
Meta-analysis of shared genetic architecture across ten pediatric 
autoimmune diseases

A full list of authors and affiliations appears at the end of the article.

Abstract

Genome-wide association studies (GWASs) have identified hundreds of susceptibility genes, 

including shared associations across clinically distinct autoimmune diseases. We performed an 

inverse χ2 meta-analysis across ten pediatric-age-of-onset autoimmune diseases (pAIDs) in a case-

control study including more than 6,035 cases and 10,718 shared population-based controls. We 

identified 27 genome-wide significant loci associated with one or more pAIDs, mapping to in 
silico–replicated autoimmune-associated genes (including IL2RA) and new candidate loci with 

established immunoregulatory functions such as ADGRL2, TENM3, ANKRD30A, ADCY7 and 

CD40LG. The pAID-associated single-nucleotide polymorphisms (SNPs) were functionally 

enriched for deoxyribonuclease (DNase)-hypersensitivity sites, expression quantitative trait loci 

(eQTLs), microRNA (miRNA)-binding sites and coding variants. We also identified biologically 

correlated, pAID-associated candidate gene sets on the basis of immune cell expression profiling 

and found evidence of genetic sharing. Network and protein-interaction analyses demonstrated 

converging roles for the signaling pathways of type 1, 2 and 17 helper T cells (TH1, TH2 and 

TH17), JAK-STAT, interferon and interleukin in multiple autoimmune diseases.

Autoimmune diseases affect 7–10% of individuals living in Europe and North America1 and 

represent a significant cause of chronic morbidity and disability. High rates of familial 

clustering and comorbidity across autoimmune diseases suggest that genetic predisposition 

underlies disease susceptibility. GWASs and immune-focused fine-mapping studies of 

autoimmune thyroiditis (THY)2, psoriasis (PSOR)3, juvenile idiopathic arthritis (JIA)4, 

primary biliary cirrhosis (PBC)5, primary sclerosing cholangitis (PSC)6, rheumatoid arthritis 

(RA)7, celiac disease (CEL)8, inflammatory bowel disease (IBD, which includes Crohn’s 
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disease (CD) and ulcerative colitis (UC)9), and multiple sclerosis (MS)10,11 have identified 

hundreds of autoimmune disease–associated SNPs across the genome12–14. SNP 

associations in certain pan-autoimmune loci, such as PTPN22 c.1858C>T (rs2476601), are 

evident in independent GWASs across multiple autoimmune diseases15–18, whereas others 

have been uncovered through large-scale meta-analyses (for example, CEL-RA and type 1 

diabetes (T1D)-CD) or by searches for known loci from one disease in another (for example, 

systemic lupus erythematosus (SLE))19. These studies demonstrate that more than half of 

genome-wide significant (GWS) autoimmune disease associations are shared by at least two 

distinct autoimmune diseases20,21. However, the degree to which common, shared genetic 

variations may similarly affect the risk of different pAIDs and whether these effects are 

heterogeneous have not been systematically examined at the genotype level across multiple 

diseases simultaneously.

RESULTS

Shared genetic risk associations across ten pediatric autoimmune diseases

We performed whole-genome imputation on a combined cohort of more than 6,035 pediatric 

subjects across ten clinically distinct pAIDs (Supplementary Table 1) and 10,718 

population-based control subjects without prior history of autoimmune or immune-mediated 

disorders. We performed whole-chromosome phasing and used the 1,000 Genomes Project 

Phase I Integrated cosmopolitan reference panel (1KGP-RP) for imputation as previously 

described (SHAPEIT and IMPUTE2)22,23. Only individuals of self-reported European 

ancestry and confirmed by principal-component analysis (Supplementary Figs. 1 and 2) 

were included (Online Methods). Rare (minor allele frequency (MAF) < 1%) and poorly 

imputed (INFO score < 0.8) SNPs were removed, leaving a total of 7,347,414 variants.

Whole-genome case-control association testing was done using case samples from each of 

the ten pAIDs and the shared controls, and additive logistic regression was applied with 

SNPTESTv2.5 (ref. 24). There was no evidence of genomic inflation. To identify shared 

pAID-association loci, we performed an inverse χ2 meta-analysis, accounting for sample-

size variation and the use of a shared control across the ten pAIDs25. We identified 27 

linkage disequilibrium (LD)-independent loci, consisting of associated SNPs with r2 > 0.05 

within a 1-Mb window where at least one lead SNP reached a conventionally defined GWS 

threshold (P < 5 × 10−8; Fig. 1 and Supplementary Fig. 1b). An additional 19 loci reached a 

genome-wide marginally significant (GWM) threshold at or below PMETA < 1 × 10−6, of 

which 12 mapped to previously reported autoimmune loci and 7 mapped to putatively novel 

autoimmune loci (Fig. 1 and Supplementary Table 2a).

We identified five putatively novel GWS loci: CD40LG (PMETA < 8.38 × 10−11), ADGRL2 
(PMETA < 8.38 × 10−11), TENM3 (PMETA < 8.38 × 10−11), ANKRD30A (PMETA < 8.38 × 

10−11) and ADCY7 (PMETA < 5.99 × 10−9). For each lead association locus, we identified 

the corresponding combination of pAIDs contributing to the association signal by 

enumerating all 1,023 unique disease combinations (for example, one disease, T1D; two 

diseases, T1D and SLE; or four diseases, UC, CD, CEL and SLE) and performing 

association testing to identify the disease combination that yielded the maximum logistic 

regression Z-score (Online Methods)26. With the exception of ANKRD30A, the loci were 
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jointly associated with at least two or more pAIDs; for example, CD40LG was shared by 

CEL, CD and UC (Fig. 1 and Table 1). Among the 27 GWS lead SNPs, 22 had been 

reported previously as GWS for at least one of the associated pAIDs (specifically, for the 

corresponding adult phenotypes) identified by our analysis (Supplementary Tables 1b and 

2b)12,27. The most widely shared locus, chr4q27:rs62324212, mapping to an intronic SNP in 

IL21-AS1 and residing just upstream of IL21, was shared across all ten diseases, and three 

of these associations were novel (THY, ankylosing spondylitis (AS) and common variable 

immunodeficiency (CVID)). For more than 50% of previously known GWS loci in adult-

onset or generalized autoimmune disease, we identified at least one previously unrecognized 

pAID association (Supplementary Table 2c,d).

A number of the pAIDs were significantly associated with disease-specific signals mapping 

to or near the locus encoding HLA-DRB1. However, even the two most significant LD-

independent variants that mapped to this locus and were associated with T1D and JIA, 

respectively, were disease specific (Supplementary Fig. 3), which suggests that the variants 

associated with a given disease are distinct. Although some of these associations were 

shared by at least two diseases, in no instance was a single signal associated with any of the 

diseases shared across all other diseases, which further underscores the complexity of signal 

sharing across the major histocompatibility complex (MHC) (Supplementary Fig. 3b).

Disease-specific and cross-autoimmune replication support for pAID-associated loci

We performed in silico analysis to test whether the reported associations could be replicated 

in an independent data set. We observed nominally significant replication support for four of 

the five putatively novel GWS loci, including three instances of disease-specific replication 

(Supplementary Table 1d). Among the replicated loci, chrXq26.3 (rs2807264), mapping 

within 70 Kb upstream of CD40LG, was notable, as we observed disease-specific replication 

in both UC (P < 4.66 × 10−5) and CD (P < 5.81 × 10−4), as well as cross-autoimmune 

replication in AS (P < 9.54 × 10−3). Although rs2807264 was not identified in our analysis 

as associated with pediatric AS, it is well documented that adult-onset AS and pediatric AS 

may be biologically different diseases with independent genetic etiologies28,29. A third 

disease-specific replication (P < 5.99 × 10−6) was identified in CD for the chr16q12.1 

(rs77150043) signal mapping to an intronic position in ADCY7. This third instance and the 

replication of the CD40LG locus in UC were both significant, even after a very conservative 

Bonferonni adjustment for 156 tests (P < 3.21 × 10−4). A nominally significant pan-

autoimmune replication signal (P < 1.69 × 10−2) was also observed at chr1p31.1 

(rs2066363) near LPHN2 in UC, and a replication signal (P < 3.65 × 10−3) was also 

observed at the chr4q35.1 locus (rs77150043) in PSOR (Supplementary Tables 1d and 2e).

