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Calcium ion signaling regulates central aspects of the biology controlling stage and life cycle transitions of apicomplexan para-
sites. In the current issue of Infection and Immunity, Long and coworkers (S. Long, Q. Wang, and L. D. Sibley, Infect Immun
84:1262–1273, 2016, http://dx.doi.org/10.1128/IAI.01173-15) describe a powerful genetic system enabling reliable serial genetic
dissection of a large gene family encoding novel calcium-dependent protein kinases (CDPKs) that provides new insights into the
roles of CDPKs during Toxoplasma gondii infection.

Intracellular calcium levels and calcium ion (Ca2�) signaling reg-
ulate host cell invasion, egress, protein secretion, and differen-

tiation in apicomplexan parasites (1, 2). The biology controlling
central aspects of Ca2� entry, storage, release, and signaling has
come under increased scrutiny due to the central importance of
Ca2� signaling in mediating the cellular and developmental changes
essential to apicomplexan parasitism. While a family of calcium
(Ca2�)-dependent serine/threonine (S/T) protein kinases (CDPKs)
is present in plants, ciliates, green algae, and the apicomplexan
parasites (2), CDPKs are absent in the mammalian hosts of api-
complexan parasites, suggesting that this gene family could be a
rich source of potential drug targets (3). Surprisingly, the CDPK
gene family is greatly expanded in apicomplexan parasites, and
Toxoplasma gondii carries genes that encode 14 distinct CDPKs,
though the functions of most of these CDPK genes have not been
previously elucidated. ln this issue of Infection and Immunity,
Long and coworkers (4) confirm the essentiality of calcium-de-
pendent protein kinase 1 (CDPK1) (5, 6) and CDPK7 (7) and
demonstrate that most CDPKs are not essential for the replicative
stages of T. gondii infection in the intermediate host.

Ca2� fluxes precede egress and are directly linked to parasite
motility and invasion (8, 9). Moreover, Ca2� signaling controls
microneme secretion (10, 11) and is essential to trigger parasite
motility, which is regulated by Ca2�-mediated phosphorylation of
parasite motility motor components (12, 13). Ca2� binds directly
to helix-loop-helix (EF hand) structures present in CDPKs to ac-
tivate them. The canonical CDPK1 controls microneme secretion
and is essential for parasite motility, invasion, and egress (5). The
canonical CDPK3 controls parasite invasion (14) and egress (15)
and regulates calcium homeostasis upstream of CDPK1 (16). Po-
tent and selective inhibitors of T. gondii CDPK1 have been iden-
tified, and these inhibitors prevent parasite growth in vitro (17–
19) or markedly reduce parasite burdens in an in vivo mouse
infection model (20). However, many of the predicted T. gondii
CDPKs are noncanonical and possess additional protein domains
beyond the core canonical CDPK domains which consist of four
EF hands in the C-terminal calcium activation domain and a sin-
gle N-terminal S/T kinase domain (21). The importance and func-
tions of the noncanonical CDPKs are largely unexplored in T.
gondii and other apicomplexans.

Long and coworkers (4) deleted seven noncanonical CDPK
genes (CDPK4, CDPK4a, CDPK4b, CDPK6, CDPK7a, CDPK8,
and CDPK9) in both highly virulent type I and less-virulent cyst-
forming type II T. gondii strains and engineered mutant strains
with double or triple CDPK gene knockouts. Surprisingly, only

one of the seven noncanonical CDPK knockouts exhibited any
detectable phenotypic defect in vitro or in vivo. While deletion of
CDPK6 did not alter acute virulence of the parasite, loss of CDPK6
reduced plaque formation and also reduced the number of brain
cysts observed during chronic infection of the host in vivo (4).
These results are intriguing in view of the fact that CDPK6 is the
only noncanonical CDPK that is well conserved in the apicompl-
exan phylum (21).

Long and coworkers (4) initially used a single-guide-RNA
CRISPR/Cas9 insertional mutagenesis strategy to disrupt nonca-
nonical CDPKs; however, they found that this genome engineer-
ing approach failed to prevent transcriptional expression of the
CDPK gene sequences downstream of the targeted insertion site.
Consequently, CRISPR/Cas9-mediated insertional mutagenesis
or deletion/insertion of just a few nucleotides may be insufficient
to reliably disrupt the functions of multiexonic genes or of other
targeted genes. Moreover, the potential off-target effects of using
CRISPR/Cas9 mutagenesis in T. gondii remains uncharacterized
and is a potential concern for the validation of mutant strains. To
circumvent these issues and challenges in validation of mutant
strains and to also address the biological functions of the large
CDPK gene family in T. gondii, Long and coworkers (4) devised an
elegant genetic approach to serially dissect gene families.

