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Abstract

Interactions between tissue factor and factor VIIa are the primary initiators of coagulation in 

hemostasis and certain thrombotic diseases. Tissue factor, an integral membrane protein expressed 

extensively outside of the vasculature, is the regulatory protein cofactor for coagulation factor 

VIIa. Factor VIIa, a trypsin-like serine protease homologous with other blood coagulation 

proteases, is weakly active when free in solution and must bind its membrane-bound cofactor for 

physiologically-relevant activity. Tissue factor allosterically activates factor VIIa by several 

mechanisms such as active site positioning, spatial stabilization, and direct interactions with the 

substrate. Protein-membrane interactions between tissue factor, factor VIIa, and substrates all play 

critical roles in modulating the activity of this enzyme complex. Additionally, divalent cations 

such as Ca2+ and Mg2+ are critical for correct protein folding, as well as protein-membrane and 

protein-protein interactions. The contributions of these factors towards tissue factor-factor VIIa 

activity are discussed in this review.
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INTRODUCTION

The “extrinsic tenase” complex, comprised of tissue factor (TF) and factor VIIa (FVIIa), is a 

two-subunit enzyme that initiates the coagulation cascade under most in vivo conditions 

(depicted in Figure 1).1,2 The regulatory subunit of this complex, TF (also known as 

thromboplastin, CD142, or coagulation factor III), is a cell-surface, transmembrane protein 

of the class II cytokine receptor family that is extensively expressed amongst adventitial and 

epithelial tissues; however, tissues exposed to the vessel lumen such as endothelial cells, 

platelets, and leukocytes constitutively express little or no TF.3–5 The enzymatic subunit is a 

plasma protein, FVIIa, that is a trypsin-like serine protease demonstrating homology with 

several other coagulation proteins, including its cognate substrates factors IX (FIX) and X 

(FX). Total FVII (active enzyme and zymogen) circulates in plasma at a concentration of 

approximately 10 nM; however, only about 1% is in the active form.6 Due to its poor 
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enzymatic activity, free FVIIa in plasma largely escapes recognition by protease inhibitors 

and therefore circulates with a half-life of ~90 minutes.7,8 The extended half-life afforded to 

FVIIa may serve an important function, as low basal concentrations of pre-formed FVIIa 

may serve to “prime” the coagulation cascade for a rapid response to injury.6

Under homeostatic conditions, TF and blood are physically separated, but vascular injury 

exposes plasma (which contains FVII and FVIIa) to a variety of TF-expressing cells. Once 

zymogen FVII binds to TF, it is rapidly converted to FVIIa by limited proteolysis, thereby 

generating the active TF-FVIIa complex. Formation of the TF-FVIIa complex greatly 

increases the enzymatic activity of FVIIa via allosteric interactions between TF and FVIIa, 

as revealed by about a 20- to 100-fold increase in the rate of hydrolysis of small, 

chromogenic peptidyl substrates (termed its amidolytic activity),9,10 and nearly a million-

fold increase in the rate of activation of the macromolecular substrates, FIX and FX.11 

Subsequently FIXa, in association with its regulatory subunit FVIIIa, further activates FX; 

FXa in turn complexes with its cofactor FVa, to proteolytically cleave prothrombin to 

thrombin, leading to fibrin clot formation. Widespread, constitutive expression of TF on 

cells surrounding organs, blood vessels, and skin serves to create a “hemostatic envelope” 

that initiates clotting upon vascular injury.3

An additional point of modulation of TF-FVIIa is via the phospholipid bilayer. In concert 

with allosteric activation of the active site of FVIIa upon binding to TF, formation of the 

extrinsic tenase on a suitably procoagulant phospholipid bilayer increases the rate of FIX or 

FX activation, in a Ca2+-dependent manner, an additional 1,000-fold.11 In fact, nearly all 

reactions of the coagulation cascade are reliant upon exposure of phosphatidyl-L-serine (PS) 

on membrane surfaces.12 The roughly million-fold overall increase in FX activation by the 

TF-FVIIa-phospholipid complex relative to free FVIIa is critical regulatory point for the 

coagulation cascade.13 The roles of TF-FVIIa in hemostasis, thrombosis and other biological 

processes are numerous, and the structural underpinnings comprising the foundation of their 

activities continue to be a point of focus and investigation.

