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Introduction

Petroclival tumors are therapeutic dilemmas given their central
location and potential involvement of the internal carotid artery
and cranial nerves. Once considered to be inoperable due to
unacceptable morbidity and mortality rates,1,2 advances in
preoperative imaging, microsurgery, and perioperative care
have progressively made safe resection feasible. Given the
potential for growthand tendency to cause cranial nervedeficits,
petroclival tumors such asmeningiomas, chondrosarcomas, and
chordomas necessitate individualization through consideration
of tumor and patient factors for optimal treatment.

Depending on a tumor’s size, extent of middle and poste-
rior fossa involvement, and cranial nerve deficits, options for
surgical approaches to the petroclival region range from
orbitozygomatic to posterior fossa approaches with or with-
out petrosectomy. The choice of approach is typically based
on imaging; patient factors such as age, hearing status, and
related deficits; and comorbidities.

Most anatomical research on skull base approaches con-
sists of cadaveric studies. These studies require a surgeon to
generalize objective exposure data from various approaches
as well as degrees of freedom available at critical anatomical

Keywords

► petroclival
► 3D printer
► individualized surgical

planning
► surgical education

Abstract Objectives To determine the utility of three-dimensional (3D) printed models in
individualized petroclival tumor resection planning by measuring the fidelity of printed
anatomical structures and comparing tumor exposure afforded by different
approaches.
Design Case series and review of the literature.
Setting Tertiary care center.
Participants Three patients with petroclival lesions.
Main Outcome Measures Subjective opinion of access by neuro-otologists and
neurosurgeons as well as surface area of tumor exposure.
Results Surgeons found the 3D models of each patient’s skull and tumor useful for
preoperative planning. Limitations of individual surgical approaches not identified
through preoperative imaging were apparent after 3D models were evaluated. Signifi-
cant variability in exposure was noted between models for similar or identical
approaches. A notable drawback is that our printing process did not replicate mastoid
air cells.
Conclusions We found that 3D modeling is useful for individualized preoperative
planning for approaching petroclival tumors. Our printing techniques did produce
authentic replicas of the tumors in relation to bony structures.
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sites. Cadaveric studies are limited in that static nonpatho-
logic models must be applied to dynamic pathologic states. In
addition, several clinical studies have described the outcomes
and relative merits of various skull base approaches to the
petroclival region.3–10

Printed three-dimensional (3D) models are currently used
to facilitate maxillofacial, orbital, and head and neck recon-
struction after trauma or exonerative surgery, in addition to
various uses in other medical specialties. Our goal was to
determine the helpfulness of these models in preoperatively
planning surgical approaches for unique individual patients
with representation of their pathology by comparing the
models’ accuracy with actual surgical exposure as well as

measuring the surface area of tumor exposure afforded
through the various approaches in practice.

Methods

Patient Specifics
Patient 1was a 60-year-oldwomanwithmultiple intracranial
meningiomas who underwent a preceding frontal cranioto-
my for removal of a frontal subfrontal meningioma (►Fig. 1).
She demonstrated growth of both subfrontal residual and a
separate petroclival meningioma with decreased hearing,
facial numbness, and intermittent sharp facial pain. There
was brainstem compression from the latter tumor, and the
basilar artery was displaced to the contralateral side. The
anterior skull base tumor was resected first, and the petrous
apex tumor was resected 6 months later. Surface area meas-
urements suggest that the retrosigmoid approach offered
three times more tumor surface area than the middle fossa
approach. However, as noted in our discussion of limitations,
the surface area measurement did not take into account the
obstruction caused by thebrainstem.Weopted for a extended
middle fossa approachwith a drill-out of the Kawase triangle.
Near-total removal of the meningioma was performed.

Patient 2 was a 54-year-old manwith a history of diplopia,
abducens nerve palsy, and partial oculomotor nerve palsy
(►Fig. 2A, B). He was found to have a large petroclival
meningioma with invasion of the cavernous sinus. We per-
formed a left combined petrosal approach, retrolabyrinthine
as well as middle fossa. Subtotal removal of petroclival
meningioma was performed after it was found to lie inti-
mately between nerves VII and V. Nerve VII stimulated well
during the procedure and also had normal function
afterward.

Patient 3 was a 44-year-old woman who presented with
headaches and intermittent diplopia due to abducens nerve
palsy (►Fig. 3). She was diagnosed radiographically with a
petrous apex chondrosarcoma appearing to arise from the
petrooccipital synchondrosis and reaching the jugular

Fig. 1 Patient 1 had multiple meningiomas. Her endonasal and
subfrontal component was removed first followed by her petroclival
component via a Kawase approach.

