii) the accumulation of lipid inclusions, aggregates of neutral
lipids inside bacteria (8–13). Hypoxia is known to be a trigger for
the transition to a nonreplicating phenotype and the formation of
lipid inclusions (9, 12, 14, 15).

The in vivo role of the nonreplicating phenotype remains con-
troversial. It has been suggested that M. tuberculosis acquires the
nonreplicating phenotype in response to stresses present in the
host (such as hypoxia) and that this phenotype allows M. tubercu-
losis to persist in the presence of antibiotics (3, 4, 16). Supporting
this view, granulomas in a number of animal models of TB are
hypoxic (17) and likely contain significant levels of nitric oxide,
both of which represent conditions that induce the nonreplicating
phenotype (9, 12, 14, 15, 18). Slow-growing and nonreplicating
bacteria have been observed in vivo (19–21), and transcriptional
profiles of bacteria in patient sputum samples and of nonreplicat-
ing bacteria in vitro are similar (22). Nevertheless, direct evidence
of nonreplicating bacterial subpopulations within granulomas has
been challenging to obtain. Furthermore, the chemical makeup of

the granuloma microenvironment is heterogeneous (23), as is M.
tuberculosis gene expression within a single granuloma (24, 25) or
over time (25). These results suggest that multiple in vitro stress
conditions reflecting distinct granuloma microenvironments may
be required to mimic the behavior of bacteria in vivo in different
regions or during different stages of infection.

Lipid inclusions are hypothesized to be a carbon source for M.
tuberculosis while it is in its nonreplicating state or upon reactiva-
tion (14, 26). Inclusions may also be sinks for nutrients, leading to
lower bacterial replication rates (6). M. tuberculosis lipid inclu-
sions are observed during growth arrest in mouse lung (13) and
under in vitro stress conditions (6, 10, 12, 14, 15, 27–29). Bacteria
form lipid inclusions by rerouting metabolic carbon fluxes from
biomass generation pathways to storage pathways (13). While di-
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rect evidence for lipid inclusions in bacteria harbored within gran-
ulomas has not been reported, M. tuberculosis bacilli in sputum
from TB patients do contain lipid inclusions (22). The impact of
inhibiting the utilization of lipid inclusions, via a broad-spectrum
lipase inhibitor, has been investigated in vitro (26). Though the
inhibitor was shown to prevent regrowth of a hypoxic culture with
substantial lipid inclusions, the lipase inhibitor also inhibited bac-
teria without lipid inclusion during log-phase growth. Thus, the
effect of specifically targeting lipid inclusion formation and utili-
zation as a therapy for TB remains unclear (30).

M. tuberculosis remains challenging to study in vivo. Experi-
mental difficulties include the time required for animal models to
develop features of TB (e.g., 40 days for necrosis in C3HeB/FeJ
mice [31]), complications encountered in isolating sufficient bac-
terial material for high-throughput studies (32), and bacterial ge-
netic redundancy (33) that buffers genetic effects. Additionally,
results of investigations of the role of particular M. tuberculosis
phenotypes (such as the nonreplicating phenotype) can be diffi-
cult to interpret without a well-defined genetic model. Thus, it is
challenging to map in vitro observations and predictions into the
in vivo granuloma environment experimentally. Efforts to identify
M. tuberculosis gene essentiality through in vitro screening of ge-
netic knockout (KO) mutants could result in false predictions, if
the in vitro conditions are unable to accurately capture intra-
granuloma microenvironments and dynamics. For example,
knockout mutants can be identified as attenuated in vitro but can
exhibit no attenuation when tested in vivo (representing what
might be termed a “false-positive” attenuation prediction; see,
e.g., KO3 in Fig. 1). Similarly, mutants could be dismissed as non-
attenuated in vitro but could show attenuation in vivo (represent-
ing a “false-negative” attenuation prediction; see, e.g., KO2 in Fig.
1). We aim to identify and minimize such false attenuation pre-

dictions by mapping in vitro outcomes to in vivo outcomes using a
computational model of M. tuberculosis infection in granulomas.

Computational methods can complement experimental sys-
tems, especially in the complex granuloma environment. We
have established computational models of granuloma forma-
tion (34–37) to map host immune mechanisms from the mo-
lecular scale to the granuloma scale (34, 35, 38) and to explore
new antibiotic treatment strategies (39–41). Other models have
predicted hypoxic granuloma regions based on granuloma size
(42) or have used oxygen and nitric oxide concentrations to
determine M. tuberculosis growth and to predict M. tuberculosis
dynamics (43). More-sophisticated models can incorporate addi-
tional features, such as the asymmetrical cell division observed in
M. tuberculosis (5).

Direct links between bacterial genetics and metabolism are
provided by metabolic reconstructions, which specify the meta-
bolic reactions that are possible given the enzymes encoded by a
genome. Flux balance analysis (FBA) uses such reconstructions
together with a steady-state assumption for internal metabolite
pools to define a feasible space for metabolic fluxes; an optimal
flux is typically selected to maximize the flux through a reaction
defining the biomass required to create a new cell. Using the FBA
approach, constraint-based models (CBMs) predict bacterial
growth in specific environments. The parameters of these CBMs
are generally selected to reproduce bacterial growth rates and
known metabolic fluxes (44). CBMs of M. tuberculosis include
GSMN-TB (45, 46), iNJ661 (47), and, more recently, sMtb (48),
which aimed to merge previous models.

There are numerous published CBMs that have extended the
FBA approach in different ways. Dynamic CBMs describe bacte-
rial growth in changing environments by relaxing the steady-state
assumption of CBMs and instead assuming pseudo-steady states
over short time periods (49–52). CBMs have been coupled with
gene expression data to probe metabolic changes in M. tuberculo-
sis in response to hypoxia (53) or with spatial models of competing
bacterial species to determine bacterial ecosystem dynamics (54).
These types of models provide a mechanism to include detailed
bacterial dynamics within the context of a larger simulation rep-
resenting the host tissue and immune response.

In this work, we present a novel multiscale computational
model (GranSim-CBM) combining for the first time a model of
host immunity with a model capturing nonreplicating M. tuber-
culosis phenotypes, M. tuberculosis metabolism, lipid inclusion
formation, hypoxia, and nutrient limitation in a granuloma.
GranSim-CBM is a hybrid model, integrating an agent-based
model (ABM) of granuloma formation (GranSim), which we have
developed and calibrated to nonhuman primate (NHP) data (34–
37), and a dynamic CBM describing M. tuberculosis metabolism
and growth. GranSim-CBM is a multiscale model spanning met-
abolic, cellular, and tissue scales. We use GranSim-CBM to corre-
late bacterial growth rates predicted by the CBM alone in specific
defined media (“in vitro” outcomes) to growth of M. tuberculosis
predicted within a granuloma (“in vivo” outcomes). This in vitro
to in vivo mapping of M. tuberculosis growth characteristics could
inform screening strategies for new antibiotics and antibiotic tar-
gets (Fig. 1). We apply this tool to address the following four
questions. Which bacterial phenotypes emerge over time in gran-
ulomas? What roles (if any) might the nonreplicating M. tubercu-
losis phenotype and lipid inclusions play during infection? What
effects manifest at the granuloma scale when inhibiting specific

FIG 1 Paradigm for predicting in vivo attenuations from in vitro experiments.
In screening for M. tuberculosis drug targets, the correct method for mapping
in vitro phenotypes of knockout (KO) mutants (bacterial scale) to in vivo
outcomes (host tissue scale) is not obvious. Defining attenuated mutants rel-
ative to wild-type (WT) growth in vitro can result in incorrect identification of
drug targets. For example, KO mutants can be identified as attenuated in vitro
but can result in no attenuation when tested in vivo (i.e., false-positive atten-
uation prediction associated with, e.g., KO3). Or mutants could be dismissed
as nonattenuated in vitro but could show attenuation in vivo (i.e., false-nega-
tive attenuation prediction associated with, e.g., KO2). Our model system is
capable of bridging in vitro and in vivo outcomes. Results can be used to
identify such misclassifications, to guide in vivo screening, and to suggest in
vitro screening conditions that are more predictive of in vivo infection out-
comes.
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metabolic pathways in M. tuberculosis? Can we predict the poten-
tial of in vitro screening (using different media and different oxy-
gen levels) to identify useful bacterial metabolic targets for treat-
ment of TB? Answers to these questions may help to guide future
experimental studies and drug screening assays.

MATERIALS AND METHODS
The methods of GranSim-CBM build on an established framework for
tissue-scale simulation with coarse-grained bacterial populations. We dis-
cuss the methods required to couple this model to a detailed metabolic
model for each bacterial cell and to introduce metabolic switches to per-
mit nonreplicating bacterial phenotypes and lipid reserve accumulation
and usage in response to hypoxia. We calibrate our model to experimental
NHP and rabbit data and perform sensitivity analysis (SA) to determine
the parameters most important to simulated infection outcomes. We
group bacteria based on their local nutrient conditions to connect bacte-
rial growth to granuloma characteristics and use virtual knockouts of
bacterial metabolic genes to predict in vivo phenotypes and identify met-
abolic bypasses for bacterial reactions. A summary of methods used in this
work is presented in Table 1.

(i) Agent-based granuloma model (GranSim). Briefly, GranSim cap-
tures molecule-, cell-, and tissue-scale events. At the tissue scale, we in-
clude cellular movement based on the chemokine environment on a two-
dimensional (2D) simulation grid, with granuloma formation as an
emergent behavior of the system (Fig. 2A). At the cellular scale, we model
individual macrophages and their states (resting, activated, infected, or
chronically infected), as well as individual T cells and their types (cyto-
toxic T cells, regulatory T cells, or gamma interferon [IFN-�]-producing
T cells) and interactions. At the molecular level, the model accounts for
secretion, diffusion, binding, and degradation of cytokines and chemo-

kines. The model has been extensively calibrated to NHP data and suc-
cessfully predicts granuloma outcomes for tumor necrosis factor alpha
(TNF-�), interleukin-10 (IL-10), and IFN-� knockouts (34–41, 61).