STRUCTURE

Tissue Factor

TF, a 263 amino acid glycoprotein with a molecular weight of ~46kDa and member of the 

cytokine class II receptor family, is composed of three domains: a 219 amino acid N-

terminal extracellular domain (residues 1–219, whose crystal structure is shown in Figure 1); 

a 22 amino acid transmembrane domain (residues 220–242); and a 21 amino acid 

cytoplasmic C-terminal tail (residues 242–263). The cytoplasmic tail contains two 

phosphorylation sites at Ser253 and Ser258, and one S-palmitoylation site at Cys245. Removal 

of the cytoplasmic domain has no deleterious effects on TF coagulant activity. The TF 

transmembrane domain is composed of a single-spanning alpha-helix, the precise identity of 

which has been shown unimportant for TF procoagulant function;14 anchoring of a histidine-

tagged extracellular domain of TF to the membrane using nickel-chelating lipids resulted in 

full restoration of procoagulant activity of TF.15 The extracellular domain of TF (sTF) is 

composed of two fibronectin type III domains, and is connected to the transmembrane 

domain through a six-amino acid linker. This linker likely exhibits sufficient flexibility to 
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conformationally decouple the extracellular domain of TF from the transmembrane and 

cytoplasmic domains.14,16 The fibronectin type III domain structure, composed mainly of 

beta-strands connected by β-loops, is a member of the immunoglobulin-like family of 

protein folds and is conserved amongst a wide variety of extracellular proteins.17

The procoagulant activity of TF does not necessarily correlate with its levels of cell-surface 

expression. Much of the TF expressed on a cell surface is ‘encrypted’, and must first be 

‘decrypted’ to participate fully in coagulation reactions. The process by which this occurs 

has yet to be fully explained, and is likely a combination of several mechanisms. One clear 

contributor is exposure of anionic phospholipids. Healthy cells actively sequester anionic 

phospholipids such as PS to the inner leaflet of the plasma membrane,18,19 but following 

cellular damage, activation, or increased levels of cytosolic Ca2+ this bilayer asymmetry is 

lost, resulting in increased PS exposure on the outer leaflet which increases the specific 

activity of cell-surface TF-FVIIa complexes. PS exposure is well known to decrease the 

apparent Km for activation of FIX and FX, but additional mechanisms could include 

conformational rearrangement of TF or the TF-FVIIa complex and subsequent exposure of 

substrate binding sites.16,20 Expression levels of GRP78, a molecular chaperone protein, 

have also been shown to mediate TF procoagulant activity in a Ca2+-dependent manner and 

thus may also play a role in its decryption.21,22

A fascinating suggestion is that disulfide linkages play a role in TF encryption/decryption, 

and in particular, that the membrane-proximal cysteine pair in TF (Cys186-Cys209) is an 

‘allosteric’ disulfide that is subject to redox control, leading to TF encryption/

decryption.23–25 Others have disputed this conclusion, however, and have proposed 

alternative explanations for the observed effects (reviewed in 26,27). Though the importance 

of TF disulfide bond formation towards its cofactor activity has yet to be resolved, FVIIa 

binding to TF is not dependent on the oxidation state of Cys186 and Cys209.23 A number of 

insightful and detailed reviews focus on controversies surrounding TF decryption are 

available.28–32

Factor VII/VIIa

The trypsin-like serine protease FVII (in the inactive precursor, or zymogen form) is a 