Sharing of pAID-associated SNPs and bidirectional effects of some SNPs on disease-
specific risk

Of the 27 GWS loci, 81% (22) showed evidence of being shared among multiple pAIDs. 

These mapped to 77 different SNP-pAID combinations, 44 of which had been previously 

reported at or near genome-wide significance (P < 1 × 10−6), whereas 33 represented 

potentially novel disease-association signals (Table 1 and Supplementary Table 1). Although 

PTPN22 c.1858C>T (rs2476601) increases the risk for T1D, the variant is protective against 
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CD17,30–32. We identified eight other instances (P < 0.05) where the risk allele shared by the 

model pAID combination was associated with protection against another pAID (Fig. 2 and 

Supplementary Fig. 4).

Biological support of associated loci from the public domain

To integrate our results with experimental and predictive biological data, we curated four 

categories of SNP annotations: (1) functional: variants that are exonic, affect transcription, 

are miRNA targets or tag copy-number polymorphic regions; (2) regulatory: transcription 

factor (TF)-binding sites and DNase-hypersensitivity sites or eQTL SNPs; (3) conserved: 

variants with evolutionarily constrained positions or CpG islands; or (4) prior literature 

support: a gene or locus previously reported to be associated with autoimmune diseases or 

immune function. Indeed, 100% of the GWS lead SNPs or their nearby LD proxies (r2 > 0.8 

on the basis of 1KGP-RP within 500 Kb up- or downstream) belonged to one or more of 

these categories (Fig. 3a). Nevertheless, the majority of the 27 GWS SNPs did not confer 

direct transcriptional consequences (51% were intronic variants and 28% were intergenic or 

up- or downstream gene variants), which suggests that many of these SNPs either tag the 

true causal variants or affect disease risk through regulatory and/or epigenetic mechanisms 

(Fig. 3b).

To determine whether the set of pAID-associated SNPs was enriched for specific annotation 

categories, we compared its annotation percentage with the percentages of 10,000 simulated 

sets of SNPs with MAF > 0.01 drawn from 1KGP-RP for each category. We found that 

pAID-associated SNPs were enriched for CpG islands (Pperm < 1.0 × 10−4), TF-binding sites 

(Pperm < 3.4 × 10−3) and miRNA-binding sites (Pperm < 1.0 × 10−4), among other findings of 

biological disease relevance (Supplementary Fig. 1d,e).

Candidate pAID genes share expression profiles across immune cell types and tissues

Recent studies show that gene-based association testing (GBAT) may boost the power of 

genetic discovery33–35. We performed GBAT (with VEGAS33) using genome-wide 

summary-level PMETA values. We identified 182 significant pAID-associated genes 

(simulation-based Psim < 2.80 × 10−6) on the basis of a Bonferonni adjustment for ~17,500 

protein-coding genes in the genome (Supplementary Table 3a). To illustrate the biological 

relevance of this set of genes, we examined their transcript levels in a human gene 

expression microarray data set consisting of 12,000 genes and 126 tissue and/or cell types36. 

pAID-associated gene expression across immune tissues or cell types (ES-I, 4.05) was 

notably higher than that across non-immune types (ES-NI, 2.10) on the basis of a one-tailed 

Wilcoxon rank-sum test (P < 1.66 × 10−10). When all extended MHC genes were excluded, 

the average expression of pAID-associated genes remained significantly higher (P < 1.27 × 

10−7) for immune (1.043) than for non-immune (0.648) tissues and cell types. The immune-

specific enrichment of pAID-associated gene transcripts was comparable to that observed in 

adult cohorts12; comparatively, schizophrenia-associated genes showed no such enrichment 

(Fig. 4a and Supplementary Table 3b). We observed similar results when we used the 

Kolmogorov-Smirnov test (Supplementary Fig. 5).
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We examined the expression of pAID genes across a whole-transcriptome data set 

comprising more than 200 murine immune cell types isolated by flow cytometry 

(ImmGen37; Online Methods and Supplementary Table 3c). Genes associated with pAIDs 

demonstrated differential expression across immune cell types (Supplementary Fig. 6) and 

showed higher expression than genes associated with non-immune traits, similar to results 

observed from human tissue data (Fig. 4b). As the expression levels of these ‘pleiotropic’ 

genes varied diversely across immune cell types, we performed agglomerative hierarchical 

clustering to identify sets of genes sharing similar profiles. Genes that belonged to the same 

cluster (and thus shared similar expression profiles) were found to be enriched for 

association with specific individual or multiple autoimmune diseases (Fig. 4c). For example, 

cluster 1 genes, such as ICAM1, CD40, JAK2, TYK2 and IL12B, with known roles in 

immune effector cell activation and proliferation, were enriched for association with PSC 

and UC and were associated with both diseases (P < 6.82 × 10−4, one-tailed Fisher’s exact 

test), and the expression of these genes was highest in a small subset of CD11b+ dendritic 

cells6. These findings are consistent with the clinical observation that as many as 80% of 

patients diagnosed with PSC have been diagnosed with UC, and that the risk of PSC is 

approximately 600-fold higher in patients with UC38,39. Cluster 2 genes included genes 

encoding a number of cytokines and cytokine-response factors, such as IL19, IL20, STAT5A 
and IL2RA, the products of which regulate effector T cell activation, differentiation and 

proliferation. All of these were more broadly expressed across mature natural killer (NK) 

cells, NK T cells and T cells, as well as neutrophils. This cluster of genes was enriched for 

association with MS (P < 9.8 × 10−4), with CEL (marginally) (P < 0.062) and with both 

diseases (P < 3.41 × 10−4). Genes encoding nucleic acid–binding proteins, such as ILF3, 
CENPO, MED1 and NCOA3, were enriched in cluster 3. Genes in this cluster were jointly 

associated with SLE and PSOR (P < 0.03), which is consistent with experimental and 

clinical data demonstrating that early defects in B cell40,41 and T cell42–44 clonal selection, 

respectively, may have important roles in the etiology of these diseases.

Quantification of genetic risk factors shared across pAIDs

We developed a novel method to specifically examine genome-wide pairwise-association 

signal sharing (referred to as a GPS test) across the pAIDs (Online Methods). Only data 

from the genotyped pAID cohort were used for this analysis. After Bonferroni adjustment 

for 45 pairwise combinations, the GPS test identified evidence of sharing between a number 

of pAID pairs at marginal levels of significance, as reported previously, including T1D-CEL 

(Pgps < 3.44 × 10−5), T1D-THY (Pgps < 2.03 × 10−3) UC-CD (Pgps < 2.36 × 10−3) and AS-

PS (Pgps < 8.15 × 10−3). We also identified a strong GPS score for JIA-CVID (Pgps < 6.88 × 

10−5). The correlations between JIA-CVID (Pgps < 7.30 × 10−5) and UC-CD (Pgps < 7.32 × 

10−4) were more significant after the exclusion of markers from within the MHC region 

(Supplementary Fig. 4b).

Finally, we examined evidence of sharing across the full range of autoimmune diseases 

using ImmunoBase27. We identified significant associations between UC-CD (P < 2.15 × 

10−4) and JIA-CVID (P < 1.44 × 10−6), along with a number of novel pairwise relationships 

that included autoimmune diseases other than the ten in this study, such as that between 

Sjogren’s disease (SJO)–systemic sclerosis (SS) (P < 1.30 × 10−28) and PBC-SJO (P < 3.86 
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× 10−12). We plotted those relationships that were significant after Bonferroni adjustment for 

153 pairwise tests using an undirected weighted network (Fig. 5 and Supplementary Table 

4). Collectively, these results support genetic sharing between the various autoimmune 

diseases and allow for further refinement of the shared signals, potentially enabling the 

application of targeted therapeutic interventions at multiple levels, such as along the CD40L-

CD40, JAK-STAT and TH1/TH2-TH17-interleukin signaling pathways.