In previous versions of GranSim, we separated bacteria into three sub-
populations on the basis of location (intracellular, replicating extracellu-
lar, and nonreplicating extracellular in caseum). Each subpopulation was
represented by continuous values in each grid compartment or macro-
phage. This continuous representation has the benefit of simplicity and
computational ease for capturing the overall interaction between host and
pathogen when probing immunological questions. However, to better
address mycobacterial questions in granulomas with heterogeneous M.
tuberculosis populations (5, 62), we implement here a discrete represen-
tation of individual M. tuberculosis bacilli.

In our discrete M. tuberculosis model, each bacillus is modeled as an
individual “agent,” with state variables for biomass (Bi), lipid inclusions
(Li), and location (Xi) (intracellular or extracellular) tracked for each bac-
terium i. Growth rates, generation times, sizes, and lipid inclusion levels
are tracked for each bacillus over time. Table 2 describes GranSim rules
regarding M. tuberculosis growth, division, death, phagocytosis, and mac-
rophage bursting for continuous versus discrete M. tuberculosis represen-
tations, with variable and parameter definitions given in Tables 3 and 4,
respectively. Host parameters are given in Table S1 in the supplemental
material. Changing the representation of M. tuberculosis in GranSim from
continuous variables to individual agents does not affect predicted aver-
age CFU trajectories in simulated granulomas (Fig. 3A).

(ii) Capturing nutrient dynamics in GranSim-CBM. We track on the
simulation grid the distribution and bacterial utilization of three nutri-
ents: glucose, triacylglycerol (TAG) (representing fatty acid carbon sources),
and oxygen. The metabolic requirements of M. tuberculosis have been exten-
sively studied. Intracellular M. tuberculosis likely utilizes a range of host-

TABLE 1 Summary of modeling methods and their application in our multiscale computational approach

Method Description (reference[s]) Application (reference[s])

Agent-based model (ABM) Stochastic model that describes the behavior of a population of
individuals. ABMs consist of an environment, individuals
(agents), and rules. Each agent is tracked individually in the
environment, and their behavior is determined based on
predefined rules and probabilities. Emergent behavior of the
system is observed and analyzed (55–57).

GranSim describes the behavior of a population of host
cells and bacteria in the lung environment based on
biological rules. Granuloma formation and function
is an emergent behavior of this population of cells.
http://malthus.micro.med.umich.edu/GranSim/Gra
nSim-CBM/ (34–37).

Constraint-based model
(CBM)

Model that determines the possible set of behaviors, or the
optimal behavior according to a predefined criterion, of a
system within certain constraints, and assuming a steady
state. CBMs use flux balance analysis to determine the
possible set of fluxes through a metabolic network given
constraints on enzymatic reactions and nutrient availability
(45–48).

Our CBM determines the optimal flux of metabolites
through the M. tuberculosis metabolic network, to
maximize production of a combination of biomass
and lipid inclusions.

Dynamic CBM CBM that replaces the steady-state assumption with a pseudo-
steady-state assumption to capture changes in the system or
the environment over time (49–52).

Our CBM assumes a pseudo-steady state to capture
changes in nutrient microenvironments within the
granuloma over time.

Multiscale model Model that captures and integrates real-world dynamics at
multiple spatial or temporal scales (55, 56, 58).

GranSim-CBM is a multiscale model that captures
dynamics from the metabolic, cellular and tissue
scales on time scales spanning minutes to years.

Latin hypercube sampling
(LHS)

Sampling method that stratifies the sampling space to achieve
the same accuracy as random sampling with fewer samples
(59).

LHS is used as part of uncertainty and sensitivity
analysis to sample the large parameter space for
GranSim-CBM.

Partial rank correlation
coefficient (PRCC)

Method that determines the correlation between an input
factor(s) and an output, by removing the influence of other
simultaneously varying input factors (59).

PRCC is used during sensitivity analysis to determine
the most influential model parameters in
determining granuloma level outputs.

Hierarchical clustering Method that calculates the difference between individual
observations based on a predefined distance metric.
Individual observations are then grouped/clustered such
that similar observations are collected in a single cluster
(60).

We cluster individual bacteria (observations) based on
their growth rate and local nutritional environment.
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derived carbon sources and amino acids as nutrient sources, including cho-
lesterol and TAG (63, 64). Additionally, glycolysis under hypoxic conditions
leads to the accumulation of toxic byproducts (65). Therefore, fatty acids are
considered to be a major carbon source of M. tuberculosis in vivo.

Lipids are a carbon source for M. tuberculosis in vivo in mice (19, 64),
inside macrophages (63, 66), and in caseum (67) and are an internal
nutrient reserve stored by M. tuberculosis under conditions of hypoxic
stress (12, 14, 26). We use TAG to represent fatty acid carbon sources in

FIG 2 Multiscale model system bridging metabolic scale to tissue scale. (A) GranSim, our agent-based model of granuloma formation and function, incorporates host
immune functions (see references 34–36, and 37 for details) as well as bacterial dynamics for the first time on an individual-bacterium level. In silico granulomas are an
emergent behavior of the system. mac, macrophages. (B) The constraint-based model (CBM) uses a stoichiometric matrix representing the metabolic network of M.
tuberculosis (45) to predict growth rates based on the bacterial objective function (growth versus lipid inclusion production) (13). (C) The combination model
GranSim-CBM tracks granuloma formation and environmental nutrient conditions (oxygen, TAG, and glucose) (left) and uses the CBM to predict growth rates and
lipid inclusion formation for each bacterial agent based on its local environment and internal lipid inclusion stores (right). Mtbi, ith bacterial agent.
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each of these locations (in cells, in caseum, and in lipid inclusions). The
lipid content of caseum is believed to be the result of the accumulation of
host cell debris (67). Therefore, in the model, each dying macrophage
deposits its TAG onto the grid compartment where it died, making the
TAG available to extracellular bacteria. Activated macrophages in Gran-
Sim have the ability to heal caseation in the 8 adjacent grid spaces on the
2D grid. When caseation is healed, the TAG levels are reduced to reflect
the return of the simulation grid compartment to a “normal lung tissue”
state.

We model oxygen levels in the granuloma by assuming constant oxy-
gen concentrations in the blood (O2,plasma), tracking oxygen permeation
onto the grid at rate p via vascular source grid compartments, diffusion on
the grid with diffusivity D, and consumption by host cells using Michaelis-
Menten kinetic parameters Vmax-host and khost. We use reaction-diffusion
methods described previously (55).

Within granulomas, less is known about glucose levels than about
oxygen levels. Glucose is not believed to be a major carbon source for
intracellular M. tuberculosis (63), either because glucose is not made avail-
able to bacteria in phagosomes or because it is not the preferred carbon
source for M. tuberculosis in the intracellular environment. Therefore, we
fix glucose levels available to intracellular M. tuberculosis at zero. While a
C3 carbon source is likely available to intracellular bacteria (63), the iden-
tity of this source is currently unknown and we therefore exclude it from
the current model. Extracellular glucose is set to an initial amount at each
grid cell (GlcE) and is gradually consumed by M. tuberculosis without
replenishment.

(iii) Constraint-based model of M. tuberculosis metabolism. CBMs
describe the relationship between nutrient uptake (e.g., glucose and oxy-

gen), waste export (e.g., CO2), and the production rate of biomaterials for
new cells, under the assumption of a steady state for internal metabolite
pools (68). A CBM makes predictions about cellular metabolism utilizing
the metabolites present, the reactions and corresponding enzymes re-
sponsible for metabolic transformations, and the constraints on �i (the
flux through reaction i): �i

low � �i � �i
up (Fig. 2B). Mathematically, the

steady-state assumption is formulated as S · � � 0. Rows of the stoichi-
ometry matrix S correspond to metabolites, and columns of S correspond
to enzyme-catalyzed reactions, active and passive transport, and other
uncatalyzed reactions. The row-column entry is the number of metabolite
molecules that are reactants (negative sign) or products (positive sign) for
the reaction. For metabolic reactions, the flux constraints depend on max-
imum reaction rates for enzymes. For import of metabolites into the bac-
terial cell, the rates depend on the properties of transporters and on the
extracellular metabolite concentration. As described below, the CBM uses
Michaelis-Menten kinetics to model the import fluxes.

Biomass flux (�b) is defined as the flux of the reaction �iwimi ¡ 1b,
where mi is metabolite i, wi is the number of molecules of metabolite i
required to build one new cell, and b is the total biomass composition of a
new cell. By definition, the growth rate of the cell is �b.

In conventional CBMs, a standard assumption is that bacteria have
evolved to maximize growth rates. Therefore, to compute the growth rate,
the maximum value of �b is identified within the feasible space of flux
vectors defined by bounds on the fluxes and the steady-state assumption.
Because the objective function and the constraints are linear, an optimal
solution may be found efficiently using a linear programming solver.
However, M. tuberculosis grows more slowly than most bacteria and ad-
justs its growth rate in response to environmental cues (9, 12, 14, 15, 18).