~50KDa, single-chain polypeptide consisting of 406 residues, with an N-terminal γ-

carboxyglutamate-rich (GLA) domain, two epidermal growth factor-like domains (EGF1 

and EGF2), and a C-terminal serine protease domain.33–36 Activation of FVII to FVIIa is 

accomplished via specific proteolytic cleavage of the Ile153-Arg152 bond in the short linker 

region between the EGF2 and protease domain, with the resultant light and heavy chains 

held together by a single disulfide bond (Cys135-Cys262). The crystal structure of FVIIa is 

shown in Figure 1. FVII has significant structural and sequence homology to coagulation 

factors IX, X, and protein C.37,38

FVIIa binds the phospholipid membrane in a Ca2+-dependent manner through its N-terminal 

GLA-domain. Containing 10 vitamin K-dependent, posttranslationally modified γ-

carboxyglutamate (Gla) residues, GLA-domains coordinate 7–9 divalent metal ions such as 

Ca2+ and Mg2+, inducing conformational rearrangements that are requisite for interaction 

with membrane surfaces.39,40

Gajsiewicz and Morrissey Page 3

Semin Thromb Hemost. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Immediately C-terminal to the GLA domain is an aromatic stack and two epidermal growth 

factor (EGF) domains (EGF1 and EGF2). The aromatic stack connects the GLA to EGF1 

domain, which binds a single Ca2+ ion with moderately high affinity.41,42 Occupancy of this 

Ca2+-binding site increases FVIIa amidolytic activity and TF association.43 The FVIIa 

heavy chain comprises the trypsin-like protease domain, which is also homologous to other 

coagulation serine proteases such as FX, FIX, protein C, and prothrombin. The catalytic 

triad consists of His193, Asp242 and Ser344, and binding of a single Ca2+ ion within the 

FVIIa protease domain is critical for catalytic activity.41,44 Additionally, proteolytic 

activation of FVII to FVIIa frees the newly formed amino terminus at Ile153 to fold back and 

insert into the activation pocket, forming a salt bridge with the carboxylate of Asp343 to 

generate the oxyanion hole.45 Formation of this salt bridge is critical for FVIIa activity; 

indeed, FVIIa with the mutation V154G is cleaved to the two-chain form normally and with 

wild-type macromolecular substrate affinity,46 but with significantly reduced ability of the 

resultant FVIIa to activate FX.46,47 Reduced N-terminal hydrogen-deuterium exchange upon 

TF binding to FVIIa supports the hypothesis that the N-terminal Ile153 is not fully inserted 

into the activation pocket when free in solution.48 Additionally, unlike most other serine 

proteases, oxyanion hole formation in free FVIIa does not occur upon proteolytic activation, 

but instead upon substrate interaction.49 As a result, FVIIa circulates in a zymogen-like state 

that is poorly recognized by plasma protease inhibitors,49 allowing it to circulate with a half-

life of approximately 90 minutes.7,8 This is far longer than other coagulation enzymes such 

as FIXa, FXa and thrombin, whose plasma half-lives are on the order of seconds to 

minutes.50,51

STRUCTURE-FUNCTION RELATIONSHIP

Association of TF with FVIIa allosterically activates the protease, creating what is 

essentially a dimeric enzyme in which TF is the regulatory subunit and FVIIa the catalytic 

subunit. The ability to cleave very small, tripeptidyl-amide substrates (amidolytic activity) of 

FVIIa is increased approximately 50-fold upon binding of TF, with the largest change being 

increased kcat,9,10 indicating that TF association induces conformational changes within the 

active site of the FVIIa protease domain.45,52–54 Additionally, pKa values of the catalytic 

triad are altered upon TF binding.55 It has been hypothesized that FVIIa in solution exists in 

an equilibrium between two states; one in which the heavy-chain N-terminus has inserted 

into the active site pocket, and one that is more zymogen-like with the N-terminus 

incorrectly or incompletely inserted. TF may preferentially bind FVIIa when it is in the 

catalytically active form,45 shifting the equilibrium towards the active (N-terminal buried) 

conformation. Hydrogen-deuterium exchange experiments coupled with mass spectrometry 

have demonstrated that several loop regions within the protease domain of FVIIa are 

stabilized upon binding to TF, through rearrangement and strengthening of an extensive 

hydrogen bonding network.48,52 These structural changes are not limited to the protease 

domain but extend throughout most of FVIIa,48 indicating widespread allosteric modulation 

of FVIIa by TF.
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Active Site Positioning