DISCUSSION

A major goal of this study was to identify shared genetic etiologies across pAIDs and 

illustrate how they jointly and disparately affect pAID susceptibility. Knowledge of shared 

genetic etiologies may help pinpoint common therapeutic mechanisms, especially since 

certain pAIDs (for example, THY, CEL and T1D) exhibit high rates of comorbidity and 

concordance in twins, and others (for example, CD and UC) cluster in families9,19,45,46.

Of the 27 GWS pAID-association loci identified, 81% were shared by at least two pAIDs 

(Table 1 and Supplementary Table 1). Moreover, 5 of the 27 loci were novel signals not 

previously reported at GWS levels in association with autoimmune diseases, including 

chr1p31.1 (rs2066363), mapping near ADGRL2, a gene that encodes a member of the 

latrophilin subfamily of G protein–coupled receptors that regulates exocytosis. Although this 

signal was associated with JIA and CVID, a microsatellite study of PBC in a Japanese 

cohort localized an association signal to a 100-Kb region enclosing ADGRL2 (ref. 47). 

Nominally significant replication support at this locus was identified in the adult UC cohort 

from the International IBD Genetics Consortium. Both JIA and CVID are among the six 

pAIDs (THY, AS, CEL, SLE, CVID and JIA) associated with the chr4q35.1 locus 

(rs7660520), which resides just downstream of TENM3. The observed association with a 

broad range of pAIDs may be related to eQTL signals in TENM3 SNPs that correlate with 

serum eosinophil counts48 and immunoglobulin G (IgG) glycosylation rates; the latter was 

referenced in a study showing a pleiotropic role for IgG glycosylation–associated SNPs in 

autoimmune-disease risk susceptibility49. The third novel association was identified near 

chr10p11.21 (rs7100025), mapping to TF gene ANKRD30A, which encodes an antigen 

recognized by CD8+ T cell clones50. The fourth signal was associated with the inflammatory 

diseases PSOR and CD near chr16q12.1 (rs77150043), an intronic SNP in ADCY7. ADCY7 
encodes a member of the adenylate cyclase enzyme family; is strongly expressed in 

peripheral leukocytes, spleen, thymus and lung tissues51; and it is supported by data from 

studies in mice52. The fifth novel signal, rs34030418, mapping near CD40LG and associated 

with CEL, UC and CD, is the ligand of the prominent TNF superfamily receptor CD40 (refs. 

53,54). The CD40 ligand is a particularly compelling candidate, as the locus encoding the 

CD40 receptor is an established GWAS locus in RA and MS, has been functionally studied 

in cell culture and animal models, and was the focus of a recent large-scale RA drug-

screening effort55.

A set of GWS candidate SNPs were enriched for miRNA and TF-binding sites. We 

performed a gene-set enrichment analysis56 using GBAT and identified 39 significant (PBH 

< 0.05 (BH, Benjamini-Hochberg)) miRNAs, including as top candidates two well-known 

miRNA families, miR-22 and miR-135a (Supplementary Table 5a). miR-135a has been 

Li et al. Page 6

Nat Med. Author manuscript; available in PMC 2016 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



shown to target IRS2, a regulator of insulin signaling and glucose uptake, in model 

systems57. Our candidate genes were enriched for targets of dozens of TFs, with the most 

prominent being SP1 (PBH < 2.30 × 10−12), NFAT (PBH < 8.54 × 10−9) and NFKB (PBH < 

1.03 × 10−8) (Supplementary Table 5b).

Using GBAT with DAVID58, GSEA36, IPA59 and Pathway Commons60, among others, we 

identified strong enrichment for proteins that act in cytokine signaling; antigen processing 

and presentation; T cell activation; JAK-STAT activation; and TH1-, TH2- and TH17-

associated cytokine signaling (Supplementary Tables 6 and 7). Of these pathways, JAK2 

signaling was particularly compelling (PBH < 6.93 × 10−5), consistent with the enrichment 

of known protein- protein interactions (PSTRING < 1 × 10−20) (Supplementary Fig. 7). We 

also uncovered evidence supporting shared genetic susceptibility for disease pairs that have 

not yet been well established (for example, JIA-CVID). The association between JIA and 

CVID is noteworthy, given that CVID actually represents a group of complex 

immunodeficiencies rather than a classic autoimmune disease. When we examined the 

overlap between CVID and each of the other pAIDs using both GPS (Padj < 3.10 × 10−3) and 

locus-specific pairwise sharing (LPS) (Padj < 1.47 × 10−8) network analysis tests, we 

consistently observed overrepresentation of interaction between CVID and JIA (Fig. 5 and 

Supplementary Fig. 4b). Our results show that more than 70% (19) of the 27 GWS loci we 

identified were shared by at least three autoimmune diseases (Table 1), including both 

previously reported (for example, IL2RA (six diseases) and IL12B (four diseases)) and 

novel (for example, TENM3 (six diseases) and CD40LG (three diseases)) signals. Moreover, 

using tissue-specific gene set enrichment analysis, we not only highlighted the expected 

enrichment of genes associated with CEL and SLE in γδ T cells, CD4+ T cells and NK T 

cells but also identified interesting joint enrichment of genes associated with PSC and UC in 

a set of CD11b+ dendritic cells (Fig. 4c).

Many of the shared risk variants in pAIDs affect genes encoding proteins that are established 

therapeutic targets (for example, CD40L and CD40 (refs. 54,55)), and a number of the genes 

identified here have diverse biological effects and are currently being explored for clinical 

uses. Consequently, drug-repurposing approaches may present feasible options in pAIDs, 

where these gene networks and pathways could be targeted in an expedited manner.

Methods

Methods and any associated references are available in the online version of the paper.

ONLINE METHODS

Study population

Affected subjects and controls were identified either directly as described in prior 

studies61–70 or from de-identified samples and associated electronic medical records (EMRs) 

in the genomics biorepository at The Children’s Hospital of Philadelphia (CHOP). The 

predominant majority (>80%) of the included cases for IBD, T1D and CVID have been 

described in previous publications.
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Details of each study population are outlined below. EMR searches were conducted with 

previously described algorithms based on phenotype mapping established using phenome-

wide association study (PheWAS) ICD-9 code mapping tables61–63,70 in consultation with 

qualified physician specialists for each disease cohort. All DNA samples were assessed for 

quality control (QC) and genotyped on the Illumina HumanHap550 or HumanHap610 

platform at the Center for Applied Genomics (CAG) at CHOP. Note that the patient counts 

below refer to the total recruited sample size from which we excluded non-qualified samples 

or genotypes that did not pass QC criteria required for inclusion in the genetic analysis (for 

example, because of relatedness or poor genotyping rate).

The IBD cohort comprised 2,796 individuals between the ages of 2 and 17, of European 

ancestry, and with biopsy-proven disease, including 1,931 with CD and 865 with UC and 

excluding all patients with unclassified IBD. Affected individuals were recruited from 

multiple centers from four geographically discrete countries and were diagnosed before their 

19th birthday according to standard IBD diagnostic criteria, as previously reported63,65.

The T1D cohort consisted of 1,120 subjects from nuclear family trios (one affected child and 

two parents), including 267 independent Canadian T1D patients collected in pediatric 

diabetes clinics in Montreal, Toronto, Ottawa and Winnipeg and 203 T1D patients recruited 

at CHOP since September 2006. All patients were Caucasian by self-report and between 3 

and 17 years of age, with a median age at onset of 7.9 years. All patients had been treated 

with insulin since diagnosis. Disease diagnosis was based on these clinical criteria, rather 

than on any laboratory tests.

The JIA cohort was recruited in the United States, Australia and Norway and comprised a 

total of 1,123 patients with onset of arthritis at less than 16 years of age. JIA diagnosis and 

JIA subtype were determined according to the International League of Associations for 

Rheumatology (ILAR) revised criteria71 and confirmed using the JIA Calculator72 (http://

www.jra-research.org/JIAcalc/), an algorithm-based tool adapted from the ILAR criteria. 

Prior to standard QC procedures and exclusion of non-European ancestry, the JIA cohort 

comprised 464 subjects of self-reported European ancestry from Texas Scottish Rite 

Hospital for Children (Dallas, Texas, USA) and the Children’s Mercy Hospitals and Clinics 

(Kansas City, Missouri, USA); 196 subjects from CHOP; 221 subjects from the Murdoch 

Children’s Research Institute (Royal Children’s Hospital, Melbourne, Australia); and 504 

subjects from Oslo University Hospital (Oslo, Norway).

