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Abstract

Aims/hypothesis—Diabetic peripheral neuropathy (DPN) and diabetic nephropathy (DN) are 

two common microvascular complications of type 1 and type 2 diabetes mellitus that are 

associated with a high degree of morbidity. In this study, using a variety of systems biology 

approaches, our aim was to identify common and distinct mechanisms underlying the pathogenesis 

of these two complications.

Methods—Our previously published transcriptomic datasets of peripheral nerve and kidney 

tissue, derived from murine models of type 1 diabetes (streptozotocin-injected mice) and type 2 

diabetes (BKS-db/db mice) and their respective controls, were collected and processed using a 

unified analysis pipeline so that comparisons could be made. In addition to looking at genes and 

pathways dysregulated in individual datasets, pairwise comparisons across diabetes type and tissue 

type were performed at both gene and transcriptional network levels to complete our proposed 

objective.
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Results—Gene-level analysis identified exceptionally high levels of concordant gene expression 

in DN (94% of 2,433 genes), but not in DPN (55% of 1,558 genes), between type 1 diabetes and 

type 2 diabetes. These results suggest that common pathogenic mechanisms exist in DN across 

diabetes type, while in DPN the mechanisms are more distinct. When these dysregulated genes 

were examined at the transcriptional network level, we found that the Janus kinase (JAK)–signal 

transducer and activator of transcription (STAT) pathway was significantly dysregulated in both 

complications, irrespective of diabetes type.

Conclusions/interpretation—Using a systems biology approach, our findings suggest that 

common pathogenic mechanisms exist in DN across diabetes type, while in DPN the mechanisms 

are more distinct. We also found that JAK–STAT signalling is commonly dysregulated among all 

datasets. Using such approaches, further investigation is warranted to determine whether the same 

changes are observed in patients with diabetic complications.
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Introduction

Over 8.8% of the global population, approximately 415 million people, have diabetes [1]. 

Type 2 diabetes mellitus accounts for ~90–95% of cases and is characterised by insulin 

resistance, while type 1 diabetes mellitus, a state of insulinopenia, accounts for the 

remainder [2]. A large proportion of both type 1 and type 2 diabetes patients experience 

diabetes-related complications. Microvascular complications, including diabetic peripheral 

neuropathy (DPN) and diabetic nephropathy (DN), are major contributors to the morbidity 

associated with diabetes, affecting ~60% and ~40% of patients, respectively [3, 4]. The 

prevalence of these complications is confounded by current treatments being largely 

ineffective in halting disease progression. DPN is characterised as a chronic, symmetrical, 

progressive disorder with early symptoms of pain, allodynia and paraesthesias. The longest 

nerve axons are initially affected and the disease continues to progress in a distal-to-

proximal fashion [3]. As DPN advances, eventual loss of all sensory modalities in 60–70% 

of affected individuals leads to an insensate foot at high risk of infection and subsequent 

ulcer development [5, 6], thus predisposing patients to non-traumatic lower-limb amputation 

[7]. Similar to DPN, DN is associated with high morbidity and is the leading cause of end-

stage renal disease in the USA [8]. DN usually presents with albuminuria between 10–30 

years after diabetes onset, with initial renal abnormalities localised to the glomerulus 

(Glom), including mesangial expansion, glomerular basement membrane thickening and 

podocyte loss. In progressive DN, increased fibrosis in the glomeruli and tubulointerstitium 

accompanies a decline in kidney function and many of these patients ultimately reach end-

stage renal disease [9].

To better understand the pathogenic mechanism of DPN and DN, murine models of diabetes 

that emulate the features of the disease have proven to be invaluable. Such models support 

basic and translational studies for the discovery of novel therapeutic strategies. Recently, 
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using systems biology approaches, analyses of gene expression profiles from the tissue of 

affected murine models have provided new insight into the cellular processes that drive 

pathogenesis. Previously, we reported global transcriptomic changes in the sciatic nerve 

(SCN) in models of type 1 [10] and type 2 diabetes [11, 12]. Furthermore, we have identified 

similar changes in the kidney Glom from various DN models [13]. In addition to identifying 

thousands of differentially expressed genes (DEGs), collectively these studies have 

identified numerous dysregulated pathways in diabetic complications that have been 

confirmed experimentally. These processes include inflammation [12, 13], oxidative stress 

[10, 11], lipid and carbohydrate metabolism [11], peroxisome proliferator-activated receptor 

(PPAR) signalling [10, 11], Janus kinase (JAK)–signal transducer and activator of 

transcription (STAT) signalling [13] and vascular endothelial growth factor receptor 

(VEGFR) signalling [13].

