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Abstract

Human biofluids, especially blood plasma or serum, hold great potential as the sources of 

candidate biomarkers for various diseases; however, the enormous dynamic range of protein 

concentrations in biofluids represents a significant analytical challenge for detecting promising 

low-abundance proteins. Over the last decade, various immunoaffinity chromatographic methods 

have been developed and routinely applied for separating low-abundance proteins from the high- 

and moderate-abundance proteins, thus enabling much more effective detection of low-abundance 

proteins. Herein, we review the advances of immunoaffinity separation methods and their 

contributions to the proteomic applications in human biofluids. The limitations and future 

perspectives of immunoaffinity separation methods are also discussed.
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1. Introduction

Human biofluids are biological fluids that are excreted or secreted from inside the bodies of 

living people, including but not limited to blood, urine, cerebrospinal fluid (CSF), saliva, 

tear, and synovial fluid (See Figure 1). Human biofluids, especially blood plasma/serum and 

urine, are considered the most promising sources for the discovery of novel biomarkers for 

disease diagnosis and prognosis based on the notion that these biofluids contain disease-

associated proteins secreted or leaked from pathological tissues across the body [1–3]. 

Comparing to other types of specimens such as tissues, biofluids are often easily obtainable 

through noninvasive procedures, making it particularly attractive for large-scale clinical 

and/or longitudinal studies. For these reasons, there has been tremendous interest in profiling 

the biofluid proteomes for the development of biomarkers for various diseases over the last 

decade [4–10].
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Blood plasma or serum has been the most popular choice for biomarker development and 

verification/validation. One of the unique challenges in proteome profiling of plasma/serum 

lies in its extremely large dynamic range of protein concentrations (up to 10–12 orders of 

magnitude [4]). The 12 most abundant proteins (e.g., albumin, transferrin, immunoglobulins, 

etc) account for ~95% of total protein mass in plasma or serum, which leaves thousands of 

other moderate- and low-abundance proteins (MAPs and LAPs) in only 5% of total protein 

mass (See Figure 1). The “masking” effect caused by these high-abundance proteins (HAPs) 

greatly hampers the detection of LAPs such as cytokines and other clinically important 

proteins that often present at the sub ng/ml level. Besides blood, urine is also an ideal source 

for biomarker discovery and has been utilized in more and more proteomics studies [9, 11, 

12]. Urine is formed in the kidney by ultrafiltration from the blood, which can be easily 

accessed and collected in large amounts via non-invasive approaches [13]. Comparing to 

blood, the composition of urine is less dominated by HAPs, which provides a relatively 

easier access to LAPs (See Figure 1). Other biofluids, such as cerebrospinal fluid, saliva, 

tear, and synovial fluid, have also been analyzed for potential biomarkers; however in much 

more limited number of studies comparing to blood and urine [14–16].

Immunoaffinity chromatography (IAC) approaches have become the most commonly 

utilized strategies for digging deeper into the biofluid proteomes by both global and targeted 

proteomics [17–19]. IAC represents a specific type of affinity chromatography where the 

stationary phase is composed of immobilized antibodies or other affinity reagents on solid 

support matrix. The underlying principle of IAC is based on the selective non-covalent 

interaction between antibodies (or affinity reagents) and their specific binding targets or 

antigens. The purpose of IAC separations is to enrich LAPs of interest by either removing 

HAPs from the complex samples through immunoaffinity depletion (immunodepletion) or 

directing capturing low-abundance targets of interest through immunoaffinity enrichment 

(immunoenrichment). Significant advances in IAC methods for both the depletion and 

enrichment have been made and these methods have been broadly utilized in proteomics 

applications for many types of biofluids related to various human diseases [18, 20].

2. Overview of Immunoaffinity Chromatography

The most common schemes for applying IAC either by immunodepletion or 

immunoenrichment are illustrated in Figure 2. In these schemes, chromatographic matrices 

(column) or other resins with immobilized antibodies are used to specifically capture target 

proteins/peptides, and the resulting flow-through fraction (immunodepletion) or bound 

fraction (immunoenrichment) is collected for further analyses [21, 22]. The 

immunodepletion strategy is designed to remove the HAPs and enrich LAPs on a global 

scale [23]. In immunodepletion, complex samples as plasma/serum are first loaded onto a 

depletion column, and only specific HAPs are selectively captured by the antibodies 

immobilized on column, while other LAPs flow through directly and are collected (See 

Figure 2A). To maximize the detection of LAPs, simultaneous removal of multiple HAPs is 

desired. Therefore, multiple antibodies are often mixed and immobilized onto column in 

order to remove multiple HAPs. Furthermore, immunodepletion columns targeting different 

proteins/peptides can also be used in tandem to enable the removal of a relatively large 

number of HAPs [21]. On the other hand, the immunoenrichment (or immunoaffinity 
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purification) strategy is more targeted towards specific analytes (e.g., low-abundance 

proteins, peptides, or PTMs) to enhance the detection of these specific target low abundance 

analytes of interest, which is ideally suited for coupling with targeted proteomics 

measurements [24, 25]. In immunoenrichment, only target low-abundance analytes are 

recognized and bound on column, while all other proteins/peptides are washed away, and the 

targeted proteins/peptides are further eluted from column for analysis (See Figure 2B).