The CVID study population consisted of 223 patients from Mount Sinai School of Medicine 

(MSSM; New York, New York, USA), 76 patients from University of Oxford, (London, 

England), 47 patients from CHOP, and 27 patients from University of South Florida (USF; 

Tampa, Florida, USA). The diagnosis in each case was validated against the ESID-PAGID 

diagnostic criteria, as previously described73. Although the diagnosis of CVID is most 

commonly made in young adults (ages 20–40), all of the CHOP and USF subjects had 

pediatric-age-of-onset disease, whereas the majority of the subjects from MSSM and Oxford 

had onset in young adulthood. We note that as the number of individuals with adult-onset 

CVID is so small (less than 5% of all cases presented) and all ten diseases studied here can 

present with pediatric age of onset, we elected to refer to the cohort material as pAID.
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The balance of the pediatric subjects’ (THY, AS, PSOR, CEL and SLE ; a full list of 

phenotype abbreviations is provided in Supplementary Table 8) samples were derived from 

our biorepository at CHOP, which includes more than 50,000 pediatric patients recruited and 

enrolled by CAG at CHOP (Supplementary Table 9a includes details of genotyped subjects 

within the CAG pediatric biobank). These individuals were confirmed for diagnosis of THY, 

SPA, PSOR, CEL and SLE in the age range of 1–17 years at the time of diagnosis and were 

required to fulfill the clinical criteria for these respective disorders, as confirmed by a 

specialist. Only patients that upon EMR search were confirmed to have at least two or more 

in-person visits, at least one of which was with the specified ICD-9 diagnosis code(s), were 

pursued for clinical confirmation (Supplementary Table 9b presents ICD-9 inclusion and 

exclusion codes). We used ICD-9 codes previously identified and used for PheWASs or 

EMR-based GWASs and agreed upon by board-certified physicians62,63.

Age- and gender-matched control subjects were identified from the CHOP-CAG biobank 

and selected by exclusion of any patient with any ICD-9 codes for disorders of 

autoimmunity or immunodeficiency61 (http://icd9.chrisendres.com/). Research ethics boards 

of CHOP and other collaborating centers approved this study, and written informed consent 

was obtained from all subjects (or their legal guardians). Genomic DNA extraction and 

sample QC before and after genotyping were performed using standard methods as 

described previously64. All samples were genotyped at CAG on HumanHap550 and 610 

BeadChip arrays (Illumina, CA). To minimize confounding due to population stratification, 

we included only individuals of European ancestry (as determined by both self-reported 

ancestry and principal-component analysis (PCA)) for the present study. Details of the PCA 

are provided below.

Genotyping, imputation, association testing and QC

Disease-specific QC—We merged the genotyping results from each disease-specific 

cohort with data from the shared controls before extracting the genotyping results from 

SNPs common to both Infinium HumanHap550 and 610 BeadChip array platforms and 

performing genotyping QC. SNPs with a low genotyping rate (<95%) or low MAF (<0.01) 

or those significantly departing from the expected Hardy-Weinberg equilibrium (HWE; P < 

1 × 10−6) were excluded. Samples with low overall genotyping call rates (<95%) or 

determined to be of outliers of European ancestry by PCA (>6.0 s.d. as identified by 

EIGENSTRAT74) were removed. In addition, one of each pair of related individuals as 

determined by identity-by-state analysis (PI_HAT > 0.1875) was excluded, with cases 

preferentially retained where possible.

Merged-cohort QC—To prepare for whole-genome imputation across the entire study 

cohort, we combined case samples across the 10 pAIDs with the shared control samples. We 

repeated the genotyping and sample QC with the same criteria as described above, leaving a 

final set of ~486,000 common SNPs passing individual-cohort and merged-cohort QC. We 

again performed identity-by-state analysis and removed related samples (in order to remove 

related subjects that may have been recruited for different disease studies). We also repeated 

the PCA and removed population outliers. The final cohort, after the application of all QC 
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metrics mentioned above, included a total of 6,035 patients representing ten pAIDs and 

10,718 population-matched controls.

Note that because of the merged QC, compared with the sum of all ten disease-specific 

GWASs, the final case and control counts in the merged cohort were smaller than the “sum 

of all cases and controls” (Supplementary Table 1a). In addition, to avoid the potential for 

confounding due to the presence of duplicated samples, we assigned individuals fitting the 

diagnostic criteria for two or more pAIDs to whichever disease cohort had the smaller (or 

smallest) sample size. No subject was included twice. A total of 160 subjects in the study 

cohort fulfilled criteria for two or more diseases but were counted only once in our reported 

total of 6,035 unique subjects.

Whole-genome phasing and imputation—We used SHAPEIT75 for whole-

chromosome prephasing and IMPUTE2 (ref. 76) for imputation to the 1KGP-RP (https://

mathgen.stats.ox.ac.uk/impute/impute_v2.html, June 2014 haplotype release). For both, we 

used parameters suggested by the developers of the software and described elsewhere75–77. 

Imputation was done for each 5-Mb regional chunk across the genome, and data were 

subsequently merged for association testing. Prior to imputation, all SNPs were filtered 

using the criteria described above.

To verify the imputation accuracy, we validated randomly selected SNPs that reached a 

nominally significant P value after imputation. Because commercially designed genotyping 

probes were not readily available, we performed Sanger sequencing by designing primers to 

amplify and sequence the 200-bp region around the imputed SNP markers for two separate 

96-well plates. We manually visualized and examined sequences and chromatograms using 

SeqTrace78. Results from this are presented in Supplementary Table 1e, showing >99% 

mean imputation accuracy.

In addition, a subset of the IBD and CVID subjects were subsequently genotyped on the 

Immunochip (Illumina) platform. We compared the genotype concordance of all pAID 

GWAS imputed SNPs that were directly genotyped on the Immunochip after performing 

sample and marker QC as described above. Results are shown in Supplementary Table 1f.

Disease-specific association testing—We performed whole-genome association 

testing using post-imputation genotype probabilities with the software SNPTEST (v2.5)24. 

We used logistic regression to estimate odds ratios and betas, 95% confidence intervals and 

P values for trend, using additive coding for genotypes (0, 1 or 2 minor alleles). For 

autosomal regions, we used a score test, whereas for regions on ChrX we used the ChrX-

specific SNPTEST method Newml. QC was performed directly after association testing, 

excluding any SNPs with an INFO score of <0.80, HWE P < 1 × 10−6, and MAF < 0.01 

(overall).

In all analyses, we adjusted for both gender and ancestry by conditioning on gender and the 

first ten principal components derived from EIGENSTRAT PCA79. The λGC values for all 

cohorts were within acceptable limits; the highest was observed for the cohort with the 

largest case sample size, namely, CD (λGC < 1.07), consistent with what was previously 
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reported for this data set65. In fact, we have previously reported on all the non-CHOP cases 

included in the present analysis in individual studies using CHOP controls and shown that 

these individual case-control analyses were well controlled for genomic inflation61–70. A 

QQ plot is provided for each independent cohort in Supplementary Figure 2a.

Meta-analysis to identify shared pAID association loci—To identify association 

loci shared across pAIDs, we meta-analyzed the summary-level test statistics from each of 

the study cohorts after extracting those markers that passed post-association testing QC for 

all ten individual disease-specific analyses. To adjust for confounding due to the use of a 

shared or pooled control population, we applied a previously published method to perform 

an inverse weighted χ2 meta-analysis80.

We LD-clumped the results of the meta-analysis (PLINK) and identified 27 LD-independent 

associations (r2 < 0.05 within 500 kB up- or downstream of the lead or most strongly 

associated SNP) reaching a conventional genome-wide significance threshold of PMETA < 5 

× 10−8. We observed that the calculated meta-analysis λGC was less than 1.09. As recently 

discussed by de Bakker and colleagues and shown in a number of large-scale GWAS 

publications, λGC is related to sample size81. As discussed by Yang et al., λGC depends on 

the relative contribution of variance due to population structure and true associations versus 

sampling variance: with no population structure or systematic error, inflation would still 

depend on heritability, genetic architecture and study sample size82. On the basis of de 

Bakker et al.’s recommendations, we also calculated a sample-size-adjusted λ1000 by 

interpolating the λGC that would have been expected if this study had included only 1,000 

cases and 1,000 controls. We performed this only for the meta-analysis results, as the case 

and control counts for the meta-analysis were both significantly greater than 1,000 

(Supplementary Table 1a).