While previous studies identified gene expression changes in individual complication-prone 

tissues [10–13], no comparison of transcriptomic profiles has been made between the 

diabetes type or between complication-prone tissues. Our aim in this current study was to 

identify alterations in the transcriptome, both common and distinct, between the peripheral 

nerve and kidney in the setting of either type 1 or type 2 diabetes. Furthermore, we sought to 

perform similar comparisons looking at each diabetes-prone tissue across diabetes type. To 

accomplish this, our previously published DPN and DN transcriptomic datasets from models 

of type 1 and type 2 diabetes [10, 11, 13] were compared at both the gene and transcriptional 

network level.

Methods

Study design

A workflow was designed to optimally analyse our previously published microarray data 

derived from Glom and SCN from murine models of type 1 and type 2 diabetes and their 

respective non-diabetic controls [10, 11, 13] (Fig. 1). For comparisons between the gene lists 

from these individual studies, the original datasets were reanalysed. After acquiring four 

individual tissue- and disease-specific DEG datasets, a stepwise approach was used to 

identify over-represented biological functions and signalling pathways among the datasets. 

Initially, functional enrichment analysis was performed on the individual datasets (Fig. 1 

[1]). Subsequently, DEG datasets were compared to identify tissue- and disease-specific 

changes (Fig. 1 [2]). Finally, to identify gene networks common between tissue or disease, 

networks were generated from the DEG datasets (Fig. 1 [3]). The resulting networks were 

compared, resulting in subnetworks that were then subjected to functional enrichment 

analysis.

Animals

To model type 1 diabetes, streptozotocin (STZ) was administered to DBA/2J mice at 10 

weeks and the study was terminated at either 22 or 34 weeks, for a total of ~12 or ~24 weeks 

of hyperglycaemia, respectively [10, 13]. As a model of type 2 diabetes, BKS.Cg-Leprdb/db 

(db/db) mice were euthanised at 24 weeks [11, 13]. Control mice for models of type 1 and 

type 2 diabetes consisted of healthy DBA/2J and db/+ mice, respectively. As reported 

Hur et al. Page 3

Diabetologia. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



previously, each murine model exhibited the typical features of diabetes by study conclusion 

as well as hallmarks of DN and DPN (electronic supplementary material [ESM] 1 Table 1).

Transcriptomic profiling

Raw transcriptomic data (NCBI Gene Expression Omnibus IDs: GSE33744, GSE11343 and 

GSE27382) [10, 11, 13] derived from Affymetrix GeneChips were reprocessed using 

ChipInspector version 2.1 (Genomatix Software, www.genomatix.de) [14] containing up-to-

date gene annotation. Microarray image files were analysed using ChipInspector. Microarray 

gene expression signals were analysed at the single probe level. Significant transcripts were 

defined using a minimum of five significant probes and a false discovery rate < 1% by the 

Significance Analysis of Microarrays algorithm using exhaustive comparisons between 

control and diabetic mice [15]. Four sets of DEGs were obtained based on significant 

transcripts: STZ-SCN (type 1 diabetes DPN), STZ-Glom (type 1 diabetes DN), db/db-SCN 

(type 2 diabetes DPN) and db/db-Glom (type 2 diabetes DN).

Diabetes- and tissue-type comparisons of DEG sets

The four DEG sets were compared to examine similarities and differences between tissues 

(SCN and glomeruli) and diabetes type (type 1 diabetes and type 2 diabetes) at the gene 

level. Each pair of DEG sets was examined for overlap and concordance of gene expression 

changes. The percentage of concordant DEGs (i.e. showing the same direction of expression 

change) and discordant DEGs (i.e. showing the opposite direction of expression change) was 

also determined. Four pairwise comparisons (STZ-Glom vs STZ-SCN, db/db-Glom vs 

db/db-SCN, STZ–Glom vs db/db-Glom and db/db-SCN vs db/db-SCN) were performed 

(Fig. 1 [2]).