The utility of IAC is highly dependent on the quality of affinity reagents, typically 

antibodies [19]. A “good” antibody for IAC should meet two requirements: (a) a high 

intrinsic affinity toward target protein, and (b) reversible interactions between antibody and 

antigen that can be easily de-stabilized. Two main types of antibodies are commonly used in 

IAC, namely polyclonal and monoclonal antibodies [17, 19]. Polyclonal antibodies are 

produced as a heterogeneous population of antibodies from multiple clones of B-cells, which 

can recognize and bind a variety of epitopes on a single antigen with diverse affinity [26]. 

Sera of immunized animals are the main sources of polyclonal antibodies. Due to their easy 

accessibility and relative low cost, polyclonal antibodies are widely used for developing IAC 

methods. However, there are a number of limitations in using polyclonal antibodies. Firstly, 

sera are usually available in limited supply and could vary from animal to animal. Therefore, 

it is difficult to obtain consistent quality of antibodies from multiple batches or lots. To 

obtain high quality antigen-specific antibodies, polyclonal antibodies must be purified 

against the target antigen via affinity chromatography [19]. However, it is often impractical 

to acquire a large amount of purified antigen proteins for this purpose. Alternatively, anti-

peptide antibodies have been developed to selectively capture the proteolytic peptides of 

target proteins for their quantification in human biofluids, which is exemplified in the 

SISCAPA approach (Stable Isotope Standards and Capture by Anti-Peptide Antibodies) [24, 

27]. In such case, synthetic peptides conjugated with a carrier protein are used to immunize 

host animals. Antibodies targeting unique epitopes (or peptide-specific) are produced to 

specifically recognize the proteolytic peptides. Compared to proteins, synthetic peptides are 

commercially available in highly purified forms and in large quantities, facilitating the 

production of a peptide-specific antibody population for IAC analysis. Another limitation of 

using polyclonal antibodies is that the polyclonal antibodies may consist of a number of 

antibodies targeted at different epitopes of the same antigen, which makes it difficult to find 

a favorable eluting condition to simultaneously destabilize multiple types of antigen-

antibody interactions that are different in nature [28]. Therefore, potential lack of 

quantitative elution and low recovery of target protein should be taken into consideration in 

polyclonal antibody-based IAC applications. For IAC applications in human biofluids for 

proteomic profiling, polyclonal antibody-based IAC methods have been mainly applied for 

the selective depletion of HAPs and MAPs where high specificity of capture is preferred 

over quantitative elution (Table 1).

In contrast, monoclonal antibodies are typically produced by fusing myeloma cells with the 

spleen cells from a mouse that has been immunized with the desired antigen to produce 

hybridomas. Very high affinity monoclonal antibodies can be identified by screening large 

numbers of hydridoma supernatants since many therapeutic monoclonal antibodies have 

reported affinities of ~10−9 M or better [29]. Automated screening of monoclonal antibodies 

using MS-based platform has also been recently reported [30]. The monoclonal antibodies 
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constitute a homogeneous population that has monovalent affinity since they bind to the 

same epitope on an antigen [26]. Compared to polyclonal antibodies, monoclonal antibodies 

have the advantages of consistent specificity and reproducibility. Since all antibodies bind to 

the same epitope, it is relatively easy to find a gentle elution condition for IAC [19]. 

Therefore, monoclonal antibodies are preferred for immunoaffinity enrichment applications. 

Besides antibodies, other affinity reagents such as immobilized metal ions [31], metal oxides 

[32], lectins [33], and aptamers [34] have also been applied for affinity chromatography-

based applications.