Fig. 2a and b Patient 2 had diploplia and was noted to have a left petroclival meningioma with cavernous sinus involvement. His CPA component
was removed through a combined retrolabyrinthine and middle fossa petrosal approach.
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foramen. We opted to perform a middle fossa approach and
achieved removal of the entire petrous apex mass as well as
debulking the inside of the cavernous sinus component. We
debulked it inferiorly to the level of the internal auditory
canal and were unable to access the jugular foramen compo-
nent from this middle fossa approach.

We created 3Dmodels of skulls with tumors using a fusion
of high-resolution skull base or temporal bone computed
tomography (CT) and brain magnetic resonance imaging
(MRI) scans in three patients with petroclival tumors. Brain-
lab (Brainlab iPlan v.3.0.5, Feldkirchen, Germany) image
navigation software was used to perform fusion of imaging
and object creation. Tumor and bone were fused into one
object and exported as stereolithography (STL) files. Catalyst
EX v.4.4 (Dimension, Stratasys, Eden Prairie, Minnesota,
United States) was used to format the STL files for printing

from our Stratasys uPrint SE Plus 3D printer, which printed
the skulls in a uniform color of production-grade thermo-
plastic material by a fused deposition modeling printing
method. The printer is able to print to a resolution of
0.254 mm and requires a minimum wall thickness of
0.914 mm.

After printing the tumor and skull model, we used bright
acrylic paint to highlight the tumor surface. Middle fossa and
retrosigmoid approaches were then performed by the senior
author, with photodocumentation of each tumor exposure.
We attempted to perform a transmastoid approach on the
skulls as well.

Brainlab software was used to register each 3D model to
the skull surface rendering in Brainlab at eight preselected
registration points. Next the navigation pointer was used to
create points on the surface of the tumor that were saved on
the Brainlab system. The points were selectively placed to
divide the visible tumor surface area for each approach into a
series of boxes. The outlined distance between points was
measured in millimeters using Brainlab to create a two-
dimensional area. We then used the application sketchand-
calc (www.sketchandcalc.com) to redraw the corresponding
measurements and calculate the area of each box. The sum of
these areas represents an approximation of the total exposed
surface area.

Results

Surface area measurements for patient 1 was 52 mm2

afforded by the middle fossa approach and 148 mm2 by the
retrosigmoid approach. For patient 2, it was 103 mm2 by the
middle fossa approach and 188 mm2 by the retrosigmoid
approach. Patient 2’s skull can be visualized in►Figs. 4–7. For
patient 3, it was 378 mm2 by the middle fossa approach and
75mm2 by the retrosigmoid approach. Patient 3’s skull can be
seen in ►Fig. 6. ►Table 1 summarizes these results.

We were unable to perform a transmastoid approach
because the printer could not recreate mastoid air cells,
middle ear, and other bony landmarks within the temporal
bone.

Fig. 3 Patient 3 had a left petrous apex chondrosarcoma with head-
aches and diploplia that we debulked down to the level of the jugular
foramen via a Kawase approach.

Fig. 5 Photograph of three-dimensional printed skull and tumor
retrosigmoid approach: patient 2.

Fig. 4 Photograph of three-dimensional printed skulls and tumors
with middle fossa approach visible. Left: patient 3; right: patient 2.
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Discussion

Study Findings
We were able to create 3D printed skulls with tumors that
were anatomically accurate to within 0.254 mm. The 3D
printer and software available to us was able to print a
single-color single-texture model from the fusion of CT and
MRI scans. Wewere able tomeasure the surface area exposed
by the middle fossa and retrosigmoid skull base approaches
successfully using the skulls and navigation equipment. These
skulls serve as tangible models for surgeons, trainees, and
patients during surgical planning, education, and discussion.

Limitations of the study include theminimumwall thickness
of 0.914 required byour printer that made it impossible for us to

recreate the eggshell quality of the mastoid air cells. Another
limitation was that we were only able to print the skull and the
tumor. To print and differentiate surrounding vessels, nerves,
and brain parenchyma, we would have required magnetic
resonance angiography and magnetic resonance venography
data to input into our STL file. A more advanced printer would
have also been required so we could assign different colors and
textures to the various anatomical structural categories. These
structureswould have provided information about the degree of
obstruction that nerves or parenchyma would have caused for
each approach. Prints of this quality would provide a means of
calculating volume of resection, which may be a more useful
measure to compare approaches.