Transcriptional network comparisons

Transcriptional networks were generated from each DEG set (Fig. 1 [3]) based on gene–

gene associations using a natural language programming strategy to elucidate functional 

relationships among DEGs (i.e. interactions at the network level). SciMiner, a literature 

mining system, analysed over 22 million abstracts in PubMed and extracted gene–gene co-

citation information for human genes [16]. Transcriptional networks of the four DEG sets 

were constructed individually after converting mouse genes to human orthologues according 

to the National Center for Biotechnology Information (NCBI) HomoloGene build 68 and 

Genomatix annotated ortholog database.

Four pairwise comparisons (STZ-Glom vs STZ-SCN, db/db-Glom vs db/db-SCN, STZ–

Glom vs db/db-Glom and STZ-SCN vs db/db-SCN) were performed. The large 

transcriptional networks comprising thousands of gene nodes were compared using a Tool 

for Approximate Subgraph Matching of Large Queries Efficiently (TALE) [17]. TALE 

compares network structures and extracts overlapping conserved relations between two 

networks. We used a mismatch parameter allowing 10% mismatches in generating the 

neighbourhood of the seed gene nodes as well as in extending the network, and examined 

the overlap of enriched biological functions and pathways. The validity of the identified 

enriched biological functions and pathways from the shared networks was examined by 

generating 1,000 gene sets for each of the four DEG sets containing the same number of 
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genes randomly selected from the 20,016 genes on the microarray. These random gene sets 

were processed via the same transcriptional network analysis pipeline and the resulting 

shared subnetworks were examined for overlap of significant canonical pathways. 

Significant pathways from the real datasets were compared against these simulated datasets 

and the sizes of the shared networks were evaluated using a Z test.

Functional enrichment analysis

Over-represented biological functions among the four DEG sets were identified using 

Database for Annotation, Visualization and Integrated Discovery (DAVID; http://

david.abcc.ncifcrf.gov/) [18, 19]. Biological functions, represented by Gene Ontology (GO; 

http://geneontology.org/) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG; 

http://genome.jp/kegg/) pathways, with a Benjamini–Hochberg (BH)-corrected p value < 

0.05, were deemed significant. The complete list of 20,016 genes on the Affymetrix Mouse 

Genome 430 2.0 microarray was used as the background list during the enrichment analysis. 

Heat maps were generated based on the top ten most over-represented biological functions in 

each DEG set and clustered based on significance values (log-transformed BH-corrected p 
values) to visually represent overall similarities and differences between DEGs. Canonical 

signal transduction pathways were examined using GeneRanker (Genomatix Software, 

http://genomatix.de), a program that characterises large gene sets based on over 400 

canonical signal transduction pathways collected from the NCI-Nature Pathway Interaction 

Database (http://pid.nci.nih.gov/) [20] and the Cancer Cell Map (http://

pathwaycommons.org/) [21].

Results

Identification of changes in gene expression

We previously reported that STZ-treated DBA/2J mice and db/db mice exhibit a significant 

decrease in nerve conduction velocities and develop severe albuminuria, key features of 

DPN and DN, respectively (ESM 1 Table 1). Our published nerve and kidney gene 

expression profiles from murine models of type 1 and type 2 diabetes were examined in 

order to identify common and distinct gene expression changes across diabetes types and 

tissues (Fig. 1). As outlined in the methods section, the original transcriptomic datasets 

(STZ-Glom, db/db-Glom, STZ-SCN and db/db-SCN) were reanalysed using ChipInspector 

to identify new sets of DEGs containing both upregulated and downregulated genes 

corresponding to their respective non-diabetic controls. In the STZ-DBA/2J type 1 diabetes 

model, 4,790 and 4,069 DEGs were identified in glomeruli and SCN, respectively, compared 

with non-diabetic controls, while in the db/db type 2 diabetes model, 4,897 and 5,068 DEGs 

were identified in glomeruli and SCN, respectively (Fig. 2). Functional enrichment analyses 

were used to identify common and unique biological functions (Fig. 1 [1]). DAVID analysis 

was performed to examine enriched biological functions in terms of GO terms and KEGG 

pathways, while GeneRanker was used to identify signalling pathways. DAVID analysis 

revealed that genes related to adenyl nucleotide binding, adenyl ribonucleotide binding and 

purine ribonucleotide binding were highly enriched across the four DEG sets (ESM 2 Fig. 