In a typical IAC approach, antibodies are immobilized on a solid stationary phase to 

facilitate the selective and strong binding of antibodies to their target antigens, as well as the 

subsequent washing (if desired) and elution processes. Conventional matrices for 

immobilization of antibodies include natural carbohydrate-based materials (e.g., agarose, 

dextrose and cellulose), synthetic organic polymers and inorganic materials, such as silica 

and zirconia [17]. Cross-linked agarose is the most popular matrix for IAC, due to its 

excellent biocompatibility and extraordinary chemical stability in a broad pH range and most 

solvents. However, agarose beads and other soft gel matrices are not compatible to a highly 

pressurized system, such as HPLC. In contrast, silica, polystyrene and other highly cross-

linked materials have good mechanical strength and stability, thus can be used in a HPLC-

based IAC system, namely HPIAC [17]. Various commercial products and kits have been 

developed over the years for immunoaffinity separation of proteins in human biofluids 

(Table 1). Immunoaffinity columns are commonly produced with immobilized mammalian 

IgG or avian immunoglobulin yolk (IgY) antibodies. These two kinds of antibodies can be 

produced in a relatively high quantity from serum or eggs of immunized animals [19]. IgY 

antibodies have several advantages over IgG including higher antibody yield and less cross-

reactivity toward non-targeted human proteins [18, 35].

3. Immunoaffinity Chromatography Approaches

In the following sections, we will discuss different IAC approaches with some details 

focusing on immunodepletion and immunoenrichment.

3.1 Immunoaffinity depletion

Immunodepletion of HAPs has become a relatively routine sample preparation strategy for 

biofluid proteome profiling, in which multiple antibodies are mixed in an optimized ratio 

and immobilized on solid matrices for removing multiple HAPs simultaneously [18, 36]. 

While immunodepletion kits in spin column formats, such as Vivapure anti-HAS kit 

(Sartorius) for removing albumin, Qproteome (Qiagen) for removing albumin and IgG, have 

been available for several decades now, Pieper et al. were the first to report on the concept of 

multi-component immunoaffinity subtraction chromatography in an LC column format for 

reproducible removal of up to 10 plasma HAPs to enhance plasma proteome profiling in 

2003 [37]. Two commercial LC column products, Multi-affinity removal system (MARS) 

Hu-6 by Agilent [36] and ProteomeLab™ IgY12 by Beckman Coulter [35], were shortly 

made available for removal of 6 and 12 HAPs in blood plasma/serum, respectively; these 

two immunodepletion columns were further improved into the MARS Hu-14 kit (Agilent) 
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and the Seppro® IgY14 system (Sigma Aldrich), respectively, for removal of top 14 HAPs. 

Similarly ProteoPrep® 20 (Sigma Aldrich) was developed for removing 20 HAPs in plasma. 

The detailed list of current commercially available immunoaffinity depletion systems were 

provided in Table 1. Compared to spin columns, the LC column-based products utilizing 

automated LC systems provide a number of advantages in effective removal of targeted 

proteins, such as minimal carryover, good reproducibility, and minimal nonspecific binding 

[38]. Besides these single-stage depletion systems, an IgY-based SuperMix depletion 

column has been developed to enable the removal of ~50 MAPs by applying it with IgY12 

or IgY14 column in tandem to further enrich LAPs prior to follow-up analysis [21, 39]. In 

our experience, a typical LC depletion column will offer reproducible depletion for 100–200 

biological samples with a shelf life for several years, which provides a great potential for 

large-scale biomarker discovery and verification studies.

3.1.1 Multi-affinity removal system (MARS)—The MARS column from Agilent 

Technologies was the first commercially available multi-component immunoaffinity 

depletion system [36, 40]. Initially, this column consisted of 6 polyclonal IgG antibodies for 

6 HAPs including albumin, IgG, IgA, transferrin, α-1-antitrypsin and haptoglobin (so called 

MARS Hu-6) [41]. Antibodies were immobilized onto column through their Fc regions, 

which ensured easy protein access to the affinity binding sites with reported depletion 

efficiency higher than 99% for each target protein [40]. MARS Hu-6 was applied to many 

proteomics applications in biofluids [42–44]. Later on, MARS Hu-7 column was found to 

deplete fibrinogen plus the original six HAPs [45]. The most recently product of MARS is 

the Hu-14 column which allows the depletion of 8 more HAPs including fibrinogen, α-acid 

glycoprotein, α-macroglobulin, IgM, apolipoproteins A-I & A-II, complement C3 and pre-

albumin, approximately 95% of the human plasma proteins [46]. The MARS Hu-14 

depletion has also been widely used in recent proteomic applications, including plasma [46–

53], urine [54], CSF [55–57], and tissue proximal fluids [58].

3.1.2 IgY-based single-stage and dual-stage depletion systems—The IgY12 

depletion system based on avian polyclonal IgY antibodies was developed shortly after the 

MARS Hu-6, which initially targeted 12 HAPs [20, 35, 59]. The IgY12 system was later 

improved to IgY14 for removing 14 HAPs in human plasma and the product is now 

commercialized as Seppro® IgY14 from Sigma Aldrich [39, 60–62]. Both IgY14 and 

MARS Hu-14 are very popular depletion products for proteomics applications since the 

performance characteristics of MARS Hu-14 and IgY14 are very comparable with both 

products offering options of multiple loading capacities (customization options available as 

well) [63]; however, the IgY antibodies appeared to display the least nonspecific binding 

[64]. Similar to MARS Hu-14, IgY-14 was broadly applied to proteomics studies, including 

plasma [65–68] and CSF [69, 70].