TABLE 2 GranSim rules for M. tuberculosis modeled as continuous variables or individual agentsa

Bacterial event
Rule for continuous M. tuberculosis
variables Rule for individual M. tuberculosis agents

Growth (intracellular or extracellular) �b � growth rate �b � growth rate
Mtb(t 	 1) � (1 	 �b)Mtb(t) Shuffle MtbList

For i � 1 to Mtb(t)
Bi(t 	 1) � (1 	 �b)Bi(t)
If Bi 
 �div

Make new Mtb agent
Divide Bi and Li into fractions f and (1 � f) between

two daughter agents
Else if Bi � �death

Mtb agent dies

Death (from host-mediated killing or
lack of nutrients)

nrKill � nr of Mtb to kill nrKill � nr of Mtb to kill
Mtb(t 	 1) � Mtb(t)-nrKill Shuffle MtbList

Delete 1st “nrKill” Mtb agents on MtbList

Dispersion of a fraction of intracellular M. tuberculosis
to Moore neighborhood (when a chronically
infected macrophage bursts)

fd � fraction to disperse fd � fraction to disperse
dispMtb � fdMtb(t) dispMtb � fdMtb(t)
dMtb � dispMtb/NM dMtbBase � dispMtb/NM

for m � 1 to NM dMtbExtra � mod(dispMtb,NM)
Mtbm(t 	 1) � Mtbm(t) 	 dMtb Shuffle MtbList

For m � 1 to dMtbExtra
Move 1st “dMtbBase 	 1” agents in MtbList to

compartment m
For m � dMtbExtra 	 1 to NM

Move 1st dMtbBase agents in MtbList to
compartment m

Delete the rest of MtbList

Phagocytosis (move extracellular M. tuberculosis to
intracellular location)

count � nr of Mtb to phagocytose count � nr of Mtb to phagocytose
MtbE(t 	 1) � MtbE(t) � count Shuffle MtbEList
MtbI(t 	 1) � MtbI(t) 	 count Move 1st “count” Mtb agents from MtbEList to MtbIList

a See Tables 3 and 4 for variable and parameter definitions, respectively. nr, number; Mtb, M. tuberculosis.
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We therefore adjust the assumption of maximized growth rate by modi-
fying the objective function as described below.

In this work, we developed a dynamic CBM based on an existing CBM
describing M. tuberculosis metabolism (45, 46), using the “static-optimi-
zation approach” (50). The original model of M. tuberculosis metabolism
is an updated version of GSMN-TB (45, 46) kindly provided by the au-
thors (Johnjoe McFadden, personal communication). These updates to
the published model include corrections of a few reaction imbalances,
changes in the ATP penalties for the biomass function, and inclusion and
exclusion of additional reactions based on new data. We chose GSMN-TB
over other available metabolic models of M. tuberculosis due to its relative
simplicity, validated predictions for essential genes in vitro, and inclusion
of metabolic reactions that we wished to study. Inclusion of the host
metabolism in a metabolic model, as in iAB-AMØ-1410-Mt-661 (112),
introduces significant complexity to modeling infection, as additional pa-
rameters for host nutrient uptake and transport to the phagosome must
be specified. GSMN-TB is more accurate for in vitro predictions of gene
essentiality than iNJ661 (45, 47). Additionally, both iNJ661 and its de-
scendant iAB-AMØ-1410-Mt-661 did not include the reactions for syn-
thesizing and catabolizing triacylglycerol (TAG) within the bacterium.
Inclusion of these reactions is critical for studying the role of TAG as a
storage compound and energy source during infection. Another alterna-
tive would be the sMtb model (48), which is a unification of GSMB-TB
with iNJ661. A qualitative comparison between GSMN-TB and sMtb (see
Table S2 in the supplemental material) suggests that they will give similar
results in our granuloma simulations.

We make additional modifications to the existing CBM to enable in-
tegration with GranSim. In particular, GSMN-TB includes glycerol as a
carbon source, but experiments suggest that M. tuberculosis does not uti-
lize glycerol in vivo (69). We therefore exclude the glycerol import reac-
tion from our model. The GSMN-TB model also includes cholesterol
metabolism reactions. Cholesterol is metabolized via the methylcitrate

TABLE 3 Variables used in GranSim-CBMa

Variable Unit Description

�b h�1 Growth rate
�L h�1 Net lipid inclusion generation rate
�pL h�1 Lipid inclusion production rate predicted

by CBM
�cL h�1 Lipid inclusion consumption rate predicted

by CBM
d timestep�1 Biomass degradation rate
 Switching parameter to calculate objective

function and biomass degradation rate
MtbXList List of M. tuberculosis agents in location X (E,

extracellular; I, intracellular)
Mtb(t) No. of bacteria as continuous variables or

individual agents in MtbList at timestep t
Bi(t) BU Biomass of M. tuberculosis agent i at timestep t
Li(t) fmol Lipid inclusions of M. tuberculosis agent i at

timestep t
Xi(t) Location of M. tuberculosis agent i at timestep

t (E, extracellular; I, intracellular)
NM No. of grid compartments in Moore

neighborhood (adjacent grid compartments
in a 2-dimensional grid)

vi
low fmol/h · BU Lower limit on import flux for nutrient i

(set to zero)
vi

up fmol/h · BU Upper limit on import flux for nutrient i
(dependent on Vmax,i and Ki)

Z Objective function to be optimized by the
CBM (a linear combination of �b and �L)

a Conversion factor, 10 min/timestep. 1 BU � 196 fg dry weight.

TABLE 4 Parameters used in GranSim-CBMa

Parameter Description Unit
Range for uncertainty
analysis

Range for sensitivity
analysis

Baseline
parameter set

�div Biomass division threshold BU 1.7 to 2.5 2
�death Biomass death threshold BU 0.2 to 0.6 0.5
f Division fraction 0.25 to 0.5 0.25 to 0.5 0.47
D Diffusivity of oxygen cm2/s 1 � 10�6 to 1 � 10�4 7 � 10�7 to 7 � 10�5 7.3 � 10�6

O2,plasma Plasma oxygen concn M 8 � 10�4 to 1 �10�2 9 �10�5 to 9 �10�3 1 � 10�3

p Vascular permeability of oxygen cm/s 1 �10�6 to 1 �10�4 1 �10�6 to 1 �10�4 1.1 �10�5

Vmax-host Maximum host cell oxygen consumption rate moles/cell/s 6 �10�18 to 6e�16 1 �10�18 to 1 �10�16 1.26 �10�17

khost Michaelis-Menten constant for host cell oxygen
consumption

mM 2 �10�4 to 2 �10�2 8 �10�4 to 8 �10�2 8 � 10�3

GlcE Initially available glucose per grid compartment fmol 0.2 to 200 0.05 to 5 0.5
TAGI Initially available TAG per host cell fmol 6.4 to 640 2 to 200 23
s Oxygen depletion sensitivity parameter M�1 2 to 500 4 to 400 42
h Half-saturation point of oxygen for switching from

biomass to lipid inclusion production
M 1 �10�5 to 1 �10�4 1 �10�6 to 1 �10�4 1.3 �10�5

Vmax,glc Maximum glucose uptake flux fmol/h · BU 0.15 to 1 0.05 to 5 0.6
Vmax,TAG Maximum TAG uptake flux (external TAG) fmol/h · BU 0.01 to 0.1 7 � 10�3 to 7 � 10�1 0.08
Vmax,O2 Maximum oxygen reduction fmol/h · BU 0.3 to 0.5 0.3 to 0.5 0.4
Vmax,L Maximum lipid inclusion utilization flux fmol/h · BU 1 �10�3 to 1 � 10�1 4 �10�4 to 4 �10�2 0.005
Kglc Michaelis constant for glucose uptake �M 1 �10�5 to 1 �10�3 9 �10�5 to 9 �10�3 0.0009
KTAG Michaelis constant for TAG uptake M 1 �10�8 to 1 �10�5 2 �10�7 to 2 �10�5 2 �10�6

KO2 Michaelis constant for oxygen reduction M 1 �10�9 to 5 �10�5

(and �hO2)
1 �10�6 to 1 �10�4 1 � 10�5

KL Michaelis constant for lipid inclusion utilization fmol/BU 1 �10�9 to 5 �10�3 8 �10�8 to 8 �10�6 8 �10�7

dmin Biomass degradation rate for nonreplicating bacteria Timestep�1 1 �10�9 to 1 �10�5 1 �10�7 to 1 �10�5 1 �10�6

dmax Biomass degradation rate for actively replicating bacteria Timestep�1 1 �10�5 to 2 � 10�2 2 �10�4 to 2 �10�2 2 � 10�3

Lmax Maximum allowed lipid inclusions per bacterium fmol 0.1 to 10 0.04 to 4 0.370273174
VR At half-saturation, the “value” of 1 unit of lipid inclusion BU/fmol 0.038 to 380 183
a Conversion factor, 10 min/timestep.
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cycle and the tricarboxylic acid (TCA) cycle, generating pyruvate, acetyl
coenzyme A (acetyl-CoA), and propanoyl-CoA (70). Pyruvate can then be
converted to acetyl-CoA by the pyruvate dehydrogenase complex (71).
TAG, a primary component of lipid inclusions (12), is metabolized into
odd-length fatty acids and a glycerol molecule. The fatty acids are in turn
also metabolized to propanoyl-CoA and acetyl-CoA via beta-oxidation,
while the glycerol can be metabolized by conversion to pyruvate (71 [see
pages 429 and 605]). Given these similarities in metabolism, we simplify
the model by grouping cholesterol and TAG together as a single effective
TAG metabolite; similarly, GranSim represents the local concentration of
cholesterol and TAG as a single effective TAG metabolite.

We rescale the published GSMN-TB biomass function to provide a
quantitative match with the biomass of a newly divided cell rather than
with that of an average cell during log-phase growth. Experimental mea-
surements of an actively growing mycobacterial population found that
individual bacilli had a dry weight of 274.5 fg, including cells with partially
or fully replicated genomes (72). It was also estimated that each cell con-
tained 1.4 genome copies rather than a single genome copy (72). We
therefore define one biomass unit (BU) as equal to 196 fg (274.5 fg/1.4) of
dry weight. With this definition, a cell with a biomass of 1 BU corresponds
to a nascent daughter cell from a symmetric cell division, and a cell with a
biomass of 2 BU is on the cusp of division. We also rescale the GSMN-TB
flux uptake units for metabolites from millimoles per hour per gram dry
weight to femtomoles per hour per BU.