1). In terms of canonical signalling pathways identified by GeneRanker (ESM 1 Table 2), 

reelin was the only over-represented signalling pathway across the four DEG datasets. 
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Pathways regulated across three of four DEG datasets included multiple JAK–STAT-related 

signalling pathways and VEGF signalling pathway.

Pairwise comparisons

To ascertain common and distinct processes between complication-prone tissues or between 

the diabetes-like state of individual tissues, pairwise comparisons between DEG datasets 

was performed (Fig. 1 [2]) and the overlap of each pairwise comparison was further 

examined to assess concordance (in terms of direction of change) of common DEGs (Figs 2 

and 3). Further breakdown of the concordant and discordant DEGs based on upregulation 

and downregulation is available in ESM 2 Figs 2 and 3. Subsequently, functional enrichment 

analysis was performed as outlined above.

Cross-tissue comparison

Comparison of the STZ-Glom and STZ-SCN DEG sets identified 1,347 common DEGs 

(Fig. 2a and ESM 2 Fig. 2a). Approximately 38% of the common DEGs (n = 507) were 

concordant, while approximately 62% (n = 840) were discordant. DAVID analysis revealed 

genes related to mitochondrion to be highly enriched among the concordant DEGs (ESM 2 

Fig. 4). In terms of canonical signalling pathways identified by GeneRanker (ESM 1 Table 

3), those involved in eicosanoid metabolism, SREBP control of lipid synthesis and IL-3 

signalling (JAK1/2, STAT5) were significantly over-represented among the concordant 

DEGs. Comparison of the db/db-Glom and db/db-SCN DEG sets identified 1,844 common 

DEGs (Fig. 2b and ESM 2 Fig. 2a), of which approximately 49% (n = 911) were concordant 

while 51% (n = 933) were discordant. No biological function was significantly over-

represented among the concordant DEGs (ESM 2 Fig. 5). In terms of canonical signalling 

pathways, those involved in cyclin-dependent kinase (CDK) regulation of DNA replication, 

CD40L, mitogen-activated protein kinase (MAPKinase), NF-κB signalling and regulation of 

peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1A) were significantly 

over-represented among the concordant DEGs (ESM 1 Table 4).

Cross-diabetes type comparison

By comparing DEG sets derived from the Glom of type 1 and type 2 diabetes models, STZ-

Glom and db/db-Glom, we identified a large number of common DEGs (n = 2,433) (Fig. 3a 

and ESM 2 Fig. 3a). Approximately 94% (n = 2,282) of these showed concordant changes, 

while only 6% (n = 151) were discordant. These concordant DEGs had a high correlation in 

gene expression levels (Pearson correlation coefficient r = 0.955; ESM 2 Fig. 6). ESM 1 

Table 5 lists the concordant DN genes with the largest expression changes. Genes related to 

lipid biosynthetic process and mitochondrion were significantly over-represented among the 

concordant DEGs (ESM 2 Fig. 7). In terms of canonical signalling pathways (ESM 1 Table 

6), the JAK–STAT signalling and integrin pathways were significantly over-represented 

among the concordant DEGs.

From the two sets of DEGs derived from the SCN of murine models of diabetes (STZ-SCN 

and db/db-SCN), we identified 1,558 common DEGs (Fig. 3b and ESM 2 Fig. 3b). 

Approximately 54% (n = 848) of the common DEGs were concordant, while 46% (n = 710) 

were discordant. The 20 most upregulated and downregulated genes are listed in ESM 1 
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Table 7. Functional enrichment analysis revealed that genes related to nucleotide binding 

were significantly over-represented among the concordant DEGs, while discordant DEGs 

were highly enriched in categories related to protein transport, vesicle-mediated transport 

and endoplasmic reticulum (ESM 2 Fig. 8). In terms of canonical signalling pathways, 

neuroregulin and transcriptional repression by DNA methylation pathways were 

significantly over-represented among the concordant DEGs, while the insulin pathway, 

VEGFR3 and VEGFR1 signalling pathways were over-represented among the discordant 

DEGs (ESM 1 Table 8).