The concept of a SuperMix column was later developed to be applied in tandem with IgY12 

or IgY14 so that the detection of LAPs can be further enhanced by depleting an additional 

number of MAPs [21, 39, 71]. The SuperMix column was developed by immunizing 

chickens with the protein mixture from IgY14-depleted human blood plasma as mixed 

antigens, and the purified antibodies were further immobilized and packed into the 
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SuperMix column to target a relatively large number of MAPs [21]. Figure 3 shows an 

example of the configuration of tandem IgY14 and Supermix depletion and overlays of 

representative LC chromatograms of three replicates of a reference plasma sample [39]. In 

our original characterization of the system, we observed that the SuperMix depleted at least 

50 MAPs from plasma [21], providing significant enhancement for the detection of LAPs 

(e.g., a 100-fold enrichment of LAPs comparing to the 20-fold enrichment by the IgY12 

alone).

All the depletion columns (MARS Hu-14, IgY-14, or SuperMix) can be easily implemented 

and automated using conventional HPLC with the protocol of using the column typically 

consisting of loading the sample, collecting the flow-through proteins (LAPs), washing, 

eluting bound proteins, and column regeneration. In our experience, a typical LC depletion 

column will offer reproducible depletion for 100–200 biological samples with a shelf life for 

several years, which provides a great potential for large-scale biomarker discovery and 

verification studies. More recently, a microscale chromatographic depletion system using 

IgY-14 resin was reported to facilitate more effective depletion of small amounts of human 

CSF or serum samples, where only ~6 μL serum or 600 μL CSF were used [72].

3.1.3 Combinatorial peptide ligand library (CPLL)—The concept of combinatorial 

peptide ligand library approach, first commercialized by Bio-Rad Laboratories as 

ProteoMiner kit, is that the library consists of millions of hexapeptides capable of interacting 

with most proteins in any given proteome. In principle, each unique hexapeptide binds to a 

unique protein sequence. Because the bead capacity limits binding capacity, high-abundance 

proteins quickly saturate their ligands and excess proteins are washed out during the 

procedure. On the contrary, LAPs are captured on their specific ligands, thereby leading to 

reduced dynamic range of the biofluid proteome or so called “equalizing of protein 

concentrations” [73–76]. Several studies have explored the applications of ProteomeMiner 

in proteome profiling [77–80]. The ProteoMiner kit and depletion columns are conceptually 

different and complementary. The depletion columns achieve early complete removal of 

highly abundant proteins, but will suffer non-specific loss of other LAPs. On the other hand, 

ProteoMiner only offer partial removal of HAPs and reduce the dynamic range given the 

“equalizing” principle. In a recent study by Gil-Dones et al. [76], it was clearly 

demonstrated that ProteoMiner was not as effective for enhancing the detection of LAPs as 

depletion columns. For better depletion of HAPs and enrichment of LAPs, more details such 

as sample overloading degree, the way of peptide ligand grafted on bead, and chemical 

modification of peptide ligand library, should be optimized [75].

3.2 Immunoaffinity enrichment

Immunoaffinity enrichment, also called immunoaffinity purification, has been broadly 

applied as traditional biochemical approaches for enrichment of specific protein targets for 

decades. In particular, immunoaffinity enrichment approaches have found broad applications 

in targeted proteomics. For example, the coupling of antibody-based enrichment and 

targeted mass spectrometry has become a routine approach for developing so called mass 

spectrometric immunoassays (MSIA) [81, 82]. Many types of affinity reagents have been 

developed to enable different types of proteomic applications. The affinity reagents can be 
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used to capture specific target proteins by antibodies, or specific classes of proteins such as 

glycosylated proteins by using lectins [33] or hydrazide resins [83]. The affinity reagents can 

also be applied to target specific peptides by anti-peptide antibody [24], specific types of 

PTMs including phosphorylation by immobilized metal ions [31], and metal oxides [32], 

and other PTMs [84] by antibodies, and specific type of peptides such as cysteine-containing 

peptides using thiol-affinity resins [85, 86]. Herein, we discuss several major types of 

immunoaffinity reagents for enrichment other than full antibodies.