A double-guide-RNA approach was used previously to pre-
cisely target complete single-gene deletions in T. gondii using a
CRISPR/Cas9 system (22). The new scheme devised by Long and
coworkers additionally incorporates several features to enable
more-reliable development of mutant parasite strains that possess
multiple targeted gene deletions. This approach is broadly impor-
tant to address parasite biology of large gene families such as the
CDPKs where biological functions are likely to be redundant and
may not become visible until several genes have been serially dis-
rupted. To reduce the possibility of off-target effects and to in-
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crease targeting efficiency, Long and coworkers used type I (23,
24) and type II (25) T. gondii strains with deletions in the nonho-
mologous end joining gene (�ku80 strains) and CRISPR/Cas9 sys-
tems that were recently reported for T. gondii (26, 27). To generate
complete gene deletions, a double-guide-RNA strategy was used
to target the first guide close to the ATG codon and to target the
second guide close to the stop codon of the CDPK gene of interest.
This double-guide-RNA plasmid is cotransfected with a plasmid
expressing a selectable marker and mCherry, and this cassette is
flanked by loxP sites and flanked again on the 5= and 3= ends with
homology regions matched with the specific CDPK gene targeted
for disruption. Drug-resistant mCherry-positive parasites are se-
lected and genotyped to verify targeted gene deletion. Flanking the
selectable marker with loxP sites permits rapid and reliable exci-
sion and recovery of the selectable marker following transfection
of the mutant strain with a plasmid expressing Cre-GFP (GFP
stands for green fluorescent protein) (28). Once excision is vali-
dated (drug sensitive and mCherry negative), the mutant strain is
targeted for a second gene knockout, and this serial gene deletion
strategy can be continued until the desired mutant strain contain-
ing multiple targeted gene deletions is isolated.

Previously, Fox and coworkers (23, 25, 29, 30) established an
efficient strategy to develop mutant strains containing multiple
targeted gene deletions through the development of type I and
type II �ku80 strains. This strategy used the HXGPRT selectable
marker that can be positively or negatively selected (31). However,
while forward selection with HXGPRT is extremely reliable and
efficient, the excision of this marker in negative selection condi-
tions depends on protein expression level and �10% of mutant
strains carrying this marker turn out to be difficult or refractory to
the subsequent targeted removal of HXGPRT (32). The current
scheme employed by Long and coworkers (4) used the pyrimeth-
amine-resistant dihydrofolate reductase-thymidylate synthase
(DHFR-TS) selectable marker (33), which is not the ideal select-
able marker for wide use of this genetic system because pyrimeth-
amine is currently used as a treatment for T. gondii infection in
humans. However, HXGPRT and other available genetic markers
can be easily adapted for use in this new genetic model.

One current limitation of the new scheme used by Long and
coworkers (4) is the need to develop and cotransfect two distinct
targeting plasmids to isolate one gene knockout. Emerging tech-
nologies, such as direct availability of guide RNAs, rather than
expression of guides, may bypass the need for two plasmids in the
future. Nonetheless, the use of guide RNA accelerates the reliable
development of gene knockouts, the use of Cre/loxP to excise the
selectable marker accelerates the speed and reliability of selectable
marker recovery, and the use of the �ku80 background decreases
off-target effects and increases overall gene targeting efficiency. In
addition, as new genetic tools and CRISPR/Cas9 technologies
emerge, these will be adapted to improve the genetic tool kit avail-
able for serial dissection of gene families. Importantly, the work
reported by Long and coworkers (4) clearly emphasizes again that
deletion of the complete protein encoded by a parasite gene re-
mains the panacea to study loss of gene function (34). Moreover,
elegant systems have already been devised that permit the condi-
tional depletion of essential proteins in T. gondii (35, 36). Thus, it
is highly likely that similar CRISPR/Cas9 strategies to mediate
conditional expression of essential genes will quickly emerge. To-
gether, these powerful approaches will enable unprecedented ge-

netic access to dissect the unique and complex biology expressed
by apicomplexan parasites.
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