In vivo enzymatic activity of the TF-FVIIa complex occurs exclusively on the phospholipid 

membrane surface, and is dependent upon the interaction of FVIIa, FIX and FX with the 

membrane through their membrane-binding GLA-domains. Fluorescence resonance energy 

transfer (FRET) experiments indicate that free FVIIa adopts a stable, extended structure 

when bound to the membrane, with its active site positioned ~80 Å above the membrane 

surface.56 This distance is in good agreement with those seen for the homologous proteins 

FIXa57 and FXa58. Upon FVIIa binding to TF, the FVIIa active site is repositioned ~6 Å 

closer to the membrane, a modulation that may aid in proper alignment of the FVIIa 

catalytic triad with the target substrate cleavage site.56 In comparable FRET experiments 

using GLA-domainless FVIIa, the active site was still positioned a similar distance above the 

membrane, demonstrating that TF is able to fully support FVIIa active site positioning even 

in the absence of FVIIa-membrane interactions.59 Further, experiments using multiple 

approaches have shown that TF supports full FVIIa proteolytic activity as long as the TF 

extracellular domain is tethered in some way to the membrane surface, while the exact 

nature of this membrane tether is essentially irrelevant.14,15,60 In contrast, raising the active 

site of FVIIa greater than 80 Å above the membrane surface using TF/P-selectin chimeras 

greatly reduced the ability of the TF-FVIIa complex to activate FX, but did not diminish TF-

FVIIa amidolytic activity. This indicates that TF-mediated positioning of the FVIIa active 

site above the membrane surface is important for its activity towards cognate substrates.61

Molecular dynamics (MD) simulations of TF-FVIIa in the presence of membrane surfaces 

indicate TF reduces FVIIa inter-domain flexibility. Both in solution and on the membrane 

surface, the hinge-like motion of FVIIa and its Cα RMSD values are significantly reduced in 

the presence of TF.16

Spatial Stabilization

Free FVIIa is an inherently dynamic molecule, with MD simulations, fluorescence 

anisotropy, and hydrogen-deuterium exchange data indicating intra- and inter- domain 

flexibility.16,52,62–64 A major component of TF allosteric modulation of FVIIa activity is the 

stabilization and reduced flexibility of FVIIa upon TF binding. In the protease domain, 

stabilization of the 170-loop located near the TF interaction site appears to be important for 

FVIIa amidolytic activity.63,64 Replacement of the loop with that of a similar but truncated 

loop from trypsin results in an increase in FVIIa amidolytic activity even in the absence of 

TF, suggesting that stabilization of the 170-loop plays a significant role in TF-mediated 

allosteric activation of FVIIa.65 Additionally, hydrogen exchange experiments and MD 

simulations show that TF binding aids the insertion of Ile153 into the activation pocket of 

FVIIa and stabilizes its structure, even after removal of the N-terminal insertion.52,63 

Specific TF and FVIIa residues have been identified that contribute to stabilization of FVIIa 

within the TF-FVIIa complex. Alanine scanning mutagenesis studies66 and crystallography 

data41 demonstrated that Met306 in FVIIa plays a pivotal role in TF interactions, restricting 

the flexibility of FVIIa’s 170-loop upon FVIIa-TF complex formation. The crystal structure 

of free FVIIa,67 in which the 170-loop and precluding α-helix (containing Met306) are more 

disordered, also supports this idea.
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TF-Substrate Interactions

In addition to the role of TF in allosterically activating FVIIa, binding interactions between 

the ‘exosite’ region of TF and macromolecular substrates are also implicated in TF-FVIIa 

catalytic activity (shown in Figure 1C). The known physiologic substrates of TF-FVIIa are 