Transcriptional network analysis

Transcriptional network analysis explores interconnections between DEGs to biologically 

refine datasets prior to functional enrichment analysis. Thus, the transcriptional networks 

based on gene–gene associations were generated and subsequently compared across tissue 

and diabetes type (Figs 1 and 4). Briefly, mouse DEGs were converted to orthologous 

human genes and networks were generated from each set based on literature-derived gene–

gene associations identified by SciMiner [16]. Using a 10% TALE mismatch parameter to 

limit the shared networks in the four pairwise comparisons, networks ranging from 174–718 

genes were identified (Fig. 4), representing approximately 5–15% of the input networks. The 

network images and Cytoscape network files are available in ESM 2 Fig. 9.

Following generation of shared subnetworks, functional enrichment analysis was performed 

using DAVID (ESM 2 Fig. 10) and GeneRanker (Table 1) platforms to identify dysregulated 

biological functions and signalling pathways, respectively. The over-represented biological 

functions, in terms of GO and KEGG pathway terms, were highly similar among the shared 

networks across different comparisons (ESM 2 Fig. 10). GeneRanker identified 11 pathways 

that were enriched in all four shared subnetworks and 20 additional pathways that were 

enriched in three of four shared networks (Table 1). These pathways included multiple JAK–

STAT- and VEGFR-related signalling pathways, as well as the reelin signalling pathway, 

suggesting that genes involved in these pathways are commonly dysregulated in both types 

of tissue and diabetes. To verify whether JAK–STAT signalling was significantly altered in 

diabetic nerve and kidney, simulated data were randomly generated and processed using the 

same network-level comparison approach to identify shared transcriptional networks. 

Between 23% and 38% of the shared networks identified from the simulated data included 

the JAK–STAT pathway as significant. The number of genes belonging to this pathway in 

the simulated datasets, however, were significantly fewer than in the real dataset (ESM 2 

Fig. 11; Z test p < 0.01), verifying enhanced enrichment of JAK–STAT pathway genes in 

kidney and nerve in both diabetes types. These network-level data indicate that JAK–STAT 

pathways are highly dysregulated in both DPN and DN, independent of diabetes type.

Discussion

Bioinformatics analyses have previously been used to investigate the mechanisms 

underlying either DN or DPN in the setting of type 1 or type 2 diabetes [10–13, 22]; 

however, no comparison of transcriptomic profiles has been made between the diabetes type 

or between complication-prone tissues. As such analyses may identify interesting 
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similarities, we compared our previously published transcriptomic data obtained from 

murine models of type 1 and type 2 diabetes of DN and DPN at both the gene and 

transcriptional network levels. We found a large degree of shared DEGs with concordant 

regulation in DN across both type 1 and type 2 diabetes; in contrast, DEG expression in 

DPN was more distinct, indicating that DPN pathogenesis may differ fundamentally 

between type 1 and type 2 diabetes. We also identified dysregulation of the JAK–STAT 

pathway in both nerve and kidney regardless of diabetes type, suggesting that this pathway 

may represent a potential common therapeutic target. Overall, these analyses offer critical 

insight into common and distinct pathogenic mechanisms underlying DN and DPN in type 1 

and type 2 diabetes, and further provide a novel foundation for the basis of understanding 

and designing appropriate therapeutic strategies.

Initial comparisons examined the transcriptomic changes associated with type 1 or type 2 

diabetes in either the nerve or kidney at the gene level. For DN, pairwise comparisons of 

kidney DEG datasets across diabetes type identified a high degree of concordance, with 

approximately half of all glomerular gene expression changes being shared between diabetes 

type and 94% of shared DEGs occurring in the same direction (Fig. 3a). This high 

concordance supports the concept that pathogenic mechanisms between type 1 and type 2 

diabetes in DN are conserved [13]. These pathways include: lipid biosynthesis and 

mitochondria, and JAK–STAT and integrin signalling. Furthermore, these findings agree 

with observations from our cross-species comparison of gene expression patterns, which was 

performed between murine models of DN and type 2 diabetes patients with DN [13], that 

identified dysregulation of JAK–STAT signalling to be common between both species. The 

current data collectively support the translational relevance of these alterations for both 

patients with type 1 diabetes and those with type 2 diabetes.