(iv) Switching between M. tuberculosis biomass growth and lipid
inclusion accumulation in response to hypoxic stress. We further mod-
ify GSMN-TB to include the accumulation of lipid inclusions in nonrep-

licating M. tuberculosis and a mechanism for hypoxic stress to trigger the
transition to a nonreplicating bacterial phenotype that accumulates lipid
inclusions. Here we refer to bacteria maintained under low-oxygen con-
ditions as nonreplicating and use the term to encompass both nonrepli-
cating and slowly replicating bacteria (growth rates � 0.0015 h�1). Lipid
inclusions contain many different lipid species, including triacylglycerols
(TAGs) (12). We therefore introduce to each bacterial agent in GranSim
a new intracellular compartment, the “lipid inclusion” compartment,
which accumulates TAG. We add two new transport reactions to shuttle
TAG between the lipid inclusions and the cytoplasm. In order to prevent
an internal cycle (73), in which both directions are active with no net TAG
transport, a small ATP penalty (0.1 ATP) is added for TAG transport into
the lipid inclusions. The two new transport reactions are, specifically,
transfer of TAG into the lipid inclusions (1 TAG[c] ¡ 1 TAG[inclusion],
with flux �pL) and transfer of TAG from the lipid inclusions back to cyto-
plasm (1 TAG[inclusion] 	 0.1 ATP ¡ 1 TAG[c] 	 0.1 ADP 	 0.1 P
[inorganic phosphate], with flux �cL). The net flux of TAG into the lipid
inclusions is defined as �L � �pL � �cL. Each molecule of TAG, when fully
metabolized, yields between 364.6 and 489.2 molecules of ATP depending
on the oxygen level, a large yield compared to the 0.1 molecule penalty.

As in previous work (13), we consider two CBM objective functions,
one under conditions of high oxygen that maximizes the biomass growth
rate, �b, and the other under conditions of hypoxia that maximizes the
lipid inclusion accumulation rate, �L (Fig. 2B). We introduce a continu-
ous oxygen-sensitive switching function  that weighs the two objective
functions. The combined objective function Z is as follows:

FIG 3 GranSim-CBM model calibration to experimental data. (A) Discretization of M. tuberculosis in GranSim does not affect bacterial loads in granulomas
(CFU) compared to previous model versions with continuous M. tuberculosis representation (35–38, 40, 41). (B) GranSim-CBM is calibrated to experimental
data from animal models of TB. GranSim-CBM predictions of CFU per granuloma are calibrated to measurements from the NHP model of TB (21, 77–79). (C)
The predicted oxygen concentration in granulomas is calibrated to direct measurements in rabbit granulomas (lower dotted line), and the threshold for
pimonidazole (PIMO) hypoxia stain is shown for reference (upper dotted line). For panels A to C, solid lines show medians and dashed lines show 95%
confidence intervals. n � 15. (D) Snapshot of a representative in silico granuloma at 300 dpi, with predicted oxygen, TAG, and glucose levels within the
granuloma. Extrac., extracellular.

Pienaar et al.

1656 iai.asm.org May 2016 Volume 84 Number 5Infection and Immunity

http://iai.asm.org


Z � �vb � �1 � ��VRvL (1)

where parameter VR provides a convenient scaling between the two ob-
jectives. This parameter is necessary, as the relative levels of importance of
1 unit of biomass and 1 unit of lipid inclusions may not be equivalent and
would generally be dependent on the particular units chosen. The switch-
ing function is as follows:

� � 1/� 1 � exp��s��O2� � h� ⁄ h�� (2)

where [O2] is the oxygen concentration, s determines the sensitivity of the
switching (steepness of the sigmoid), and h is the half-saturation concen-
tration of the switch. Oxygen-dependent metabolic maintenance costs are
calculated using the active/nonreplicating switch parameter  (equation
2) and implemented as biomass degradation rate d as follows:

d � dmin � ��dmax � dmin � (3)

where dmax is the biomass degradation rate in fully aerated replicating M.
tuberculosis and dmin is the biomass degradation rate in nonreplicating M.
tuberculosis. Thus, we lower the biomass degradation rate (i.e., mainte-
nance metabolism) in response to lower oxygen availability, allowing us to
capture the reduced metabolic requirements for survival in the absence of
replication. The original GSMN-TB model instead used a lower bound on
ATP hydrolysis to incorporate biomass maintenance costs (45, 46). Our
form reflects the decreased maintenance cost in decreasing oxygen con-
centrations. It also ensures a feasible CBM solution when low levels of
nutrients constrain the ATP hydrolysis rate. However, GSMN-TB does
not capture metabolism in the absence of oxygen (via anaerobic respira-
tion [74, 75]). This is a limitation of our model, though we do not expect
it to significantly impact our results, as the metabolism of M. tuberculosis
is very slow during hypoxia. We expect this very slow bacterial metabolic
state to be well approximated by our model, which predicts the total
absence of metabolism under anoxic conditions.

(v) Coupling CBM to local nutrient resources in GranSim to create a
dynamic CBM. To capture the variable nutrient conditions available to
M. tuberculosis during infection, the upper bounds (�i

up) for the rates of
nutrient uptake (oxygen, glucose, and TAG) are determined by the local
nutrient availability provided by GranSim (Fig. 2A and B). Four uptake
fluxes are constrained: oxygen, glucose, and TAG from the external envi-
ronment and reimport of TAG back from the lipid inclusion to the cyto-
plasm. In each case, constraints are modeled using a Michaelis-Menten
functional form with Hill coefficient 1 and two parameters corresponding
to the maximum flux, Vmax,i, and the metabolite concentration Ki at half
of the maximum as follows:

vi
up � Vmax,i�N� ⁄ �Ki � �N�� (4)

for i corresponding to each of the four constrained import fluxes. For
import from the extracellular environment, [N] refers to the local con-
centration provided by GranSim. For import of TAG from the lipid inclu-
sion, the concentration is computed as Li/Bi. For all four import fluxes,
�i

low is set to zero. The 8 parameters (Vmax,glc, Vmax,TAG, Vmax,O2, Vmax,L,
Kglc, KTAG, KO2, and KL) for the 4 import flux upper bounds are selected
by fitting to experimental data as described below.

(vi) Multiscale dynamics with GranSim-CBM. The multiscale model
(Fig. 2C) tracks concentrations of three nutrients (oxygen, glucose, and
TAG) in the granuloma environment as well as internal bacterial lipid
inclusions. Available nutrients on the simulation grid are used to deter-
mine the upper bounds for CBM transport fluxes (equation 4), to switch
the CBM objective function between biomass production and lipid inclu-
sion production (equation 2), and to calculate the biomass degradation
rate (equation 3). The optimal fluxes from the CBM are used in GranSim
to update bacterial state variables (biomass [Bi] and lipid inclusions [Li])
as well as the environmental nutrient pools in the granuloma (see Fig. S1
in the supplemental material for more detail).

Using the growth rate (�b) and the net lipid inclusion production rate
(�L) calculated by the CBM, GranSim updates the state variables for bio-
mass (Bi) and lipid inclusion (Li) for the ith bacterium with time incre-
ment �t as follows:

Bi�t � �t� � �vb � d�Bi�t��t � Bi�t� (5)

Li�t � �t� � �vL�Bi�t��t � Li�t� (6)

Biomass degradation rate d represents metabolic maintenance and is
scaled by hypoxia switching function  (equation 2).

The biomass of each bacterium is kept between a death threshold
(�death) and a division threshold (�div). If the biomass reaches �div, the
bacterium divides into two asymmetric daughter bacilli with biomass
(1 � f) and (1 	 f) BU (f is the asymmetric division fraction), and lipid
inclusions split proportionally. If the biomass falls below �death, the bac-
terium dies and is removed from the simulation. Bacterial survival and
replication therefore depend on a balance between the growth rate and the
biomass degradation rate. In our model, the growth rate is determined by
oxygen, glucose, TAG, and lipid inclusion availability, while the biomass
degradation rate is determined by oxygen availability via the growth
switch parameter (equation 2). Therefore, a shortage in any of these nu-
trients, (resulting in �b � d), causes a net loss of biomass, leading to death
from starvation (or “suffocation” in the case of lack of oxygen) when
biomass falls below �death.

Lipid inclusions per bacterium are constrained to be below a real-
istic maximum value (Lmax). If Li(t 	 �t) 
 Lmax then we instead set
Li(t 	 �t) � Lmax and convert the excess TAG to extracellular TAG to
prevent loss of mass. Note that if glucose is being used to produce lipids
when lipid inclusion levels reach the maximum then some mass will be
lost. We have monitored the amount of lipids lost during a 400-day sim-
ulation and found that a negligible amount (�0.01%) of the total TAG
molecules present on the grid is lost as a result.

(vii) Uncertainty and sensitivity analysis. Uncertainty analysis (UA)
identifies the variation in model outputs caused by uncertainty in model
parameters. We previously identified the bacterial growth rate as a major
contributor to uncertainty in GranSim outputs (36, 76) and therefore
investigate the contribution of individual CBM and bacterial GranSim
parameters (Table 4), drivers of the bacterial growth rate, to granuloma-
level outputs in GranSim-CBM.

We use Latin hypercube sampling (LHS) (59) to uniformly and simul-
taneously sample multiple parameters within the multidimensional pa-
rameter space (Table 4). We generate 1,500 parameter sets. Agent-based
models contain both aleatory uncertainty from stochastic variation and
epistemic uncertainty from parameter variation. In order to sample alea-
tory uncertainty, we perform 5 independent replicate simulations for each
parameter set. Candidate parameter sets are selected using the following
criteria based on single-granuloma CFU data from NHP (Fig. 3B) (21,
77–79) and oxygen measurements in rabbit granulomas (Fig. 3C) (17).