FVII, FIX, FX and certain protease activated receptors (PARs). TF mutational analysis has 

identified a number of residues that, when mutated, support full FVIIa amidolytic activity 

towards small peptidyl substrates but are deficient in their ability to support macromolecular 

substrate (FVII, FIX, FX) activation.68–70 Several crystal structures have shown disorder in 

the TF loop region at residues 159–165,41,49 and residues in or adjacent to this flexible loop 

have been shown to be especially critical for proteolytic activity of the TF-FVIIa complex, 

thereby defining the proposed substrate-binding exosite region of TF that is quite distant 

from the FVIIa active site.68,69 Interestingly, mutation of Gly164 of TF to a marginally more 

bulky alanine significantly impairs TF-FVIIa proteolytic activity, suggesting the flexibility 

afforded by glycine is critical for macromolecular substrate recognition.68,70

TF residues Lys165 and Lys166 have also been demonstrated to be important for substrate 

recognition and binding; mutation of either of these residues to alanine results in a 

significant decrease in the cofactor function of TF.68,69,71,72 However, TF with mutations at 

K165A and K166A activated GLA-domainless FX at rates comparable to that of the wild-

type TF, and utilization of GLA-domainless FVIIa greatly muted the effects of these TF 

mutations on FX activation.69 Crystal structures have indicated that Lys165 and Lys166 face 

away from each other, with Lys165 pointing towards FVIIa in most TF-FVIIa structures, and 

Lys166 pointing into the substrate binding exosite region.41,73 Putative salt bridge formation 

between Lys165 of TF and Gla35 of FVIIa would support the notion that TF interaction with 

the GLA-domain of FVIIa modulate substrate recognition.73 Taken together, these results 

suggest that the C-terminal portion of the TF ectodomain directly interacts with the GLA-

domains (and possibly the adjacent EGF1 domains) of FIX and FX, and that the presence of 

the FVIIa GLA-domain may modulate these interactions, either directly or indirectly. 

Furthermore, the TF residues involved in substrate interactions with FIX and FX are similar 

or identical to those that interact with FVII during TF-mediated FVII autoactivation,53 

indicating a similar mechanism of substrate binding.

A number of monoclonal anti-TF antibodies have been raised, with the vast majority 

blocking association between TF and FVII.74 However, two monoclonal antibodies, 

TF8-5G9 and TF8-11D12 (which came from the same fusion and which are probably 

identical) were shown not to inhibit TF-FVIIa binding, but to strongly inhibit activation of 

FIX and FX by TF-FVIIa.75,76 Crystal structures of TF in complex with the antibody 

TF-5G977 indicates that the epitope on TF for this antibody overlaps significantly with the 

substrate interaction (exosites) region identified by Kirchhofer et al.70 More recently, two 

additional monoclonal anti-TF antibodies (D3 and 5G6) with similar properties have also 

been reported.78

Monoclonal antibody TF9-10H10 binds to TF but does not inhibit its procoagulant activity, 

which is unusual as almost all anti-TF antibodies are inhibitory.74 More recent studies using 

this antibody have shown that it does inhibit the ability of the TF-FVIIa complex to 

participate in signaling.79 These results suggest that TF-FVIIa signaling via integrins and 
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PAR-2 is mediated by exosite-like interactions on TF distinct from those involved in TF-

FVIIa procoagulant functions.

Protein-Membrane Interactions

Lipid bilayer composition plays an important role in activity of the TF-FVIIa complex. 

GLA-domain containing coagulation proteins are well-known to preferentially bind anionic 

phospholipids in general, and PS in particular.12 PS is, however, actively sequestered to the 

inner leaflet of the plasma membrane, serving as an important point of regulation of blood 

clotting.12,18,19,80 Exposure of PS on the outer leaflet occurs either via physical disruption of 

the cell membrane as a consequence trauma, or via regulated cellular processes such as those 

that occur upon platelet activation. Interestingly, despite the high degree of sequence 

homology between GLA-domains of different clotting proteins, their membrane binding 

affinities vary by three orders of magnitude,81,82 with FVIIa and activated protein C (APC) 