Model search to identify pAIDs associated with the lead signals—The meta-

analysis identified SNPs significantly associated with at least one pAID. To determine which 

pAIDs each SNP was most strongly associated with, we performed a model or ‘disease-

combination’ search. For the lead SNP in each pAID-association locus, we searched for the 

pAID disease combination that, when the corresponding cases were merged in a mega-

analysis, yielded the largest association test statistic.

To identify the disease phenotypes most likely contributing to each identified association 

signal, we applied the “h.types” method as implemented in the R statistical software package 

ASSET83 to perform an exhaustive disease-subtype model search. Note that ASSET 

provides both a method for genotype-level association testing (h.types used in this study) 

and a summary-level modified fixed-effect meta-analysis approach (“h.traits”) that allows 

for heterogeneity of SNP effects across different phenotypes. Both methods exhaustively 

enumerate each combination of phenotypes that are jointly considered, and therefore test a 

total of
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where r is the total number of disease subtypes assigned to cases (for example, ranging from 

one to ten pAIDs) and n is the total number of disease subtypes (i.e., ten pAIDs). Note that 

this reduces to 2n − 1 (or 1,023 unique combinations here), as in this case we considered all 

possibilities of r across n of ten diseases. The ASSET algorithm iteratively tests each pAID 

case combination using logistic regression to determine whether there is an association 

between genotype counts and case status. For each SNP tested, the ‘optimal’ subtype model 

is the combination of pAIDs that, when tested against the shared controls in the logistic 

regression analysis produced the best test statistic after the DLM method had been used to 

correct for multiple testing across all subtype combinations.

Identification of lead associated variants showing opposite direction of effect
—For each of the top 46 associating loci (PMETA< 1 × 10−6), we identified those loci for 

which the lead SNP had an effect direction (on the basis of logistic regression betas) 

opposite that reported for the disease combination identified by the subtype model search 

and whose corresponding association P value reached at least nominal significance (P < 

0.05). We identified nine instances.

Candidate gene prioritization—To annotate the lead SNPs to candidate genes, we 

prioritized the mapping to candidate genes systematically in the following manner:

1. If the SNP or locus was previously reported in autoimmune diseases at genome-

wide significance, we provided the candidate gene symbol, where available, as 

identified in the GWAS Catalog84 or ImmunoBase83.

2. If an SNP was annotated as coding or fell within the coding DNA sequence (i.e., 

intronic or in the UTRs), we reported that gene as identified by the variant effect 

predictor (VEP)85.

3. If the SNP was upstream, downstream, or intergenic, we prioritized the gene by 

using the best candidate gene identified with the network tool DAPPLE86.

4. If none of the above was feasible, we manually curated the most ‘likely’ gene on 

the basis of the observed LD block and evidence of prior association signals with 

autoimmune diseases or other immune-related phenotypes as presented in the 

dbSNP or GWAS catalog.

Functional or biological annotations and enrichment analysis using publicly 
accessible resources—We annotated the lead pAID-associated SNPs using publicly 

available functional and biological databases and resources. We considered the top imputed 

lead SNP for each locus and, in addition, any of its near-perfect proxies (defined as r2 > 0.8 

within 500 kB up- or downstream) on the basis of the 1KGP-RP.

We included annotation, expression, interaction and network data from the following 

resources:

1. Genomic mapping and annotation: SNAP87, SNP-Nexus88, Ensemble89 and 

UCSC90.
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2. Regulatory annotations: EnCODE (TF-binding sites and DNase-hypersensitivity 

sites)91, GTex92 (eQTLs), and a published lymphoblastoid cell line eQTL data 

set93.

3. Functional annotations: SIFT94, Polyphen95, miRNA target site 

polymorphisms96,97.

4. Conservational or evolutionary predictions: GERP98, PHAST++99, CpG islands100.

5. Literature search: GAD101, NHGRI GWAS catalog102, dbGAP103, or published 

Immunochip studies104 (http://www.immunobase.org) for literature support.

6. Gene expression and enrichment analysis: ImmGen102 (murine) and whole-

transcriptome analysis across 126 tissues104 (human).

7. Protein-protein interaction (PPI) database: DAPPLE86, STRING105.

8. Pathway-based and gene set enrichment analysis: Gene Ontogeny106, 

Webgestalt107, Wikipathways108, IPA109, DAVID110, GSEA111, and Pathways 

Commons112.

9. Gene network analysis and visualization: DAPPLE86 and VEP85 to prioritize 

candidate causal genes and Grail113 for text-mining of PubMed database for 

coassociations.

Functional and biological annotations (categories 1–5) for the 27 lead SNPs are illustrated in 

Figure 3a; annotations are also provided for the 46 GWM loci in Supplementary Figure 5. 

The following annotation types were used:

1. Regulatory: EnCODE consensus TF-binding sites (T), DNase I hypersensitivity 

sites (S), or published eQTL signals (E)

2. Functional: known mutations in PolyPhen or SIFT (A), experimentally validated 

(miRBASE 18.0) and predicted (mirSNP) miRNA target sites (R), or SNPs that tag 

regions containing common copy-number variation regions reported by the 

database of genomic variants (DGV) (V)

3. Conserved: conserved nucleotide sequences based on GERP++/phastCon (C) or 

known CpG islands that correlate with epigenetic methylation patterns (M)

4. Literature-supported: published association with immune or inflammatory diseases 

or immune-related endophenotypes from candidate studies or GWASs catalogued 

in the Genetic Association Database, NHGRI GWAS catalog, dbGAP, or 

Immunochip studies (L)

In addition to determining whether the 27 GWS pAID-associated SNPs were enriched for a 

given annotation type, we performed Monte Carlo simulations to resample 10,000 times the 

SNPs (MAF > 0.01 in Europeans) from all SNPs in 1KGP-RP. As for the 27 lead SNPs, for 

each set of 100 randomly sampled SNPs, we expanded the list by first identifying all nearby 

SNPs in strong LD (i.e., LD proxies with r2 > 0.8 within 500 kB up- or downstream) within 

the 1KGP-RP data set filtered for only SNPs with MAF > 0.01 in the European population. 

We then annotated each original and any proxy SNPs as above for each major annotation 
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category. We collapsed the information for all proxies identified for a given lead such that 

for any given category, if the lead SNP or any of its proxies were annotated, the lead SNP 

was marked as annotated. We then calculated the frequency of annotation for the 100 SNPs 

in each set. After sampling and annotating 100-SNP sets 10,000 times, we use the 

permutation- derived distribution of annotation percentages for each annotation type to 

calculate an enrichment P value such that

where N is the number of permutations, f is the percentage of SNPs in the pAID set that are 

annotated and F is the distribution of the percentage of SNPs annotated across 10,000 sets of 

100 SNPs resampled from the 1KGP-RP using only markers with MAF > 0.01 in 

Europeans.

Hierarchical clustering based on effect size and direction of association

We performed agglomerative hierarchical clustering across the top 27 independent loci using 

the directional Z-score obtained from logistic regression analysis in each of the ten disease-

specific GWASs, defined as

where beta is the effect size. The standardized and normalized Z-scores were used as inputs 

to the agglomerative hierarchical clustering. We used Ward’s minimal-variance method to 

identify relatively consistent gene and locus cluster sizes.

Gene-based association testing—Given our interest in genetic overlap across pAIDs, 

we sought to identify genes associated with pAIDs in a disease-agnostic manner that was 

insensitive to locus and phenotypic heterogeneity. We used VEGAS114, a set-based method, 

to perform GBAT.