• 5,000 � day 30 total CFU � 100,000 for 4 or 5 of 5 replicates.

• Day 80 total CFU of �10,000 for any of the replicates.

• Day 200 total CFU of �2,500 for 4 or 5 of 5 replicates.

• (Day 200 total CFU)/(day 100 total CFU) � 2 for any of the repli-
cates.

• Only 1 or 2 of 5 replicates clearing infection before day 200.

• 1 mg/liter � day 30 oxygen in the granuloma � 200 mg/liter for any
of the replicates.

The final parameter set (Table 4) is selected by visual inspection from
5 candidate sets identified by the criteria listed above. A representative
granuloma generated with this parameter set is shown in Fig. 3D, along
with the predicted oxygen, TAG, and glucose levels within the granuloma.
This parameter set captures tissue-scale outcomes of TNF-�, IL-10, and
IFN-� knockouts in mice and NHPs (80–86) (see Fig. S2 in the supple-
mental material).

Sensitivity analysis (SA) quantifies the strength of correlation between
model parameters and outputs of interest and therefore can identify the
main driving mechanisms in the model for specific outputs. SA is per-
formed by calculating partial ranked correlation coefficients (PRCCs) be-
tween model parameters and model outputs (59). We again use LHS to

Mapping Genetic to Granuloma Scales in Tuberculosis

May 2016 Volume 84 Number 5 iai.asm.org 1657Infection and Immunity

http://iai.asm.org


simultaneously vary multiple parameters. While a number of other sen-
sitivity analysis methods are available (87–94), our chosen approach al-
lows global sensitivity analysis, i.e., identification of the contribution of a
set of parameters to model outcomes in the context of other parameter
variations, instead of local sensitivity analysis, i.e., variation of single pa-
rameters against baseline values for other parameters. The method also
allows the evaluation of parameter contributions to a large number of
model outputs at multiple time points. Using LHS to perform parameter
sampling and performing multiple replications of the stochastic model for
each parameter set alleviates the significant computational limitations of
large parameter sweeps in conventional sensitivity analyses. Parameter
ranges used for the SA (Table 4) are constructed around the final param-
eter set from the uncertainty analysis described above. We sample the
parameter space 1,500 times and perform 5 replicates for each parameter
set to estimate contributions from both aleatory uncertainty and epis-
temic uncertainty. Parameters are ranked in terms of strength of correla-
tion with model outputs using the z-test. Significant PRCC and z-test
results are defined as having P values of �0.01.

(viii) GranSim-CBM validation. For model validation, we compare
killing of bacteria in our model with in vivo measurements (19, 21). Bac-
terial killing can be assessed as CFU/CEQ, where CEQ (representing chro-
mosomal equivalents) is a measure of all bacteria that have been in the
granuloma during the entire infection. A low CFU/CEQ fraction value
indicates effective killing of bacteria by the host (21). We measure this
ratio in GranSim-CBM by tracking the cumulative number of bacteria in
the simulation, including dead bacteria (38). The median value of CFU/
CEQ at 75 days postinfection (dpi) is 9 � 10�3, with a 95% confidence
interval of 7 � 10�3 to 1 � 10�2. In comparison, experimental CFU/CEQ
ratios from nonhuman primates (NHP) at 77 dpi (21) (rhesus macaque)
are on average 2 � 10�3, with a range of 1 � 10�5 to 2 � 10�1.

(ix) Hierarchical clustering of bacteria. In order to explore heteroge-
neity in the bacterial populations in our simulations, we group bacteria
according to their growth rates and locally available nutrients. Growth
rates depend on local nutrients (using the CBM) as well as host adaptive
immunity (using GranSim). For grouping, we use hierarchical clustering
based on Euclidean distances (Matlab Release 2014b; The MathWorks,
Inc., Natick, MA, USA), standardizing by growth rate and available nutri-
ent levels (oxygen, glucose, TAG, lipid inclusions). Each resulting cluster
of bacteria represents a group of bacteria with similar growth rates and
nutrient environments. Clustering is performed on a collection of bacteria
pooled from multiple time points in a single granuloma, to identify pat-
terns that continued throughout the simulation (temporally) as well as
patterns that developed at specific times (spatially). Furthermore, clusters
are visualized as a heat map augmented to display model variables not
used for clustering (time, CBM fluxes, maintenance metabolism, and in-
tracellular/extracellular location).

(x) Simulations of lipid inclusion defects and virtual M. tuberculosis
knockouts. Since the nonreplicating growth phenotype and lipid inclu-
sion formation appear to be important adaptations of M. tuberculosis,
these adaptations could be attractive antibiotic targets. To explore the
potential effects of inhibiting these two adaptations, we perform addi-
tional simulations in which bacteria are unable to enter the nonreplicating
state or to accumulate lipid inclusions. To allow bacteria to slow their
growth but not accumulate lipid inclusions, the hypoxia switch is retained
but the maximum lipid inclusion parameter (Lmax) is set to zero. To
prevent bacteria from slowing their growth, the half-saturation parameter
(h) is set to 1 � 10–100.

Gene deletion mutants (virtual knockouts) are simulated in the CBM
by removing the set of reactions requiring the corresponding gene prod-
uct. Removing reactions shrinks the feasible space. Our approach is ap-
propriate to capture the long-term effect of a deletion; other approaches
may be more appropriate for capturing immediate short-term effects (95)
or partial inhibition by drugs or other small molecules.

Of the 759 enzymes in the M. tuberculosis metabolic model, 291 block
the biomass reaction when removed and are essential within the CBM. Of

the remaining 468 enzymes, 277 do not change the CBM when removed
because other enzymes catalyze the same reaction and, in the context of
GranSim-CBM, are identical to those of the wild type (WT). The remain-
ing 191 virtual knockouts cause changes in the metabolic network, poten-
tially causing growth defects under certain nutrient conditions. These
“attenuated” but not essential mutants are suited for further analysis us-
ing GranSim-CBM. We simulate these 191 mutants in the multiscale
model by running GranSim-CBM with the virtual knockout CBMs for 10
replications per mutant. We then test the hypothesis that the 10-simula-
tion mean CFU count at 400 dpi (�KO,i) is identical to the corresponding
mean for WT strains. An empirical mean distribution (�WT) for the WT is
constructed by performing 100 WT simulations and then generating Nb �
4,000 bootstrap samples of 10 simulations selected uniformly with re-
placement from the 100. The empirical one-sided P value p for each dele-
tion mutant is then calculated as the percentile of the observed mean CFU
for the knockout strain using the bootstrapped WT distribution as fol-
lows:

p � r ⁄ �Nb � 1� (7)

where r is the rank of �KO,i when included in the 4,000 WT bootstrap
replicates. We corrected for multiple testing of the 191 attenuated mu-
tants using the Benjamini-Hochberg method (96) with a false-discovery
rate (FDR) constrained to 0.05 or less. Increasing Nb to 10,000 did not
affect the list of attenuated mutants. The TubercuList database was used to
map the gene names (Rv) present in GSMN-TB to their common names
(97).

When enzymes are removed from the M. tuberculosis metabolic
model, the remaining reactions may have different ranges of permitted
fluxes. We use flux variability analysis (FVA) (98) to identify “bypass
reactions” for each mutant, defined as those reactions not required for
maximum growth in WT but required for maximum growth in the mu-
tant considered. Practically, this is done by considering the range of each
flux that could result in maximum growth as calculated by the CBM.
Those fluxes with ranges that do not contain 0 in the mutant but contain
0 in the WT are labeled as bypasses for the removed reaction(s).

(xi) Efficient implementation of GranSim-CBM. Because most of the
CBM reactions are effectively unconstrained, the dynamic CBM optimum
depends only on a small number of external variables. For computational
ease in the multiscale model, we exploit this observation and replace linear
programming with lookup tables generated using linear programming
outside GranSim-CBM. The values in the lookup tables are used to calcu-
late the optimal flux state for each bacillus. Lookup tables are indexed by
five input variables: the growth switch parameter (), the oxygen import
flux upper bound (�O2

up), the extracellular glucose import flux upper
bound (�glc

up), the extracellular TAG import flux upper bound (�TAG
up),

and the lipid inclusion TAG import flux upper bound (�L
up). Note that

although  depends on oxygen concentration (and therefore on �O2
up),

the relationship varies with the parameters s and h (equation 2) as well as
Vmax-host and khost. Therefore, indexing by both  and oxygen import
fluxes allows the use of a single lookup table with multiple values of these
parameters. Since inputs and table entries are normalized to correspond
to a bacillus with a biomass of 1 BU, outputs are then scaled linearly by the
actual biomass for each bacterium in GranSim-CBM. Six output variables
from the CBM are used to update local variables in GranSim-CBM: the
biomass growth rate (�b), the oxygen import flux, the glucose import flux,
the extracellular TAG import flux, the lipid inclusion production (�pL),
and lipid inclusion usage rate (�cL). As a tradeoff between lookup table size
and accuracy, the lookup table uses 16 points in each input dimension
spaced at equal intervals between a minimum and maximum value, with
each of the 165 entries then storing the 6 output variables. Multidimen-
sional linear interpolation is used to calculate outputs between the table
entries. The lookup table entries are calculated using the Cobra Toolbox
for MATLAB (99), custom MATLAB scripts, and CPLEX (IBM Corp.,
Armonk, NY) for the linear programming optimization. Computational
time to generate one lookup table was approximately 28 h on Intel E5
8-core (Sandy Bridge) processors.
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GranSim and GranSim-CBM are implemented in C		 with Boost
libraries (distributed under the Boost software license and available at
www.boost.org). The graphical user interface (GUI), which allows us to
visualize, track, and plot different facets of our simulated granulomas in
real time, uses the Qt framework (open source; distributed under GPL).
The model can be used with or without GUI visualization and is cross-
platform (Mac, Linux, Windows). Average run time for GranSim is ap-
proximately 10 h per simulation for 1,000 days on Dell 8-core processors.
Further details and a model executable and parameter file for GranSim-
CBM are available online at http://malthus.micro.med.umich.edu/Gran
Sim/GranSim-CBM/.