displaying the weakest affinities for PS-containing bilayers. We recently reported that FVIIa 

and APC preferentially bind to bilayers containing phosphatidic acid (PA), a minor anionic 

lipid in cell membranes.83 PA has minimal effect on TF-FVIIa activity in vitro, however, 

likely due to the fact that protein-protein interactions between TF-FVIIa dominate the 

recruitment of FVIIa to the membrane.84 Further, when used pharmacologically to treat 

bleeding disorders, the mechanism of action of recombinant FVIIa has been shown to be 

independent of TF.85,86 Thus, the membrane binding characteristics of “free” (non-TF 

bound) FVIIa may be an important component of its in vivo efficacy, especially when high 

concentrations of recombinant FVIIa are employed to treat bleeding.

Direct interactions between the TF ectodomain and the membrane surface may also 

contribute to the activity of the TF-FVIIa complex. It is thought that there is considerable 

freedom of motion and autonomy of the TF ectodomain relative to the membrane due to the 

structural flexibility of the short peptide linker between the ectodomain and the 

transmembrane domain.14 Furthermore, MD simulations have identified a number of TF 

residues in the C-terminal portion of the ectodomain that directly contact the phospholipid 

membrane surface. These residues maintained association of sTF (i.e., the isolated 

ectodoman) with the membrane surface, suggesting that TF residues may associate directly 

with PS headgroups.16 Additionally, simulations suggest the orientation of TF with respect 

to the membrane is altered upon FVIIa binding, with TF leaning toward FVIIa. As a result, 

the TF residues in contact with the phospholipid membrane are proposed to change.16 This 

region of putative membrane-interacting TF residues is immediately adjacent to the 

proposed substrate-binding exosite, and alanine scanning mutagenesis studies have 

identified mutations in this region that alter the ability of membrane-anchored TF-FVIIa to 

activate FX.20 Interestingly, increasing the PS content of TF-liposomes partially overcomes 

these deficiencies, suggesting that direct PS-TF interactions may either stabilize the complex 

or induce ideal conformational arrangements, promoting interaction of FIX and FX with the 

TF exosite.16,20

Biochemical studies of protein-membrane interactions in blood clotting often utilize 

liposomes with non-physiological membrane compositions. Thus, it typically requires 30% 

or more PS to achieve maximal TF-FVIIa enzymatic activity in vitro,87 while only ~10% of 
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the total plasma membrane bilayer is composed PS in eukaryotic cells.88 Incorporation of 

phosphatidylethanolamine (PE, a plasma membrane phospholipid that is much more 

abundant than PS) into TF-liposomes markedly decreases the required PS content, although 

PE by itself does little to promote TF activity.87 Other lipids such as phosphatidic acid, 

phosphatidylglycerol, and phosphatidylinositol also reduce the PS requirement, indicating 

‘synergy’ between PS and PE is not a unique property of PE but a more broadly 

encompassing mechanism. This ‘ABC hypothesis’ (Anything But Choline) postulates that 

any lipid not containing the bulky choline headgroup of PC or sphingomyelin can 

‘synergize’ with PS and decrease the required PS content for maximal enzymatic activity.

Divalent Metal Ions

Calcium ions are required for assembly and function of TF-FVIIa. Although TF lacks any 

known divalent metal ion binding-sites, Ca2+ can occupy up to nine metal binding sites 

within FVIIa (Figure 1). Of these, seven reside in the GLA-domain of FVIIa and are critical 

for both structure and function of this domain. In particular, Gla7 and Gla9 coordination of 

Ca2+ induces formation of the ω-loop, which exposes hydrophobic residues that are believed 

to insert into the bilayer.87,89–91 Recent crystallographic, enzymatic, and equilibrium 

dialysis studies have indicated that the FVIIa GLA-domain actually binds a combination of 

4–5 Ca2+ and 2–3 Mg2+ under physiologic divalent metal ion conditions.49,73 Ca2+ is 

absolutely required for GLA-domain structure and function, and can occupy all GLA-

domain metal binding sites when it is the only divalent metal ion present (especially at 

supraphysiologic concentrations of Ca2+), but Mg2+ alone is unable to induce the correct 