As input, we used the nominal PMETA values from the pooled, inverse χ2 meta-analysis for 

the ten pAIDs across the genome as the input summary statistics for VEGAS, without 

considering which specific diseases were identified in the model search analysis. We 

assigned SNPs to gene regions and performed 107 simulations to estimate the gene-based P 
value as described in VEGAS’s documentation. We used two thresholds: Psim < 2.8 × 10−6 

to identify significant candidate genes, on the basis of a Bonferroni adjustment for 

approximately 17,500 genes tested, and a false discovery rate (FDR) of <2%, which 

corresponds to a q value of <0.0205, which was used only for pathway and gene set 

enrichment analysis.

Tissue-specific gene set enrichment analysis—With few exceptions, most genes 

that are known to have a causative role in autoimmune disease have been shown to regulate 

molecular or subcellular processes in immune or immune-related tissues. If candidate pAID-
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associated genes are relevant to autoimmune-disease biology, then expression of these genes 

would be expected to be, on average, higher across immune or immune-related tissues (as 

compared with expression in non-immune-related tissues). Thus, we compared the 

expression of candidate pAID-associated genes identified by GBAT with that of non-

candidate genes in a variety of tissues.

We curated the expression of the transcriptome in a broad spectrum of human tissues using a 

publicly available data set consisting of summary-level, normalized gene expression levels 

for more than 12,000 unique genes across 126 tissues and/or cell types, including a large 

number of immune tissues and cells104. We downloaded the processed data set “mean 

expression data matrix.”

Across the 126 unique tissues, we tested whether the median or cumulative distribution of 

expression of pAID-associated gene transcripts as identified by GBAT was higher than that 

of the remaining transcripts in the data set using a one-sided Wilcoxon rank test or a one-

sided Kolmogorov-Smirnov (KS) test, respectively. We calculated a tissue-specific gene 

expression ES value, which is the −log10 (P value) obtained from comparing the relative 

enrichment in transcript expression of pAID-associated genes versus the transcripts of the 

remaining genes in the data set. The tests were done on a per-tissue basis to derive a set of 

KS and a set of Wilcoxon ES values. We performed this per tissue analysis (1) for the total 

set of pAID-associated genes from GBAT and (2) when genes across the extended MHC 

(chr6: 25–34 Mb) were excluded.

We performed the secondary immune–versus–non-immune comparative analysis by plotting 

the ES values obtained from either Wilcoxon or KS tests in descending rank order of the 

respective test statistics, as shown in Figure 4a and Supplementary Figure 6a for all 126 

tissue types. In those figures each point represents a single tissue and is colored according to 

its classification as either immune (red) or non-immune (blue), as described previously86. To 

formally test whether the overall ES values were higher among immune tissues than among 

non-immune tissues, we performed both the Wilcoxon rank sum test and the KS test on the 

vector of per-tissue ES values, comparing those derived from immune and non-immune 

tissues. We found that the enrichment observed across immune tissues was specific and not 

general to any GWAS-identified signals. We repeated this analysis in two sets of candidate 

genes, one for CD and another for schizophrenia, by identifying all associated genes for the 

two phenotypes from the NHGRI GWAS Catalog.

Immune cell gene set enrichment analysis—Cells of the immune system are 

extremely diverse in function and gene expression. To more precisely assess the expression 

of pAID-associated genes, we examined the mRNA expression of pAID candidate genes 

across specific immune cell subtypes, as well as during different developmental time points.

ImmGen provides a publicly available, high-quality murine gene expression data set. The 

ImmGen data set consists of 226 murine immune cell types across different lineages at 

multiple developmental stages, sorted by FACS and assayed at least in triplicate. Standard 

QC and quantile-normalization methods were applied to the data set as described by 

ImmGen102. The total set of transcripts mapped to 14,624 homologs in the human 
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transcriptome on the basis of genes annotated in the hg18/build36 of the human reference 

genome, which were used to query the gene expression data.

Some of the cell types were derived from genetically altered animals, and the results from 

analysis of those cell types would have been difficult to interpret, so we removed those cell 

lines from the analysis. The complete list of cell types used in the analysis and the category 

to which we assigned each cell type for the categorical analysis are presented in 

Supplementary Table 3c. A total of 176 unique cell lines remained for subsequent analyses 

using this data set.

As with the human data set, we calculated the ES values by comparing the expression of the 

pAID-associated candidate gene transcripts to that of the remaining transcripts assayed in 

the data set for each immune cell type examined. We plotted the distribution of relative gene 

expression ES values as a density plot across the range of ES values from all of the 

examined cell types available. We compared the results obtained using the full set of 

candidate pAID genes identified by GBAT or obtained when we excluded the genes within 

the extended MHC. To ensure that this was not simply a result of selection bias (as GWASs 

may be biased toward regions or genes across the genome that are better sampled or more 

densely genotyped), we compared the results to those obtained with the curated gene lists 

from the GWAS catalog (as above) for CD, schizophrenia, body mass index and LDL 

cholesterol.

To determine whether pAID-associated candidate genes are expressed at higher levels 

(relative to the rest of the genes in the transcriptome) in some immune cell types than in 

others, we defined immune cell types according to surface marker expression and tissue 

isolation details provided by ImmGen. Some categories were further divided into 

subcategories (for example, B and T cells) on the basis of developmental stage or lineage 

into a total of 16 non-overlapping cell-type categories. To compare the results across the 

cell-type categories, we plotted the distribution of ES value ranks for each cell type, binning 

the results according to the category each cell type belonged to (again, we performed the 

analysis either with or without the extended MHC region).

Expression profiling of pleiotropic autoimmune disease–associated genes across specific 
immune cell types

We profiled the expression of genes that had been identified in at least three autoimmune 

diseases in our subtype model search, previously published Immunochip fine-mapping 

studies, or a combination thereof (for example, identified as associated with JIA and UC in 

our analysis but previously identified as a candidate gene from an Immunochip analysis of 

alopecia areata). We identified 217 candidate pleiotropic genes, of which 191 could be 

mapped to unique gene transcripts within the ImmGen data sets.

We performed agglomerative hierarchical clustering with the matrix of gene expression 

levels from the 191 candidate gene transcripts using Ward’s minimal-variance method across 

all 176 immune cell types. The genes and cell types shown in dendrograms are based on the 

results of unsupervised hierarchical clustering analysis and represent four major groups of 

cells and six major groups of genes.

Li et al. Page 16

Nat Med. Author manuscript; available in PMC 2016 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We examined whether genes that were clustered on the basis of similar immune cell–

expression profiles were likely to be associated with the same disease(s). Specifically, given 

a set of genes associated with one or more autoimmune diseases grouped in cluster i (Ci), we 

asked whether there is an increased likelihood (i.e., more so than expected by chance as 

compared with genes not found within this cluster) that these genes are also associated with 

disease j (Dj), such that

Ci (yes) Ci (no)

Dj (yes) a b

Dj (no) c d

where the expected probability of the values observed under the null is given by the 

hypergeometric distribution. As some of the cell counts were small and we were interested 

only in identifying instances where a >> b, c or d, we used a one-sided Fisher’s exact test. 

We first tested each of the 18 autoimmune diseases across all identified clusters, declaring 

nominal and Bonferonni-adjusted significance at P < 0.05 and P < 5.6 × 10−4, respectively. 

For any clusters where at least two diseases reached nominal or marginal significance, we 

also tested whether there was an overrepresentation of genes associated with both diseases at 

P < 0.05.

PPI and network analysis—DAPPLE86: PPIs among the set of either 27 GWS or 46 

GWM candidate regions were identified; the input seeds were defined as the 100-kB 

sequences up- and downstream of the most significantly associated SNP (based on hg19) in 

each candidate region. Other input parameters included 50-kB regulatory region length, a 

common interactor binding degree cutoff of 2, and the following specified known genes: 

IL23R, PTPN22, INS, NOD2, DAG1, SMAD3, ATG16L1, ZNF365, PTGER4, NKX2-3, 
ANKRD55 and IL12B. We performed 10,000 permutations to accurately calculate 

enrichment network statistics. Seed scores Pdapple were used to color the protein nodes in the 

network plot.

STRING105: We used the Homo sapiens PPI database to query one of three lists: (1) the 

GWS loci, (2) GWS and GWM loci or (3) the list of genes identified by GBAT shown to be 

enriched for key proteins in the JAK-STAT pathway. We assessed and reported the evidence 

of PPI enrichment on the basis of these queries as compared to the results expected for the 

rest of the genes in the human genome. We generated network plots for the directly 

connected protein candidates (Supplementary Fig. 7a–c represents the “evidence” plot 

option).