3.2.1 Protein ligands—Some natural or recombinant proteins have specific recognition 

and binding capacity of certain target proteins. For example, bacterial Protein A and Protein 

G are ideal ligands for immunoglobins by binding to the Fc regions of IgG [87]. A type of 

recombinant protein ligand, known as Affibody, has also been developed by mimicking or 

complementing the structures and binding activities of an antibody [88, 89]. Lectins are 

glycoproteins that have higher affinity for sugar moieties in glycoproteins [90]. The multi-

lectin affinity chromatography (M-LAC) has been developed as an effective approach for 

enriching and analyzing glycoproteins from human biofluids [33, 91]. For instance, M-LAC 

has been coupled with depletion and other separations to achieve a deep coverage of the 

plasma proteome by LC-MS/MS [91, 92].

3.2.1 Single chain/domain antibodies—Single chain/domain antibody is another type 

of protein ligand that consists of a fragment of antibody from a single chain or a single 

domain [93, 94]. Single chain antibody (Single chain Fv, scFv) was the minimal form of 

functional antibodies, which comprised of the VH and VL segments in a single polypeptide 

chain joined by a short flexible linker, and each V-region has three complementarity 

determining regions (CDRs) in direct contact with antigen; while single domain antibody 

was an antibody fragment which consisted of a single monomeric variable antibody domain 

[95]. Single chain/domain antibodies demonstrated several advantages over the traditional 

whole antibody, including the ease of cloning in bacteria, minimally immunogenic, and 

better tissue penetration due to the smaller size and better stability [96]. Especially, the 

advance in phage display technology further facilitates the production of single chain 

antibodies for proteome research and other applications [97, 98].

Phage display is a technology that enables the detection of interaction between the displayed 

protein and other test molecules, including protein, peptide and DNA, which could be used 

for selection of proteins, peptides, or antibodies with affinity and specificity to a molecule or 

protein of interest from phage libraries [99]. The construction of a phage display library 

(could be a protein library, peptide library, antibody library) was accomplished by inserting 

DNA fragments into phage or phagemid genomes which proteins were further expressed on 

the phage coat. Specifically, the technique was named antibody phage display (APD) when 

an antibody was displayed, which allowed in vitro selection of antibodies of virtually any 

specificity, greatly facilitating recombinant production of antibody reagents to create 

antibody libraries [100]. The use of single-chain antibody library or antibody microarray to 

screen human serum to discover novel cancer biomarkers has been reported [101, 102].

3.2.3 Anti-peptide or anti-PTM antibodies—The development of immunoaffinity 

enrichment approaches to targeted specific peptides or specific types of PTMs is another 
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emerging area in proteomics. The first demonstration of using anti-peptide antibodies was 

reported as the “Stable Isotope Standards and Capture by Anti-Peptide Antibodies” 

(SISCAPA) approach [24]. SISCAPA has been advanced to become an important technology 

for enabling the detection of LAPs in biofluids by targeted MS without the need of extensive 

LC fractionation [25, 103]. SISCAPA also combines the power of peptide level 

immunoaffinity enrichment with the analytical capability of selected or multiple reaction 

monitoring (SRM/MRM, which enables sensitive quantitation of corresponding protein 

biomarkers and targets [103, 104]. Although not extensively applied to biofluids yet, 

immunoaffinity enrichment using antibodies against specific types of PTMs has also been 

developed and extensively applied in proteomics studies, including protein phosphorylation 

[105, 106], ubiquitination [107, 108], acetylation [109, 110], and lately methylation [111].

4. Proteomic applications of IAC in biofluids

Figure 4 summarizes a general workflow for applying IAC methods in proteomics profiling 

of human biofluids samples. For any biomarker discovery or verification studies, the 

experimental design will be the key for its chance of success. As recommended in a recent 

publication, clearly defined clinical question, selection of subjects, sufficient demographic 

data, and appropriate statistical approaches including adequate sample size are all important 

factors in the experimental design [10]. Depletion of HAPs is often required for plasma/

serum samples, which can be performed by HPLC using IgY/MARS/ Proteoprep columns. 

After removal of HAPs, the remaining MAPs and LAPs account for about 5–10% of the 

original protein mass (~20-fold enrichment of LAPs). If further removal of MAPs is 

required (typically in plasma/serum), the SuperMix column can be used, which results in a 

flow-through of ~1% of original protein mass corresponding to ~100-fold enrichment of 

LAPs. In contrast, urine is less dominated by HAPs. However, pre-concentration methods, 

such as ultrafiltration, protein precipitation, dialysis, lyophilization, and ultracentrifugation, 

need to be applied to concentrate urine proteins prior to down streaming processing for 

proteome analysis [13, 112]. Among these methods, ultrafiltration has been reported to be 

the best method for concentration and cleanup of protein components from urine [112]. 

Besides depletion, enrichment strategies such as M-LAC for glycoproteins [91] and 

SISCAPA [25] can also be applied to enrich LAPs either independently or in combination 

with the depletion strategies. The enriched samples are then analyzed either by shotgun LC-

MS/MS proteomics for discovery studies or by LC-SRM based targeted proteomics for 

verification studies. In the following sections, we review some examples of applications 

using different biofluids.