GLA-domain structure. This suggests that a subset of metal binding sites in GLA domains 

are occupied with Mg2+ in vivo,40,73 and occupancy of these sites by Mg2+ even in the 

presence of vast excesses of Ca2+ suggest these sites preferentially bind Mg2+ in 

plasma.49,73 The reasons for differential metal ion specificity of GLA domains remain 

unclear, but are likely due to differences in coordination geometries of each binding site 

along with the ‘hardness’ properties of Ca2+ versus Mg2+.73,92 Mg2+ has been demonstrated 

to modulate both the membrane binding73 and enzymatic properties93 of FVIIa and FIX94.

One Ca2+ binds to the EGF1 domain of FVIIa, for which Mg2+ cannot substitute. 49 This 

Ca2+ is implicated in optimizing TF-FVIIa binding interactions, likely through modulating 

the orientation of the FVIIa GLA-domain relative to the EGF1 domain.95 The protease 

domain of FVIIa also contains one Ca2+ binding site; its occupancy results in allosteric 

activation through reregistration of the Ca2+ binding loop.52 Additionally, two Zn2+ binding 

sites have been identified in the protease domain, although Zn2+ occupancy of these sites 

inhibits both FVIIa enzymatic activity and TF binding.49,96

The Ca2+ binding sites in FVIIa are incompletely saturated at plasma concentrations of free 

Ca2+ (~1.25 mM).97,98 However, using the plasma concentrations of free Ca2+ and Mg2+ 

(~1.25 mM and ~0.6 mM, respectively) restores activity to maximal levels, indicating that 

Mg2+ likely plays a role in vivo.73,93,94,99 The GLA-domains of both FVIIa and FX mediate 

enzymatic rate enhancements due to Mg2+, suggesting that conformational changes of the 

FX GLA-domain upon Mg2+ occupancy of metal binding sites modifies its interactions with 

TF.99
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Signaling

The role of TF in cellular signaling is incompletely understood, though it is known to play 

roles in tumor growth,79 metastasis,100,101 angiogenesis, and anti-apoptotic signaling;102 

additionally, TF is known to be upregulated in many malignant tumor cell types.103–105 

FVIIa binding to TF has been implicated in directly mediating PAR-2 cleavage via 

mechanisms both dependent106–109 and independent110,111 of the cytoplasmic domain of 

TF.112 Phosphorylation of the TF cytoplasmic domain subsequent to TF-FVIIa cleavage of 

PAR-2 is thought to release TF-dependent negative regulation of PAR-2 mediated 

signaling.79,103,108 This results in mitogen-activated protein kinase (MAPK) pathway 

activation and downstream effects, including the upregulation of cytokines and 

proangiogenic factors.103,113 Activation of the p44/42 MAPK pathway, as well as JAK2, 

p70/p85S6K, and p90RSK, can occur independent of the TF cytoplasmic domain.110,114,115 

Though the cytoplasmic domain is not necessary for activation of these proteins, 

proteolytically active FVIIa is required. In addition, TF can also mediate signaling through 

the enzymatic activity of FXa in complex with TF-FVIIa, which plays an important role in 

the regulation of several pathways. TF-FVIIa-FXa-mediated cleavage of PARs, particularly 

PAR-2, has been shown to up-regulate IL-8 expression, resulting in increased cell 

migration.101 A number of detailed reviews can be found regarding TF-FVIIa-mediated 

signaling.101,103,116,117

CONCLUSION

The interaction between TF and FVIIa is a critical component of hemostasis. TF is 

expressed extensively on cells outside the vasculature, creating a ‘hemostatic envelope.’ 