Pathway and gene set enrichment analysis—Webgestalt107: For pathway and gene 

set analysis, we used the web-based tool Webgestalt to examine evidence of shared TF 

binding, miRNA target–binding sites, and enrichment in specific Gene Ontology and 

Pathway Commons categories. The inputs for this analysis included all lead genes (FDR < 

2%) from the GBAT (similar to that for the other pathway annotation databases below for 

consistency).
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DAVID110: We used the bioinformatics web tool DAVID (v6.7, available at http://

david.abcc.ncifcrf.gov) for functional-annotation analysis of the significant genes. 

Significant genes with FDR < 2% in VEGAS, the gene-based association analysis, were 

used as input for DAVID. DAVID performed overrepresentation analysis of functional-

annotation terms on the basis of hypergeometric testing and adjusted for multiple testing. To 

compare the results of this analysis with results obtained via other methods, we used 

BioCarta, KEGG pathways and GO_BP_FAT as gene set definition files.

IPA109: We used IPA software (http://www.ingenuity.com/) for canonical pathway and 

network analysis. We inputted all the significant genes in the VEGAS output (FDR < 2%) 

for IPA analysis. In the IPA core analysis, we selected the Ingenuity Knowledge Base 

(Genes Only) as the reference set, including both direct and indirect relationships. We used 

the filter setting of relationships in human and experimentally observed only. Information 

regarding canonical pathways was obtained from IPA output.

GSEA115,116: We conducted gene set enrichment analysis with the software GSEA (http://

www.broadinstitute.org/gsea) using as input the pre-ranked gene list generated on the basis 

of the −log(P value) from VEGAS using all genes. We selected the following settings for our 

analysis: number of permutations, 5,000; enrichment statistic, weighted; maximum size of 

gene set, 500; minimum size of gene set, 15; and with normalization.

Interdisease genetic sharing analysis—To examine the degree of overlap in genetic 

risk susceptibility between any two autoimmune diseases, we developed and/or implemented 

the following statistical measures to quantify interdisease genetic sharing:

1. LPS test, optimized to evaluate whether two pAIDs share more loci in common 

than would be expected to occur by chance; the score ‘penalizes’ disease pairs if 

many of the loci are disease specific. The test is helpful if only data on whether 

diseases share specific candidate genes or association loci in common are known.

2. GPS test, optimized to assess the correlation between the set of association test 

statistics observed genome-wide across any two pAIDs. This test is valuable 

because it is independent of the gene sets chosen and thus does not require the use 

of any arbitrary method to define a significance ‘threshold’ of input data.

LPS analysis—To quantify the similarity between any two diseases D1 and D2 on the 

basis of the degree to which D1 and D2 share independent genetic risk associations (i.e., loci, 

SNPs or candidate genes), we considered the following model.

We began with a list of candidate genes, association loci or LD-independent SNPs nr 

identified as having reached a predefined GWAS significance threshold (e.g., GWS or 

GWM) across one or more SNPs from nr for a set of diseases with expected or hypothesized 

sharing (i.e., all autoimmune diseases in this study and those reported on by the Immunochip 

studies catalogued by ImmunoBase83).

For any two diseases D1 and D2, a given candidate gene or SNP xi could be uniquely 

classified in one of four ways: associated with D1 and D2 (n11), associated only with D1 
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(n12) or D2 (n21), or associated with neither D1 nor D2 (n22). For any given list of TOP 

associations (i.e., nr), the distribution across the four possible categories can be tabulated as 

follows:

Locus xi D2 (yes) D2 (no)

D1 (yes) n11 n12

D1 (no) n21 n22

where n11 + n12 + n21 + n22 = nr and D1 (yes) or (no) means the SNP xi is or is not 

associated with that marker, respectively.

The probability Px that an SNP xi from the list nr is associated with either D1 or D2 can be 

expressed as

for any two pAIDs D1 and D2.

Thus, the frequency at which xi should truly be associated with two distinct disease subtypes 

is given by nr(P1P2), and the observed number of overlapping associations is represented by 

n11. Therefore, under the null hypothesis H0, for a given pair of diseases D1 and D2, the 

variance of the difference between the numbers of expected and observed associations of all 

those tested (nT) shared by both D1 and D2 should follow a normal distribution.

We used the one-sided Z-test to examine whether the degree of overlap was significantly 

greater than expected, assuming a normal distribution under the null hypothesis that D1 and 

D2 do not share more associations than they would by chance. We used a Bonferroni 

adjustment to correct for 45 pairwise disease-combination tests.

GPS analysis—The GPS test determines whether two pAIDs are genetically related. For 

the ith SNP, let Xi = 1 if the SNP is truly associated with one disease, and let Xi = 0 

otherwise. Similarly, define Yi as the indicator of whether the SNP is associated with the 

other disease in the pair. We can therefore consider the diseases to be genetically related if 

there are more SNPs with (Xi,Yi) = (1,1) than would be expected to occur by chance. This 

amounts to testing the independence of Xi and Yi.
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However, we do not directly observe Xi and Yi and instead observe P values Ui and Vi, 

which come from the two GWAS studies for the two diseases. When Xi = 1, the P value Ui 

will tend to be small, and otherwise Ui will be uniformly distributed; the same is true of Yi 

and Vi. If Ui and Vi are independent, then Xi and Yi must be as well. We can therefore test 

for genetic relatedness by testing whether the P values are dependent.

Most existing methods may not take advantage of the availability of the full genome data set 

for testing genetic sharing using Ui and Vi. To address this limitation, we developed a novel, 

threshold-free method to detect genetic relatedness. Our test statistic is defined by

where n is the total number of SNPs, Fuv(u,v) is the empirical bivariate distribution function 

of (Ui, Vi), and Fu(u) and Fv(v) are the empirical univariate distribution functions of Ui and 

Vi, respectively. Intuitively, the numerator of D is motivated by the fact that if Ui and Vi are 

truly independent, their bivariate distribution is equal to the product of their univariate 

distributions. The denominator of D makes the test capable of detecting even very weak 

correlations. Under the null hypothesis of no genetic sharing, it can be shown that D is 

approximately distributed like the inverse square root of a standard exponential random 

variable. This gives us an analytic expression for calculating P values. Note that no 

significance threshold is required.

The asymptotic null distribution of D is derived under the assumption that the genetic 

markers examined across the genome are statistically independent. We therefore pruned the 

SNPs for each pair of diseases before applying our test. We conducted inverse χ2 meta-

analyses separately for each pair of diseases and pruned the resulting P values using a 

threshold of r2 < 0.5 within a 500-kB up- and downstream region. This left about 800,000 

SNPs for each disease pair analyzed. The use of more stringent r2 thresholds (for example, r2 

< 0.3 or 0.2) gave comparable results.

Undirected weighted cyclic network visualization of results from the locus-
specific sharing test—In graphic representations, pairwise relationships between 

autoimmune diseases (nodes) are represented by edges, whose weights are determined by 

the magnitude of the LPS test statistic (R statistical software package q-graph). Specifically, 

the width and density of the edges are the standardized transformations of the test statistic, 

and the colors denote whether the direction of the test statistic is positive (blue, meaning 

more sharing than expected) or negative (red, meaning less sharing than expected). Although 

graphs are constructed from all 45 pairwise interactions, for simplicity and improved 

visualization, we showed only those edges that represented a pairwise interaction that 

reached a Bonferroni-adjusted or nominal (Supplementary Fig. 4c) significance threshold (P 
< 0.05). The nodes are positioned on the basis of a force-directed layout based on the 

Fruchterman-Reingold algorithm.
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In silico replication of novel pAID-association loci using previously published 
autoimmune disease cohort data sets—Replication set I: The following data sets 

were used in the first replication set: CASP117, CIDR Celiac Disease118, NIDDK Crohn’s 

Disease119, Wellcome Trust Case Control Consortium (WT) Crohn’s Disease and Type 1 

Diabetes120, WT Ulcerative Colitis121 and WT Ankylosing Spondylitis122. These data sets 

were obtained via dbGaP or the Wellcome Trust Case Control Consortium. In order to 

maximize the power, we sought replication for each of the 12 significant SNPs in all of the 

seven available data sets. Full results are summarized in Supplementary Table 2e.