4.1 Plasma/Serum

Plasma/serum is one of the most well studied and characterized biofluids for biomarker 

discovery and validation. Significant effort and progress has been made in extending and 

characterizing the plasma/serum proteome using various IAC approaches. The initial 

application of multi-component depletion by Pieper et al. demonstrated significant 

enhancement of the detection of plasma LAPs by 2-DE following the removal of major 

proteins [37]. Liu et al. demonstrated that enhanced detection of LAPs in plasma could be 

achieved with high reproducibility and specificity by employing immunodepletion strategy 
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[38]. The comparison between different immunodepletion columns has also been carried out 

[113, 114]. Polaskova et al. compared six different immunodepletion columns by using 2-

DE, in which Seppro IgY system demonstrated the best results [114]. To further enhance the 

detection and coverage of LAPs, Qian et al. reported the application of tandem IgY12 and 

SuperMix depletion to human plasma by successfully removing up to top 60 abundant 

proteins in plasma, demonstrating nearly doubled plasma proteome coverage compared to 

single stage depletion and the effective detection of many LAPs with reported normal 

concentrations of approximately 100 pg/ml to 100 ng/ml [21]. Moreover, the IAC methods 

are very flexible to be coupled with downstream fractionation, enrichment, or detection 

techniques such as 2-DE or 1D or 2D-LC-MS/MS for digging deeper into the plasma 

proteome. For instance, a number of other techniques, including Cysteine-peptide 

enrichment [115], N-linked glycopeptide enrichment [116], multi-lectin affinity 

chromatography [91], off-gel electrophoresis [117], isoelectric focusing [91], have been 

coupled with immunoaffinity depletion for more extensive plasma proteome profiling.

Besides global profiling, the immunodepletion strategy has been extensively applied as a 

useful tool in targeted quantification studies of low-abundance plasma proteins in plasma/

serum [67, 118–124]. For example, Liu et al. developed a prostate specific antigen assay in 

serum by combining immunoaffinity depletion and SRM detection, which showed very good 

correlation with conventional immunoassays result from other independent clinical serum 

samples [118]. Keshishian et al. demonstrated multiplexed quantitative assays for LAPs with 

limits of quantification in 1–10 ng/mL range in plasma by coupling depletion with limited 

fractionation and targeted mass spectrometry [59]. Furthermore, Shi et al. developed a so-

called “high-pressure, high-resolution separations coupled with intelligent selection and 

multiplexing” (PRISM) method for ultrasensitive detection of LAPs in plasma, which 

demonstrated accurate and reproducible quantification of proteins at concentrations at the 

50–100 pg/mL levels in plasma by integrating by coupling IgY14 with PRISM and SRM 

[67]. In a recently large scale targeted quantification study of cancer-associated proteins in 

human plasma, Hüttenhain et al. demonstrated reproducible quantification of 182 proteins in 

MARS Hu-14 depleted plasma, spanning five orders of magnitude in abundance and 

reaching below a concentration of 10 ng/mL [121].

While immunodepletion is highly effective for enhancing proteome analysis of blood 

plasma/serum, concerns still exist for its applications in biomarker related studies, especially 

in the aspect of non-specific loss of LAPs due to the non-characteristic protein binding to 

HAPs or to antibodies. For example, Keshishian et al. demonstrated that troponin T was 

largely lost during IgY14 immunodepletion [120]. Yadav et al. systematically analyzed the 

bound HAPs fraction and showed that 101 proteins could be detected with high confidence, 

and suggested both bound and depleted fractions should be analyzed from immunodepletion 

for biomarker discovery using plasma/serum [125].

As an important alternative to immunodepletion, immunoaffinity enrichment has also been 

broadly applied to plasma/serum related biomarker studies. The utility of antibodies for 

developing high selective mass spectrometric, targeted immunoassays for clinical important 

proteins in human plasma/serum has been well demonstrated [81, 82, 126]. The 

development of peptide-level immunoenrichment as exemplified by SISCAPA has also 
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clearly demonstrated the value for quantification of potential low-abundance biomarkers 

[24]. Following the initial work by Anderson et al., Whiteaker et al. developed an automated 

and multiplexed approach for quantification of potential protein biomarkers by combining 

multiplexed SISCAPA and MRM analysis [103]. SISCAPA was also applied to develop 

multiplexed assays for a known biomarker of cardiac injury (troponin I), and an emerging 

cardiovascular marker interleukin 33, which could be detected at 1–10 ng/mL in plasma 

[127]. SISCAPA has been demonstrated for multiplexing up to 50-plex and able to extend 

the limits of detection to sub-ng/ml range of protein concentration [103, 104]. Ramirez et al. 
recently also demonstrated the utility of single chain antibody array for detecting low-

abundance cancer biomarkers in human serum [101]. By combining a single chain antibody 

library and protein microarray for screening ovarian cancer serum for novel potential 

biomarkers, they identified 19 promising scFvs and verified 6 top candidates using full-

length antibodies [101].