In contrast to our findings in the kidney, DEG dataset comparisons between the peripheral 

nerve in type 1 and type 2 diabetes revealed a marked difference in transcriptomic profiles 

between each disease, with fewer total shared genes than DN, and only half of these 

exhibiting concordant regulation (Fig. 3b). The higher degree of discordance suggests that, 

unlike DN, DPN pathogenesis differs fundamentally between type 1 and type 2 diabetes, an 

observation recently described in the literature in the patient population [23]. Of the 

concordant genes we identified, Map1b, Map4, Nefl and Tubb3 were downregulated, which 

may reflect SCN structural changes common to type 1 and type 2 diabetes DPN [24].

Functional enrichment analyses identified discordant alterations in peripheral nerve between 

type 1 and type 2 diabetes for genes involved in insulin signalling, endoplasmic reticulum 

stress and Golgi apparatus/protein trafficking, suggesting that each may be similarly 

dysregulated in disease, albeit in a different manner as a consequence of fundamental 

differences in diabetes type. For example, the canonical insulin pathway (representing 

insulin resistance) was significantly over-represented in our type 2 diabetes model only 

(ESM 1 Table 8), consistent with literature implicating insulin resistance in type 2 diabetes 

DPN pathogenesis, but not in type 1 diabetes, a disease brought about by insulinopenia [25–

27]. Thus, the discordant pathways identified in the current analyses offer intriguing insight 

into differing potential mechanisms in type 1 and type 2 diabetes DPN.
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Cross-complication comparisons revealed relatively low concordance between DN and DPN 

DEG datasets, independent of diabetes type. These findings suggest significant 

dysregulation of gene expression, likely reflecting distinct tissue-specific responses to 

diabetes (Fig. 2). In contrast to single gene expression comparisons, our transcriptional 

network-based comparisons identified a number of shared networks between the four DEG 

datasets. These networks were highly conserved in terms of enriched biological functions 

(ESM 2 Fig. 10) and signalling pathways (Table 1). Network-based comparisons also 

identified enriched functions and signalling pathways related to cell survival, proliferation, 

migration, blood vessel development, VEGFR3 endothelial signalling and angiopoietin 

signalling in both DN and DPN. While not new to our knowledge base, these categories 

provide reassurance for the long-standing idea that DPN and DN are ‘microvascular’ 

complications [28].

Of particular interest, our network-based comparisons identified enriched pathways related 

to JAK–STAT signalling as being commonly dysregulated across all DEG sets, suggesting a 

role in DN and DPN pathogenesis, irrespective of diabetes type. JAK–STAT is a stress-

sensitive pathway activated by inflammatory mediators [29], oxidised LDL [30] and 

hyperglycaemia-induced reactive oxygen species [31], all drivers of DN and DPN 

pathogenesis. With JAK–STAT pathways being highly enriched in shared networks between 

patients and murine models of DN [13], and with rodent models of both type 1 and type 2 

diabetes DN displaying improved kidney function following JAK–STAT inhibitor treatment 

[32, 33], this signalling pathway appears to be a viable therapeutic target. Indeed, clinical 

trials targeting the JAK–STAT pathway are currently underway for treatment of DN [34]. 

There is also evidence demonstrating a role for JAK–STAT signalling in DPN progression. 

Dysregulated JAK–STAT signalling has been identified in dorsal root ganglia of a rat model 

of type 1 diabetes and this may contribute to mitochondrial dysfunction resulting in 

peripheral nerve fibre degeneration [35, 36]. This pathway is also implicated in Wallerian 

degeneration in rat sciatic nerve after injury [37]. However, with evidence suggesting high 

discordancy in DPN between type 1 and type 2 diabetes, it is clear that further investigation 

is needed to fully elucidate the involvement of this pathway in DPN pathogenesis.