Disruption of the blood vessel endothelium results in exposure of blood coagulation 

proteins, including FVIIa, to TF-bearing cells. Subsequent to TF-FVIIa complex formation, 

two blood clotting zymogens, FIX and FX, are proteolytically activated, propagating the 

coagulation cascade and resulting in fibrin deposition and clot formation. The physical 

separation of TF from the plasma clotting enzymes is undoubtedly a regulatory mechanism; 

without its protein cofactor, FVIIa is a very weakly enzyme and will not initiate coagulation 

at physiologic concentrations. Expression of TF inside the vasculature results in aberrant 

coagulation cascade activity and is believed to play an important role in many thrombotic 

disorders.

TF modulates FVIIa activity through a number of mechanisms. FVIIa interaction with TF 

has been demonstrated to position its active site ~75 Å above the membrane surface, ~6 Å 

closer than FVIIa in the absence of TF. Additionally, MD simulations have suggested that 

TF restricts both FVIIa inter- and intra- domain flexibility, particularly within the protease 

domain. TF has been shown to stabilize a number of loop regions in the protease domain of 

FVIIa as well as facilitate the insertion of the N-terminus of the FVIIa heavy chain into the 

activation pocket, which is critical for its enzymatic activity. In addition, an extended 

substrate binding exosite has been identified on TF, which has been shown to interact 

directly with both extrinsic tenase complex substrates, FIX and FX. The importance of the 

phospholipid membrane in mediating the activity of TF-FVIIa cannot be understated; 

recruitment of FX to the membrane surface is dependent upon the exposure of anionic 
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phospholipids, particularly PS, which may interact with substrates (FIX and FX), enzyme 

(FVIIa) and protein cofactor (TF). All the interactions between TF, FVIIa, protein substrates 

and membrane surfaces are dependent upon divalent cations. Although several structures of 

TF-FVIIa have been solved, as of yet no tertiary TF-FVIIa-FX or TF-FVIIa-FIX structures 

have been determined, nor has the role of the membrane surface in the formation of these 

complexes been determined structurally. Such results would provide significant information 

regarding the structure-function relationship of the extrinsic tenase in blood clotting.
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Figure 1. 
Crystal structures of FVIIa and sTF arranged on a membrane surface. A) FVIIa (blue) has an 

extended conformation and binds to anionic phospholipids in membrane bilayers through its 

N-terminal GLA-domain (depicted here in contact with the membrane). Coordination of 

divalent cations such as Ca2+ (red spheres) and Mg2+ (gray spheres) by the GLA domain is 

critical for proper domain folding and function. In addition, a Ca2+ ion is bound to the first 

EGF-like domain of FVIIa and also to the protease domain of this protein (the domain 

farthest from the membrane). The isolated ectodomain of TF (sTF, orange) is depicted here 

as anchored to the membrane surface via a single transmembrane helix, which has been 

modeled in. Full-length TF also contains a 21 amino acid-long cytoplasmic tail (not shown) 

which is implicated in interactions with the cytoskeleton. B) Crystal structure of the sTF-

FVIIa complex, with the transmembrane helix of TF modeled in. FVIIa interacts extensively 

with sTF, with a binding interface that spans all domains of FVIIa and sTF. C) Close-up of 

TF residues putatively involved in substrate recognition (i.e., the substrate-binding exosite 

region of TF). In addition to allosterically activating FVIIa, TF is thought to directly interact 

with the protein substrates, FIX and FX, through membrane-proximal residues. Thus, TF 

residues Tyr157, Lys159, Ser163, Gly164, Lys165, Lys166, and Tyr185 (shown as van Der 

Waals radii and colored according to identity as follows; Teal: Lysine, White: Glycine, 

Yellow: Serine, Green: Tyrosine) contribute significantly to interactions with substrate as 

demonstrated by mutagenesis studies. (Panel C is rotated ~45° from panel B.) The structure 

of the sTF-FVIIa complex in panels B and C is rendered from pdb file 3TH273 using VMD 

Molecular Graphics Viewer.118 The isolated structures of FVIIa and sTF shown in panel A 

are a separation of the two from the TF-FVIIa complex. The transmembrane helix attached 

to sTF is adopted from pdb file 1A11.119
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