The IAC approaches have been routinely coupled with both global discovery and targeted 

verification for disease-biomarker related studies [114, 128], and the applications include 

pancreatic cancer [124], ovarian cancer [129, 130], breast cancer [131, 132], renal cancer 

[133], gastric cancer [134], prostate cancer [135, 136], osteoarthritis [137–139], 

cardiovascular disease [120, 140], etc.

4.2 Urine

Urine perhaps represents one of the most non-invasive, easily accessible biofluids available 

for diagnostic or prognostic tests. A number of studies have successfully demonstrated that 

urinary proteins and metabolites are promising biomarkers for diseases, such as kidney 

disease, prostate cancer, breast cancer, diabetes, atherosclerosis and osteoarthritis [141, 142]. 

Compared to plasma/serum, the urine proteome has a more limited dynamic range of protein 

concentrations and is less dominated by HAPs. Nevertheless, a number of studies have 

applied immunoaffinity-based separation to extend the proteome coverage and search for 

potential biomarker candidates in urine. Adachi et al. combined the albumin depletion and 

LC-MS/MS, which successfully identified more than 1500 proteins in normal urine [143]. 

Furthermore, by utilizing immunodepletion coupled to HPLC-Chip-MS/MS detection, He et 
al. identified 1641 urinary proteins with high confidence and provided a panel comprising 18 

urinary proteins to assess the human health status from urine samples of 100 male and 100 

female healthy donors [144]. Martin-Lorenzo et al. evaluated two immunodepletion 

approaches including ProteoPrep Immunoaffinity Albumin and IgG Depletion Kit (Sigma) 

and MARS Hu-14, and they demonstrated that using OasisR HLB cartridge purification in 

combination with albumin depletion by ProteoPrep kit as the best option for urine proteome 

profiling from patients with proteinuric renal disease [145]. Magagnotti et al. compared 

three depletion strategies including IgY, MARS and a home-made depletion column for 

improving coverage of the human urine proteome, and showed IgY depletion followed by 

ethanol precipitation was the most efficient method for exploring urine proteome [146]. The 

immunoaffinity based separation has also been applied to various biomarker discovery and 

verification studies in urine, such as bladder cancer [54], osteoarthritis [147], diabetic 

nephropathy [148, 149], and renal transplant [150].
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4.3 Other Biofluids

4.3.1 Cerebrospinal fluid (CSF)—CSF is a clear, colorless body fluid found in the brain 

and spine, and plays critical roles in many physiological processes in the central nervous 

system. CSF contains abundant small metabolites, peptides, and proteins. Changes in their 

concentrations directly reflect the internal milieu of the brain. Therefore, CSF is considered 

as a good candidate for the discovery of new biomarkers to improve early diagnosis of 

neurological diseases, such as Alzheimer’s disease [151, 152]. CSF has low protein content 

(e.g., ~0.35 mg/mL) but a wide dynamic range spanning at least 9 orders of magnitude. Due 

to the low total protein mass available from a typical CSF sample, Cunningham et al. applied 

a modified IgY14-based spin column to analyze CSF obtained from mice, which led to the 

identification of 289 proteins [153]. Furthermore, Hyung et al. designed a microscale 

depletion system using IgY14 resin, which could be used to analyze small volume of CSF 

and plasma with low flow rate [72]. By combining immunoaffinity separation with high 

sensitivity and resolution LC-MS/MS detection, Schutzer et al. first established a 

comprehensive proteome map for normal human cerebrospinal fluid, which consisted of 

2630 proteins [154]; using the same analytical strategy they further compared the CSF 

proteomes of Neurologic Post Treatment Lyme disease (nPTLS) patient, Chronic Fatigue 

Syndrome (CFS) patient and normal healthy control, and reported on a number of CSF 

proteins that could be useful for distinguishing nPTLS and CFS [155]. Recently, by 

combining immunodepletion of 14 HAPs, high-pH reverse-phase separation and high 

resolution MS/MS detection, Zhang et al. constructed a most up-to-date proteome map for 

CSF, which consisted of 3256 non-redundant proteins [156]. Immunoaffinity separation has 

also been applied in CSF for biomarker studies of several other neurological diseases, such 

as Parkinson’s disease [157], Huntington’s disease [158].