With data being drawn from different studies for these ad hoc analyses, there are several 

experimental limitations for which we could not control. This includes mice originating 

from different genetic backgrounds and studying mice at different ages. Furthermore, the 

number of mice is small and experiments were performed at different occasions. Ideally, this 

study should be repeated to minimise these compounding aspects, something which the 

results from our current findings warrant. Another limitation of the current study is that 

generation of the shared networks was based on gene–gene associations that were generated 

using a natural language programming strategy. As genes that are more comprehensively 

well-studied are more likely to be included in the resulting transcriptional networks than less 

well-studied genes, the network does not necessarily accurately reflect the actual gene 

expression network. The general accuracy of this approach, however, is still reasonable 

based on previously reported associations [13]. Indeed, our data using this relatively 

unbiased approach confirm the involvement of pathways that have been identified to be 

important in both DPN and DN [25, 38, 39].
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In summary, our gene/network-level comparison of transcriptomic data suggest that the 

pathogenic mechanisms in DN are highly conserved across type 1 and type 2 diabetes, while 

those of DPN are largely distinct. These findings support the contention that diabetes type-

specific therapies may be required to treat these common diabetic complications, whereby 

targeting lipid biosynthesis, cholesterol process and the JAK–STAT pathway may be 

beneficial for type 1 diabetes complications and, alternatively, targeting MAPKinase, NF-

κB, PGC1A and the JAK–STAT pathway may be of greater benefit in type 2 diabetes. 

Notably, JAK–STAT pathway dysregulation in both DN and DPN, regardless of diabetes 

type, suggests that therapies targeting this pathway may be beneficial for both 

complications. Overall, the identified shared and distinct alterations in DN and DPN provide 

important insight into both common and unique pathogenic mechanisms and potential 

therapeutic targets for type 1 and type 2 diabetes complications, and future studies 

examining these pathways and targets are warranted.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
DEG profiling and network comparison workflow. Previously published microarray datasets 

were reanalysed using ChipInspector to identify DEG sets for Glom and SCN from murine 

models of type 1 diabetes (STZ) and type 2 diabetes (db/db) compared with respective non-

diabetic controls. Four pairwise comparisons indicated by coloured arrows were made across 

tissue (green and yellow) and diabetes type (blue and red). Common and unique DEGs and 

shared transcriptional networks between STZ-Glom, STZ-SCN, db/db-Glom and db/db-

SCN were further analysed by DAVID and GeneRanker to identify enriched biological 

functions and canonical signalling pathways, respectively. Numbered arrows indicate three 
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different analysis approaches from DEG sets. Groups of differentially expressed gene sets 

and transcriptional networks and their pair-wise comparison schemes are denoted by dashed 

lines. T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus. The key applies to 

Figs 1–4
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Fig. 2. 
Comparison of kidney and nerve DEGs. Venn diagrams depict shared and unique DEGs 

from Glom and SCN in type 1 diabetes (a) and type 2 diabetes (b). The pie charts show 

percentages of concordant (change in same direction; white) and discordant (change in 

opposite direction; black) shared DEGs. See Fig. 1 for key
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Fig. 3. 
Comparison of type 1 diabetes and type 2 diabetes DEGs. Venn diagrams depict shared and 

unique DEGs from type 1 diabetes and type 2 diabetes in Glom (a) and SCN (b). The pie 

charts show percentages of concordant (change in same direction; white) and discordant 

(change in opposite direction; black) shared DEGs. See Fig. 1 for key
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Fig. 4. 
Transcriptional network analysis. TALE identified the shared networks between two 

transcriptional networks generated by SciMiner for the same four pairwise comparisons 

(STZ-SCN vs STZ-Glom, db/db-SCN vs db/db-Glom, STZ-Glom vs db/db-Glom and STZ-

SCN vs db/db-SCN) using a 10% mismatch cut-off. Gene numbers in each shared network 

are noted. Close-up images of the shared networks are shown in ESM 2 Fig. 9. T1DM, type 

1 diabetes mellitus; T2DM, type 2 diabetes mellitus. See Fig. 1 for key
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