RESULTS

Our goal is to predict M. tuberculosis metabolic influences on bac-
terial loads within granulomas using our multiscale computa-
tional model, GranSim-CBM (Fig. 2), which is calibrated to non-
human primate and rabbit data (Fig. 3). The model captures
interactions between M. tuberculosis, host immunity, and the nu-
trient environment within granulomas, including the ability of M.
tuberculosis to slow its growth and accumulate lipid inclusions in
response to hypoxia. This approach enables the mapping of
in vitro M. tuberculosis growth onto in vivo M. tuberculosis survival
in granulomas (Fig. 1).

(i) Infection outcome correlates more strongly with bacterial
properties than with environmental properties. We identify the
key molecule- and metabolism-scale mechanisms that drive gran-
uloma outcomes using sensitivity analysis. We simultaneously
vary multiple GranSim-CBM parameters and test their contribu-
tions to variations in granuloma outcomes of interest (e.g., bacte-
rial load and oxygen concentration). We quantify these contribu-
tions by calculating the partial rank correlation coefficient
(PRCC) between each model parameter and granuloma outcome.
Sensitivity analysis reveals (Table 5) that two bacterial parameters,
biomass degradation rate (dmax, representing maintenance me-
tabolism of a replicating bacterium) and maximum oxygen reduc-
tion (Vmax,O2, the maximum rate at which oxygen is reduced by
the bacterium), are the main drivers of most granuloma out-
comes. Lower-ranked parameters with significant correlations
are related to granuloma environment, primarily plasma oxygen
concentration (O2,plasma), vascular permeability of oxygen (p),
and available TAG per macrophage (TAGI). Overall, these corre-
lations are similar whether calculated at early time points (�40
dpi) or late time points (
200 dpi) in the simulation. Parameters
that increased total bacterial load tend to decrease the proportion
of intracellular bacteria. These results indicate that oxygen-related
bacterial properties and, to a lesser extent, environmental proper-
ties are the main molecular/metabolic contributors to granuloma
outcomes.

(ii) Bacterial growth phenotypes in granulomas are dynamic
and heterogeneous. We characterize M. tuberculosis growth phe-
notypes existing within granulomas for wild-type (WT) strains.
Since the model is stochastic, we can capture variability in granu-
loma outcomes by conducting 100 replicate simulations with the
baseline parameter set in Table 4. We examine whether bacteria
within a granuloma exist in a nonreplicating state. Infection is
initialized by placing a single infected macrophage, containing a
single bacterium, on the simulation grid. The growth status of
each bacillus is investigated using two measures: generation time
(time between previous divisions) and instantaneous growth rate
(instantaneous flux through the biomass reaction). There is a
trend toward increased generation times over the course of infec-
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tion (Fig. 4A), though the trend is statistically insignificant after
200 dpi (see Fig. S3A in the supplemental material), with a maxi-
mum generation time of up to 94 days for a few bacteria at 1,000
dpi. Most bacteria have shorter generation times, however, and
the median generation time of 1.5 days at 20 dpi increases to only
3.7 days at 1,000 dpi. The distribution of instantaneous growth
rates is bimodal (Fig. 4B), reflecting distinct populations of repli-
cating bacteria with growth rates of �0.033 h�1 and of nonrepli-
cating bacteria with growth rates of �0.0015 h�1. This bimodal
distribution is a reflection of the growth adaptation mechanism,
i.e., the sigmoidal switching function (equation 2), as well as the
pseudo-steady-state assumption in the dynamic CBM. This ver-
sion of the model does not yet capture the time for gene regulation
and for expression changes that the bacterium might require to
reorganize its metabolic network. The majority of bacteria remain
in the replicating population throughout infection (see Fig. S3B in
the supplemental material). These results suggest that bacterial
growth rates remain dynamic throughout infection.

(iii) Local nutrient conditions drive bacterial heterogeneity.
To probe the environmental factors driving changes in growth
rates over time, we pool bacteria from a single representative gran-
uloma at multiple time points (20, 100, 200, 300, 400, 700, and
1,000 dpi) representing the different phases of granuloma forma-
tion. We perform hierarchical clustering of these bacteria based on
instantaneous growth rate, local concentrations of oxygen, glu-
cose, and external TAG, and availability of TAG in lipid inclusions
(Fig. 5A). In this analysis, bacteria with similar growth rates and
nutrient environments are clustered. The nutrient conditions that
drive M. tuberculosis growth rates in Fig. 4 can be represented by 7
unique growth clusters, as described in Table 6. For example, a
bacterium in growth cluster 4 (red star and dashed line in Fig. 5A)
is clustered with other bacteria that encounter medium-to-high-
level carbon sources and low oxygen levels, causing them to switch
to slow growth due to lack of oxygen. Similarly, a bacterium in
cluster 3 (magenta star and dashed line in Fig. 5A) is clustered with
other bacteria that encounter medium-level carbon sources and

high oxygen levels, resulting in relatively rapid growth. The clus-
tered bacteria are then further characterized (Fig. 5B) based on
time point (dpi), nutrient utilization fluxes (lipid inclusions,
TAG, glucose, and oxygen), biomass degradation rates, and lo-
cation (intracellular/extracellular). The example bacterium in
cluster 4 (red star and dashed line in Fig. 5B) is revealed to be from
a later time point, using very little carbon and oxygen; its slowed
metabolism is reflected in a low biomass degradation rate, and it is
extracellular. The example bacterium in cluster 3 (magenta star
and dashed line in Fig. 5B) is shown to be from an earlier time
point, with high TAG and oxygen consumption levels and a high
biomass degradation rate, and it is intracellular.

Bacteria from early time points group in clusters 1 to 3. Al-
though most bacteria at 20 dpi have high available oxygen levels,
bacteria in clusters 1 and 2 at 20 dpi have low growth rates (Fig. 5A
and B) compared to those in cluster 3. Thus, while different clusters
are representative of bacteria during different stages of infection, het-
erogeneity exists even early on. Clusters 4 to 7 are enriched for bacte-
ria from later time points (Fig. 5A and B). Cluster 4 represents bacte-
ria that have slowed their growth in response to low-oxygen
conditions (as reflected in lower biomass degradation rate).

We can also locate each bacterium within the granuloma at
each time point (Fig. 5C). For example, the bacterium from clus-
ter 4 (red stars and dashed lines in Fig. 5A and B) is from 700 dpi
in a small group of bacteria in the top right of the granuloma (red
star in Fig. 5C; 700 dpi). The bacterium in cluster 3 (magenta stars
and dashed lines in Fig. 5A and B) is located along with most other
bacteria in cluster 3, in the outer rim of the bacterial population at
20 dpi (magenta star in Fig. 5C; 20 dpi). Examining the spatial
distribution of bacteria from all seven growth clusters within the
granuloma over time reveals that clusters 1 and 2, which are lim-
ited in available TAG, are located in the innermost part of the
granuloma (Fig. 5C). This suggests that the rapid expansion of
bacteria at this early time point is generating a carbon-limited
subpopulation of bacteria, leading these bacteria to utilize their
lipid inclusions (Fig. 5B). Furthermore, the major heterogeneity

FIG 4 Distributions of bacterial growth over time. (A) Histogram showing the distribution of populations of bacteria by generation time. Bacteria with
generation times longer than 10 days are included in the histogram at the 10-day time point. (B) Histogram showing distribution of bacteria by instantaneous
growth rate. Results are averages of 100 replicate simulations performed with the baseline parameter set in Table 4.
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occurs over time rather than space. Bacterial populations shift
from one growth cluster to another, e.g., from mostly clusters 5
and 7 at 300 dpi to mostly cluster 4 at 400 dpi. These results
indicate that fluctuations occur within granulomas, with M. tu-
berculosis bacteria continually responding to the dynamic granu-
loma microenvironments by changing their growth rates.

(iv) Growth phenotype changes reflect granuloma size and
bacterial loads. To explore how the fluctuations in bacterial
growth phenotypes connect to granuloma environmental proper-
ties, we examine the total number of bacteria and relative fraction
of bacteria within each growth cluster at 20-day intervals for a
representative granuloma (Fig. 6A). Note again the differences in
predominant growth clusters between the early (�100 dpi, clus-

ters 1 to 3) and late (
100 dpi, clusters 4 to 7) time points. After
100 dpi, when CFU levels are high, the majority of bacteria are in
cluster 7, with sufficient carbon sources and low but not limiting
oxygen levels. When CFU levels in the granulomas are low, the
majority of bacteria are in cluster 4, with ample carbon sources but
with growth slowed by hypoxia. These nonreplicating bacteria can
reenter the replicating state when hypoxia is relieved, as a granu-
loma shrinks. Reducing hypoxia in granulomas has been sug-
gested as a strategy to resensitize bacteria to antibiotics (100). The
dynamics between bacterial load, granuloma size, and bacterial
growth clusters are also evident if we examine multiple granulo-
mas at multiple time points between 200 and 1,000 dpi (Fig. 6B;
see also Fig. S4 in the supplemental material). Smaller granulomas