4.3.2 Synovial fluid (SF)—Synovial fluid (SF) is a serum filtrate located among the joint, 

where it also receives protein contributions from the surrounding tissues, articular cartilage, 

synovial membrane and bone.

In order to identify potential biomarkers for rheumatoid arthritis and osteoarthritis, Mateos 

et al. applied immunoaffinity depletion followed by LC-MS/MS detection, which lead to the 

identification of 136 differential proteins [159]. More recently, by using immunoaffinity 

depletion combined with extensive fractionation and high resolution MS/MS detection, 

Balakrishnan et al. presented an in-depth analysis of the synovial fluid proteome from 

patients with osteoarthritis, which successfully detected 677 proteins [160].

5. Conclusion and perspectives

Significant advances have been made over the last decade in the IAC approaches in the 

aspects of both immunoaffinity depletion and enrichment. Given the challenge of the 

enormous dynamic range of protein concentrations in human biofluids, IAC has made 

tremendous contributions to enable more effective detection of LAPs in these biofluids and 

identify potential biomarkers for various disease conditions by both global proteome 

profiling and targeted quantification. The development of targeted MS immunoassays based 

Wu et al. Page 11

J Chromatogr B Analyt Technol Biomed Life Sci. Author manuscript; available in PMC 2016 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



on either anti-protein antibodies or anti-peptide antibodies has become much more 

automated and higher throughput [81, 103].

While IAC has become an important tool for proteomic analyses of biofluids, there are 

several caveats that need to be taken into consideration in the experimental design. First, 

there is a significant concern of non-specific or specific loss of LAPs during 

immunodepletion. This is especially the case for the SuperMix system since it contains a 

large number of different antibodies and could deplete or partially deplete many more 

proteins. Therefore, the SuperMix system was proposed as a fractionation approach rather 

than a depletion approach. Second, for immunoaffinity enrichment, the quality (specificity, 

binding affinity) of antibody is still critical. It is still costly to make a good antibody in terms 

of the time and cost for enriching specific targets. Third, another valid concern for IAC lies 

in the appropriate loading amount. Determining the optimal loading amount is essential for 

high efficient binding of target proteins which enables effective depletion as well as high 

enrichment efficiency. Finally, most IAC approaches are still quite labor intensive and only 

offer moderate throughput for sample processing. Despite of these concerns, we anticipate 

the field of immunoaffinity chromatography will continue to advance in the areas of novel 

affinity reagents, automation for high throughput IAC separations and assay developments, 

and integration of other advanced devices (e.g., microfluidics-based devices [161]), and 

mass spectrometry platforms to make even more significant contributions in both global 

proteomics analyses of human biofluids and large-scale high throughput targeted 

quantification of biofluid samples for biomarker verification and development.
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Highlights

• The enormous dynamic range of protein concentrations in human biofluids 

represents a significant analytical challenge for discovering low-abundance 

protein biomarkers.

• Immunoaffinity chromatography has become an essential method for enabling 

the detection of low-abundance proteins in human biofluids.

• The advances of immunoaffinity chromatographic methods including 

immunodepletion and immunoenrichment are reviewed.

• Proteomics applications of immunoaffinity approaches to human biofluids are 

highlighted.
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Figure 1. 
Biofluids in human. Main sources and origins of human biofluids are depicted; the 

compositions of protein mass for both plasma/serum (data from in-house protein 

identification result and protein abundances were based on spectral count) and urine (data 

from Li et al. [162]) are shown in pie charts on the left and right hand side, respectively.
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Figure 2. 
The main workflows of immunodepletion (A) and immunoenrichment (B). For 

immunodepletion, the Star and Circles represents LAPs and MAPs, respectively. For 

Immunoenrichment, the Star represent the target molecules and other symbols are sample 

matrix.
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Figure 3. 
Immunodepletion using the tandem IgY14-SuperMix configuration. (A) IgY14 and 

SuperMix columns are connected through a 6-port valve. By switching the valve positions, 

the SuperMix flow-through (SuperMix_FT), IgY14 bound, and SuperMix bound fractions 

can be collected consecutively. (B) Representative LC chromatograms of 3 replicates of the 

tandem IgY14-SuperMix separations during the initial, middle and late stage of the column 

life of a reference plasma sample.
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Figure 4. 
General workflow of applying immunoenrichment and immunodepletion for a biomarker 

related study. Biofluid samples (e.g., plasma/serum or urine) are subjected to 

immunodepletion or immunoenrichment to reduce sample complexity. Immunodepletion is 

used to remove high abundant species, such as HAPs and MAPs, prior to MS-based 

proteomic studies. Target proteins or peptides can be selectively enriched through 

immunoenrichment by using MSIA or SISCAPA approaches, which are especially useful for 

targeted proteomics.
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