Cadaveric Studies
Several cadaveric studies have quantified and compared the
working surface area of the ventral brainstem and petroclival
area that various approaches afford the surgeon.11–14Of these
studies, two performed calculations to determine the degree
of operative freedom a surgeon may have at specific delicate
anatomical sites.13,14 Another calculated the mean exposure
of the parasellar region and clivus.15 In 2007 Safavi-Abbasi et
al used an inflated balloon catheter to mimic tumor mass
effect and quantified the amount of shift of various structures
as well as the improved exposure of the petroclival region by
tumor compression of the brainstem.16 Our 3D printed skulls
provided high-fidelity replicas of individuals’ unique patho-
logic anatomy to the surgeon, a technique that has not yet
been described in the literature.

Three-Dimensional Printers in Medicine
Three-dimensional printers have a growing number of appli-
cations in various medical specialties. In a recent project,
otolaryngology residents drilled cadaveric temporal bones
and their corresponding 3D printed models; they concluded
the models were realistic representations of the cadaver
temporal bones.17 Other specialties have used 3D printers
for individualized surgical planning including cardiology18

and orthopedics.19 Cardiovascular regenerative researchers
have printed scaffolds20 and molds21 for growing autologous
heart valves. Two recent articles highlighted the surgical
educational merits of 3D printed models for neurosurgical
trainees.22,23 A 2007 article investigated the use of 3D print-
ers for planning orthognathic surgeries and showed the
models to be valuable for preoperative planning and prac-
tice.24 Our models and results describe the utility of 3D
printers for operative planning for skull base tumors in
anatomical locations that are difficult to access.

Fig. 6 Photograph of three-dimensional printed skull and tumor
middle fossa transmastoid and retrosigmoid approaches: patient 2.

Fig. 7 Photograph of three-dimensional printed skull and tumor
petroclival region from the supratentorial view: patient 2.

Table 1 Surface areas of petroclival tumors accessible from two
skull base approaches

Skull base
approach

Middle fossa
approach

Retrosigmoid
approach

Patient 1 52 mm2 148 mm2

Patient 2 103 mm2 188 mm2

Patient 3 378 mm2 75 mm2
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The printer and software used in this study cost approxi-
mately $50,000 USD. The cost of thermoplastic “ink” for each
skull was approximately $150 to $200. Top-of-the-line print-
ers that would be able to print multiple colors and textures
range from $350,000 to $600,000.

Goals of Surgical Resection for Petroclival
Meningiomas: Trending Away from the Transpetrosal
Approach
Surgical excision of petroclival meningiomas has trended
toward less use of aggressive surgical approaches tominimize
surgical morbidity.10,25,26 That is, the transpetrosal ap-
proaches are used less frequently given the risk of (or inher-
ent) damage to the vestibulocochlear and facial nerves.9 It is
important to note that the goal of near-total resection, as
compared with gross total resection, has been shown to
reduce surgical morbidity significantly without resulting in
a great difference in tumor recurrence rates.26 The retrosig-
moid approach provides equivalent working area and opera-
tive angles as does the combined transpetrosal approach.14

Stereotactic radiosurgery is also a viable primary treatment
option and has been found to have low rates of progression-free
survival in this setting. It also can be used successfully as an
adjuvant treatment to surgical resection.27 Stereotactic radio-
surgery in the setting of complex petroclival anatomy also
demonstrates a risk of cranial nerve injury. Clival- or petrous-
based tumor locations were predictive of an increased risk of
new or worsening neurologic deficit following Gamma Knife
surgery.28 In general, Gamma Knife surgery offers an acceptable
rate of tumor control for posterior fossameningiomaswith a low
incidence of neurologic deficits for primary treatment28 as well
as adjuvant treatment after surgery.29 One large study of 121
patients undergoing Gamma Knife surgery for skull base me-
ningiomas showed a very low incidence of treatment-related
cranial nerve dysfunction (1.7%).30

Conclusions

Three-dimensional printers have a growing role in health
care and are becoming more readily available. The 3Dmodels
we created are useful for a new surgeon or for an experienced
surgeon planning a difficult case. The models can help surgi-
cal trainees visualize and explore pathologic states, as well as
simulate skull base approaches. The models are also useful as
tangible representations for discussion with patients to im-
prove their understanding of their pathology.

The amount of information provided by 3D printed skulls
is proportional to the amount of realistic anatomy that the
printers can recreate. As 3D printer technology continues to
prove useful in various medical fields, both surgeons and
patients stand to benefit.
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