FIG 5 Hierarchical clustering of bacteria by nutrient conditions and spatial location. (A) Bacteria (columns) from multiple time points from a representative
granuloma are hierarchically clustered based on growth rate and level of lipid inclusions, TAG, glucose, and oxygen available in each bacterium’s immediate
environment (rows). Data for each nutrient are standardized to the row average. Clusters are numbered and highlighted with color codes indicated by arrows on
the right. Two bacteria are highlighted (red and magenta stars with black dashed lines) as examples discussed in the text. These two bacteria are also used as
examples in the discussion of panels B and C. (B) Bacterial clusters from panel A are further characterized by plotting their time points (day), fluxes from the CBM
(i.e., optimal uptake fluxes for each nutrient calculated by the CBM based on the available nutrients), biomass degradation rate, and cellular location. Values for
each output are standardized by row values. Extra., extracellular; Intra., intracellular. (C) Bacteria and their growth clusters are localized within granulomas.
Granuloma simulation snapshots are shown in the top row with agent colors corresponding to those in Fig. 3D. The example bacteria from panels A and B are
located in these granuloma snapshots with stars in the panels for 20 dpi and 700 dpi. Bacterial growth clusters are shown in the granulomas (bottom row) using
color codes of clusters from panels A and B.
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with high bacterial loads have bacteria mostly in growth cluster 7,
while larger granulomas have lower bacterial loads, with the ma-
jority of bacteria in cluster 4. Bacteria in cluster 5 mostly occupy
granulomas that are intermediate in size and bacterial load. We
explore the role of different growth clusters with respect to long-
term bacterial survival in granulomas by removing the factors of
slow growth and lipid accumulation independently. Removing M.
tuberculosis’s ability to slow its growth, i.e., its ability to enter
growth cluster 4 (but not its ability to accumulate lipid inclu-
sions), leads to lower bacterial loads and higher sterilization rates
(Fig. 6C). These differences can be linked to increased bacterial
death from starvation (Fig. 6D). Specifically, since growth cluster
4 normally adjusts to lack of oxygen by lowering its maintenance
metabolism (Table 6), the increased bacterial death shown in Fig.
6D is due to oxygen levels insufficient to sustain maintenance
metabolism. This suffocation is in contrast to bacterial death due
to a lack of carbon sources (such as the conditions encountered by
growth clusters 1 and 2 early during infection (Fig. 5C and Table
6). Collectively, these results connect bacterial growth phenotypes
to granuloma properties and show the importance of growth ad-
aptation for long-term survival of M. tuberculosis in granulomas.

(v) The timing of metabolic enzyme inhibition, early versus
late in infection, influences attenuation. To explore the potential
of metabolic enzymes as antibiotic targets, we predict the effect of
removal of each enzyme on both growth rate in vitro (using the
CBM) and bacterial load in granulomas (using GranSim-CBM).
We generate virtual metabolic enzyme knockout mutants (KOs)
by systematically removing one enzyme at a time from the meta-
bolic network in the CBM. For in vitro predictions, we consider
different culture media as well.

Of 191 KOs tested, we identified 41 as significantly attenuated
(FDR, 0.05) relative to the WT based on bacterial load within
granulomas at 400 dpi (see Fig. S5A and B and Table S3 in the

supplemental material). These 41 enzymes catalyze 22 distinct re-
actions, primarily within the electron transport chain: 10 different
genes encoding components of the cytochrome c oxidase complex
and 13 genes encoding components of NADH-ubiquinone oxi-
doreductase. The attenuation predicted for these KOs suggests
that they could be potential antibiotic targets. Note that our pre-
dictions overestimate the amount of attenuation possible with
antibiotics because antibiotics typically result in only partial inhi-
bition of target enzymes and because antibiotic treatment of TB
typically starts well after infection, when the patient seeks medical
care.

We therefore tested the effect of a knockout occurring mid-
infection (at 200 dpi) (Fig. 7) for the 41 KOs identified in the
previous analysis. Mid-infection KOs fall broadly into three cate-
gories: (i) no attenuation for mid-infection knockouts (Fig. 7A)
(category 1), (ii) less attenuation for mid-infection knockouts
than for preinfection knockouts (category 2) (Fig. 7B), and (iii)
similar levels of attenuation in pre- and mid-infection knockouts
(category 3) (Fig. 7C). KOs that fall into category 2 or category 3
(but not category 1) could potentially be good antibiotic targets
because they are attenuated if knocked out mid-infection. These
results suggest that methods that screen for new antibiotic targets
should account for differences between bacterial requirements for
survival early versus late in infection.

(vi) Metabolic bypass pathways mitigate growth defects in
attenuated mutants and may represent auxiliary drug targets.
What drives the differential levels of attenuation in early versus
late KO mutants? We use the CBM to identify metabolic mecha-
nisms that allow some KO mutants to sustain infection in granu-
lomas. We use flux variability analysis (FVA) to identify bypass
reactions activated in response to enzyme knockouts. Of the 41
attenuated mutants identified with GranSim-CBM, 28 were ob-
served to have a nonzero growth rate in lipid-only media, and
these were mapped to a unique subset of 7 reactions (Table 7).
Growth rates of the corresponding mutants range from 30% to
75% of the wild-type growth rate in an in vitro environment with
high lipid levels and high oxygen levels. At the maximum growth
rate, the mutants all reduce oxygen at the same rate as the wild-
type genotype, indicating that oxygen reduction is the limiting
reaction for both the wild-type strain and these mutants. Several
mutants require greater TAG import, suggesting less-efficient
stoichiometry in the conversion of TAG to biomass. Mutants with
reduced TAG import relative to wild-type levels utilize oxygen less
efficiently and consequently display significant attenuation.

To identify the reactions used by the KO mutants to bypass
knocked-out enzymes, we can visualize metabolic subnetworks
involving knockouts, bypass reactions, and metabolite reactants
and products used by these KO mutants to compensate for loss of
an enzyme (Fig. 7D; see also Fig. S6 to S13 in the supplemental
material). An electron transfer system example is provided by the
knockout of ctaB, which eliminated the activity of the cytochrome
bc1 protein complex within the cytochrome c system. This func-
tion is bypassed by the less efficient cytochrome bd complex,
which is not used by the wild-type organism under the same con-
ditions (Fig. 7D). This bypass allows the ctaB knockout to persist
in granulomas at nearly WT levels (Fig. 7B). These computational
results are consistent with recent experimental results obtained
using small molecules to poison cytochrome bc1 activity, resulting
in upregulation of cytochrome bd (101). Similarly, knockout of
eno requires a bypass reaction for generation of 3-phosphoglycer-

TABLE 6 Summary of growth clusters identified in Fig. 5

Cluster Description

1 Early lesions; low-level carbon sources; low-medium oxygen level;
utilization of lipid inclusions; slow growth due to lack of
carbon sources; high biomass degradation rate

2 Early lesions; low-level carbon sources; low-medium oxygen level;
lipid inclusions very low; slow growth due to lack of carbon
sources; high biomass degradation rate

3 Early lesions; medium-level carbon sources; high oxygen level; no
significant utilization of lipid inclusions; fastest growers; high
biomass degradation rate

4 Late, large lesions; low CFU; medium-to-high-level carbon
sources; low oxygen level; no significant utilization of lipid
inclusions; slow growth with low biomass degradation rate due
to lack of oxygen

5 Late, medium-size lesions; medium CFU; medium-level carbon
sources; low-medium oxygen level; no significant utilization of
lipid inclusions; fast growth with high-maintenance
metabolism

6 Early lesions following onset of adaptive immunity; medium-level
carbon sources; high oxygen level; no significant utilization of
lipid inclusions; fast growth with high-maintenance
metabolism

7 Late, small lesions; high CFU; high-level carbon sources; low-
medium oxygen level; no significant utilization of lipid
inclusions; fast growth with high-maintenance metabolism
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FIG 6 Importance of growth adaptation for long-term survival of M. tuberculosis in granulomas. (A) Proportions of bacteria in each growth cluster (the 7 clusters
identified in Fig. 5) were quantified every 20 days over the course of infection (right y axis) and plotted with total CFU (left y axis). (B) Each pie symbol represents
1 granuloma (data represent 300 granulomas randomly selected from a collection of 100 granulomas sampled at different time points after 200 dpi). Slices
represent proportions of bacterial populations within each growth cluster. (C and D) Comparisons of WT simulations to simulations in which growth adaptation
or the ability to accumulate lipid inclusions was removed. (C) Time-averaged CFU between 200 and 1,000 dpi. (D) Fraction of bacteria that died from starvation
by 1,000 dpi (i.e., biomass � �death) for individual granulomas (n � 100). P values indicate results from the Kruskall-Wallis test with Dunn’s correction for
multiple comparisons. Lines show means. ns, not significant.
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ate (see Fig. S6). Inhibitors of enolases have been reported, includ-
ing phosphonoacetohydroxamate (102) and ENOblock (103).
Our computational results suggest that these inhibitors could be
made more effective at inhibiting the growth of M. tuberculosis by
cotreatment with inhibitors of bypass enzymes encoded by genes
such as gap (glyceraldehyde 3-phosphate dehydrogenase) or tpi (tri-
osephosphate isomerase). These results illustrate how CBMs can be
used to broadly characterize the metabolic defects caused by individ-
ual drugs and, potentially, to identify secondary targets required for
bypassing chemically or genetically inactivated reactions.

(vii) Multiscale analysis reveals in vitro culture medium and
growth thresholds predictive of M. tuberculosis survival in
granulomas. M. tuberculosis mutants that grow well in rich media
(high glucose, high TAG, and high oxygen levels) may have growth
restrictions in the depleted environment of an in vivo granuloma.
With the aim of identifying in vitro conditions that may predict in vivo
readouts (Fig. 1), we investigate which in vitro nutrient conditions
yield M. tuberculosis growth rates that correlate with predicted in
silico granuloma outcomes such as bacterial load.