Each data set was subjected to strict QC filtering as follows: we removed individuals that 

were inferred to be related on the basis of genetic data, individuals with >10% missing data, 

individuals with a reported sex that did not match the observed heterozygosity rates on 

chromosome X, and individuals not of European ancestry. We further removed variants with 

>10% missingness, variants not in HWE, variants with missingness significantly correlated 

to phenotype, and variants with MAF < 0.005. Variants to be replicated that were not 

observed in the original data set were imputed using IMPUTE2 (ref. 123) and the 1KGP-RP 

haplotype data124. Markers across the X chromosome, which were previously considered by 

most of these studies, were reanalyzed using the XWAS toolset125,126.

Replication-association analysis was carried out by logistic regression implemented in 

PLINK127. The first ten principal components calculated using EIGENSOFT128 were added 

as covariates for all data sets except CASP, where no population stratification was observed.

Replication set II: The second replication set consisted of the following data sets: 

Rheumatoid Arthritis meta-analysis129, IBDG Ulcerative Colitis meta-analysis130, IBDG 

Crohn’s Disease meta-analysis131, Systemic Lupus Erythematosus GWAS132, and 

SLEGEN133. Individuals from these data sets were of European ancestry. Summary statistics 

from the original studies were publicly available and were used for the replication analysis. 

Details regarding QC procedures and association analysis can be obtained from the original 

studies129–133.

LD-based replication for replication sets I and II: We further assessed replication in SNPs 

that were in LD with the significant SNPs in the discovery set. For each associated SNP, a 

list of SNPs in LD (r2 > 0.5) within 500 kb of the original SNP was obtained from SNAP87 

using the 1KGP-RP.
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Figure 1. 
The ten pAID case cohorts and top pAID-association loci identified. (a) Percentage and 

relative contribution of cases for the ten pediatric autoimmune diseases studied. (b) Top 

pAID-association signals identified by inverse χ2 meta-analysis. The top 27 loci (where at 

least one lead SNP reached genome-wide significance: PMETA < 5 × 10−8) are annotated 

with the candidate gene symbol. (c) Novel and established pAID-association loci. Top left: 

rs706778 (chr10p15.1) is a known DNase I peak and an intronic SNP in IL2RA and was 

associated with THY, AS, PSOR, CEL, T1D and JIA. Top right: rs755374 (chr5q33.3) is an 
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intergenic SNP upstream of IL12B and was associated with AS, CEL, UC and CD. Bottom 

left: rs2807264 (chrXq26.3), mapping near CD40LG, was associated with CEL, UC and 

CD, and chr15q22.33 (rs72743477), also mapping to an intronic position in SMAD3, was 

associated with UC, CD and AS. Bottom right: SNPs are colored according to pairwise LD 

(r2) with respect to the most strongly associated lead SNP in the locus. Associated pAIDs 

are indicated at the upper left. pAID associations are color-coded according to the key in 

each plot. (d) Pleiotropic candidate genes have pleiotropic effect sizes and directions across 

pAIDs. Although a few pleiotropic SNPs had consistent effect directions across diseases 

(e.g., IL21), for many loci (e.g., PTPN22 and CLEC16A), the candidate SNP had variable 

effect directions across diseases. The radii of the wedges correspond to the absolute values 

of the Z-scores (beta/s.e.) for each pAID, and the color indicates whether the SNP is 

protective (green) or risk-associated (red) for each disease.
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Figure 2. 
Pleiotropic loci with heterogeneous effect directions across pAIDs. (a) Disease-specific Z-

scores (beta/s.e.) for each SNP identified as having different effect directions across the ten 

pAIDs and as detailed in the figure. Circles (color-coded by disease as in key) denote 

diseases where the indicated SNP had an opposite effect compared with that of the group of 

pAIDs identified as sharing the lead association on the basis of results of the model search 

(black triangles). (b) Clustering of pAIDs across the lead loci on the basis of disease-specific 

effect sizes. Agglomerative hierarchical clustering across ten pAIDs on the basis of 

normalized directional Z-scores (beta/s.e.) resulting from logistic regression analysis in each 

disease for the 27 lead loci based on those disease combinations identified by the model 

search analysis as producing the strongest association-test statistics.
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Figure 3. 
Integrated annotation of pAID-association loci using existing predictive and experimental 

data sets. (a) Biological, functional and literature annotations for the 27 loci reaching 

genome-wide significance in meta-analysis. Loci (identified by the lead SNPs and candidate 

genes) are organized by column; the colors in the table denote the associated pAIDs, 

functional annotations are presented at the top of the table, and the color bar at the bottom 

represents the meta-analysis Pmeta values (according to key at right). For each locus, the lead 

SNP and proxy SNPs (r2 > 0.8) were included in the annotation protocol (Online Methods). 
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(b) Distribution and enrichment of experimental and predicted annotations for the top 27 

GWS SNPs. The annotation frequencies were used to calculate the relative enrichment of 

pAID SNPs (blue bars) as compared with that of 10,000 random 100-SNP sets drawn from 

the genome in each annotation category. CpG, CpG islands; DNase, DNase-hypersensitivity 

I sites; gad, known genetic association; gerp_phast, conserved positions; mir, miRNAs; 

sift_pp, functional mutations in SIFT; tfbs, TF–binding sites.
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Figure 4. 
Tissue-specific gene set enrichment analysis (TGSEA) of pediatric and adult autoimmune 

data sets identifies autoimmune-associated gene expression patterns across immune cells and 

tissues. (a) Expression enrichment of autoimmune-associated genes across human tissues. 

Distribution of TGSEA enrichment score (ES) values across 126 tissues for pAID-associated 

genes (center) either with (circles, top curve) or without (triangles, bottom curve) the 

extended MHC. Results for the pAID gene set are compared with those obtained for known 

genes associated with CD (left) and schizophrenia (right). Tissue and cell types are classified 
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as immune (red) or non-immune (blue) and are ranked left to right on the basis of the 

magnitude of the ES test statistic. (b) Enrichment of pAID-associated gene expression 

across diverse murine immune cell types. Distribution of pAID-associated gene ES values 

across murine immune cell types either including (red) or excluding the genes within the 

MHC (gold); results are compared with those for genes associated with CD, schizophrenia 

(Schizo, turquoise), LDL cholesterol (LDL, magenta) or body mass index (BMI, blue) 

abstracted from the National Human Genome Research Institute (NHGRI) GWAS Catalog. 

(c) Hierarchical clustering based on the expression of pleiotropic candidate genes associated 

with three or more autoimmune diseases across the murine immune cells. Boxes outlined in 

black denote gene clusters enriched for specific disease associations discussed in the text. 

An enlarged version of c is presented in Supplementary Figure 8.
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Figure 5. 
Genetic variants shared across the ten pAIDs reveal autoimmune disease networks. (a) 

Quantification of pAID genetic sharing by GPS test including SNPs within the extended 

MHC. Correlation plot of results of the pairwise pAID GPS test; the color intensity and the 

size of each circle are proportional to the strength of the correlation as the negative base ten 

logarithms of the GPS test P values (color-coded numbers in squares). (b) Quantification of 

autoimmune disease genetic sharing by locus-specific pairwise sharing. Undirected weighted 

network graph depicting results from the LPS test. Edge size represents the magnitude of the 

LPS test statistic; labeled nodes for each of the 17 autoimmune diseases are positioned on 

the basis of a force-directed layout. Edges represent significant pairs after Bonferroni 

adjustment (Padj < 0.05). (c) Protein-protein interaction network analysis of the top pAID-

associated protein candidates in STRING; action view of protein interactions observed 

across the top 46 GWM (P < 1 × 10−6) signals, of which 44 could be mapped to 

corresponding proteins. Views were generated on the basis of results for known and 

predicted protein interactions produced by the STRING DB Homo sapiens database. The 

plots shown are results of the ‘action’ view, where the molecular actions (stimulatory, 

repressive or binding) are illustrated by arrows.
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