Growth rates calculated for knockouts in rich media (r � 0.67;

P value � 0.001) and lipid-only media (r � 0.73; P value �
0.0001) are correlated with predicted CFU per granuloma (Fig. 8A
and B). Thirteen of the 191 mutants are not predicted to be atten-
uated in rich media but are attenuated in simulated granulomas
(Fig. 8A; similar to KO2 in Fig. 1). Such false-negative attenuation
predictions are not present using growth rates predicted on lipid-
only media (Fig. 8B). Knockouts conducted at 200 dpi rather than
preinfection also show a correlation (r � 0.81; P value � 0.001)
between the lipid-only growth rate for the knockout and the bac-
terial load in granulomas (Fig. 8C). These correlations are not
unexpected as a reflection of the model constraint that intracellu-
lar bacteria use only TAG and not glucose. However, it is unclear
which threshold in growth rates should be used to define attenu-
ation relative to the WT growth rate. If the same in vitro growth
rate threshold (�85% of the WT growth rate) is used to define
attenuation in the early (Fig. 8B) and late (Fig. 8C) knockouts, two
late knockout mutants appear to be attenuated on the basis of lipid
medium growth rates but are not attenuated in simulated granu-
lomas (Fig. 8C; similar to KO3 in Fig. 1). A lower threshold
(�66% of the WT growth rate) is necessary to predict which mu-

FIG 7 Bacterial loads over time for different virtual KO mutants. Data represent predicted total CFU (median) over time for the WT (dashed line), knockouts
from the start of infection (black line), or mid-infection knockouts from 200 dpi (gray line). Data from three representative gene products are shown. (A)
tpi/Rv1438, a triosephosphate isomerase which has a role in glycolysis. (B) ctaB/Rv1451, a cytochrome c oxidase assembly factor. (C) gap/Rv1436, a probable
GAPDH (glyceraldehyde 3-phosphate dehydrogenase) involved in the second phase of glycolysis. n � 20 for the knockouts; n � 100 for the WT. (D) Bypass
reactions identified by flux variability analysis (FVA). Squares represent chemical reactions corresponding to the enzyme label. Metabolites used or produced by
any of the depicted reactions are included (teal circles). This diagram shows the reactions eliminated by a gene knockout (black square) and reactions that became
“required” (defined as leading to attenuation if removed) in the knockout but that were not required in the WT (green square). Dashed arrows correspond to
metabolite usage or production no longer present in the knockout (as the reaction has been removed); solid arrows correspond to reactants of the bypass (green)
reactions. To summarize what can be gleaned from this figure, the protein encoded by ctaB is required for cytochrome bc1 oxidase activity. Thus, a knockout
mutant in ctaB makes use of a bypass flux through cydB, which is part of the less efficient cytochrome bd complex. Under conditions in which cydB was also
knocked out (or severely inhibited by drugs), the model predicts that M. tuberculosis would be further attenuated in growth (though not necessarily incapable of
growth). Identical results were obtained for knockouts in any of the following genes annotated as required for cytochrome c oxidase activity: ctaB, ctaC, ctaD, ctaE,
fixA, fixB, qcrA, qcrB, qcrC, and Rv1456c.
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tants would be unable to sustain long-term infections (Fig. 8C). In
other words, KOs with predicted growth rates between �66% and
85% of the WT growth rate are able to sustain but not establish
infections within granulomas.

These data identify �66% of the WT growth rate in lipid media
as a threshold for predicting in vivo attenuation.

DISCUSSION

A better understanding of the microbiology of TB granulomas
could help to identify new antibiotic targets or host-directed ther-
apies (104, 105) that could limit long-term M. tuberculosis survival
in vivo. We present a multiscale computational model that maps
genetic and metabolic detail at the bacterial scale to in vivo gran-
uloma outcomes such as bacterial load. This model recapitulates
tissue-level outcomes observed in vivo (21, 77–79), affording us a
first-time tool to track dynamics occurring on the bacterial and
granuloma scales.

The view of long-term M. tuberculosis survival in a nonrepli-
cating state within granulomas suggests a static equilibrium be-
tween host and pathogen. However, evidence points to a more
dynamic host-pathogen balance (77), with nonsterilized granulo-
mas in latently infected individuals indistinguishable from gran-
ulomas in individuals with active TB disease (21, 23) based on
CFU and on CFU/CEQ, where CEQ (representing chromosomal
equivalents) is a measure of all bacteria that have been in the
granuloma during the entire infection. Our model supports a dy-
namic persistence mechanism in which M. tuberculosis surviving
in long-term granulomas can be actively dividing and continually
responding to changing granuloma environments. This would
imply that TB is not only a highly heterogeneous infection (106)

but, on the granuloma level, also a highly dynamic one. Specifi-
cally, our model suggests that the slowly replicating or nonrepli-
cating phenotypes of M. tuberculosis preserve the bacterial popu-
lation in vivo by continuously adapting to dynamic granuloma
microenvironments, and we show that removing the ability of
bacteria to slow their growth mid-infection impairs their ability to
sustain a long-term infection. Inhibitors of the nonreplicating
phenotype could potentially improve treatment outcomes, simi-
larly to the “shock-and-kill” approach currently being investi-
gated in HIV therapy (107). The role of the nonreplicating phe-
notype in dynamic adaptation could, to some extent, be tested in
vitro using dynamic nutrient condition manipulation in chemo-
stats or other culture methods (26, 28) combined with knockouts
in genes suspected to be connected to the phenotype (e.g., relA,
dosR).

Our predicted nutrient conditions encountered by M. tubercu-
losis in granulomas could help guide the environmental condi-
tions used for in vitro drug screens. In vitro drug or drug target
screening assays with slowly replicating or nonreplicating M. tu-
berculosis (including starvation, low-oxygen, and nitric oxide as-
says) are typically used to represent in vivo bacterial phenotypes,
and there is significant research effort put into recreating granu-
loma-like stress conditions in vitro (3). Even in the absence of a
hoped-for granuloma-in-a-dish experimental system, our results
suggest the most relevant in vitro experimental systems for pre-
dicting granuloma outcomes. Mutant phenotypes in simulated
granulomas (“in vivo”) are in greatest concordance with growth
rates in simulated lipid-only media (“in vitro”). These results
could support new directions for in vitro drug or drug target
screening (63). Our results further identify an attenuation thresh-

TABLE 7 The defect for each of the attenuated but nonlethal mutants can be explained by a change of the permitted stoichiometry between oxygen,
TAG, and biomass for in vitro growth in lipid-only media in high levels of oxygena

Gene removed from the reaction set in each
KO mutant Enzymatic activityb Reaction catalyzed

Optimal rate
of biomass
production (1/h)

Import rates
during optimal
growth
(fmol/h-BU)

TAG Oxygen

WT NA NA 0.034 0.003 0.272
tpi/Rv1438 Triose-phosphate isomerase DHAPN G3P 0.023 0.005 0.272
pgk/Rv1437 Phosphoglycerate kinase ADP 	 13PDGN ATP

	 3PG
0.013 0.007 0.272

nuoA/Rv3145, nuoB/Rv3146, nuoD/Rv3148,
nuoE/Rv3149, nuoF/Rv3150,
nuoG/Rv3151, nuoH/Rv3152,
nuoI/Rv3153, nuoJ/Rv3154,
nuoK/Rv3155, nuoL/Rv3156,
nuoM/Rv3157, nuoN/Rv3158

Type I NADH dehydrogenase,
NuoA-N

MK 	 NADH ¡ MKH2
	 NAD 	 4 H

0.025 0.003 0.272

glcB/Rv1837c Malate synthase ACCOA 	 GLX ¡ COA
	 MAL

0.010 0.007 0.272

gap/Rv1436 Glyceraldehyde-3-phosphate
dehydrogenase

NAD 	 PI 	 G3PN
NADH 	 13PDG

0.013 0.007 0.272

eno/Rv1023 Phosphopyruvate hydratase 2PGN PEP 0.010 0.007 0.272
ctaB/Rv1451, Rv1456c, ctaE/Rv2193,

qcrC/Rv2194, qcrA/Rv2195, qcrB/Rv2196,
ctaC/Rv2200c, fixB/Rv3028c,
fixA/Rv3029c, ctaD/Rv3043c

aa3-type cytochrome c
oxidase, ctaCDE AND
cytochrome bc1

0.5 O2 	 2 HEME-FE2 ¡
6 H 	 2 HEME-FE3

0.019 0.002 0.272

a Attenuated mutants were identified by hypothesis testing using GranSim-CBM data. The nonlethality of the mutants was determined by CBM in lipid-only media. NA, not
applicable.
b Annotation is provided in reference 45.
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old, showing that drugs should result in lipid-only growth rates
below 66% of the WT rate to be able to effectively inhibit bacterial
survival in granulomas. Note that this threshold provides an up-
per limit of growth under conditions of inhibition, since our gran-

uloma results are based on complete knockout of the genes
whereas novel antibiotics are unlikely to continuously and com-
pletely eliminate the enzymatic activity of the target. This granu-
loma-dependent threshold for mutant attenuation suggests a
novel strategy for translating in vitro discoveries into potential
new therapies.

Our model also identifies bypass pathways that are not essen-
tial in WT M. tuberculosis but which are essential for optimal
growth of a knockout mutant in the granuloma environment.
Bypass pathways could be used to identify secondary targets for
combination therapy or potential failure modes for inhibition of
metabolic enzymes. Bypass reactions may also suggest novel com-
binations of drugs with synergistic anti-M. tuberculosis activity.

Computational methods have been successfully applied in the
drug discovery pipeline against a number of pathogens (108–110).
Genes (and combinations of genes) that we identify to be impor-
tant for in vivo survival can now be tested as potential new drug
targets using existing drugs or KO strains in animal models. Com-
bining GranSim-CBM with our existing model of antibiotic dis-
tribution and activity in the granuloma (40, 41) could also help
elucidate the contributions of bacterial heterogeneity, asymmetric
division and growth, and lipid inclusion levels to treatment out-
comes (5, 111). Such insight can in turn inform new regimens and
strategic drug design.
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