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Historically, inorganic nitrate was believed to be an inert by-product of nitric oxide (NO)
metabolism that was readily excreted by the body. Studies utilising doses of nitrate far in excess
of dietary and physiological sources reported potentially toxic and carcinogenic effects of the
anion. However, nitrate is a significant component of our diets, with the majority of the anion
coming from green leafy vegetables, which have been consistently shown to offer protection
against obesity, type 2 diabetes and metabolic diseases. The discovery of a metabolic pathway
in mammals, in which nitrate is reduced to NO, via nitrite, has warranted a re-examination
of the physiological role of this small molecule. Obesity, type 2 diabetes and the metabolic
syndrome are associated with a decrease in NO bioavailability. Recent research suggests that
the nitrate-nitrite-NO pathway may be harnessed as a therapeutic to supplement circulating NO
concentrations, with both anti-obesity and anti-diabetic effects, as well as improving vascular
function. In this review, we examine the key studies that have led to the re-evaluation of
the physiological function of inorganic nitrate, from toxic and carcinogenic metabolite, to a
potentially important and beneficial agent in the treatment of metabolic disease.
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1 Introduction

Until recently dietary inorganic nitrate was thought to be haz-
ardous to human health. In 2006, the International Agency
for Research on Cancer (IARC) concluded that it was proba-
ble ingested nitrate was carcinogenic in conditions that pro-
moted endogenous nitrosation [1]. The final report, not pub-
lished until 2010 [2], highlighted how ingested nitrate and
nitrite could trigger carcinogenesis through the formation of
deleterious species such as N-nitroso compounds in the pres-
ence of nitrosatable compounds. The conclusions of these
reports were based on epidemiological studies [3–7], and bio-
chemical theory building on the initial finding that secondary
nitrosamines are highly carcinogenic [8]. However, a recent
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review has been highly critical of these studies [9], highlight-
ing numerous investigations which do not find an association
between nitrate intake and gastric cancers [10–12], as well as
confounding issues in the methodology of previous studies
which utilised doses of nitrate far in excess of physiological
sources.

Nitrate is an important constituent of our diet. Sources
of dietary nitrate intake include processed meats, fruits and
vegetables. In addition, nitrates and nitrites are often added
as a preservative to meats, including sausages, hot dogs and
bacon, and were initially suggested to be contributing to the
risk to human health posed by preserved and processed meats
[13, 14] leading to tight controls on their use. However, of all
dietary sources of nitrate it is vegetables that contain the high-
est concentration, a food group well documented to reduce
the risk of obesity and cardiometabolic disease [15–18]. The
concentration of nitrate in numerous fruits and vegetables
has been well characterised by Hord et al. (Table 1) [19].
Green leafy vegetables, such as celery, spinach, lettuce and
rocket, contain the highest nitrate content.

Since the concentration of nitrate and nitrite in vegeta-
bles is so much higher than processed meats, it appears un-
likely that nitrates and nitrites are the active agents in the
risk to health associated with processed meats. In fact, the
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Table 1. The nitrate content of food types, showing the disparity between vegetables, fruits and cured meats, as well as the intra-variation
within vegetables

Amount of nitrate (mg/100 g fresh weight) Food type

Less than 20 Fruits including banana and orange
Cured meats including bacon, ham and hot dogs
Vegetables including onion, pepper, pea, asparagus, mushroom

20–50 Vegetables including broccoli, carrot, cauliflower and cucumber.
50–100 Vegetables including turnip and cabbage
100–250 Vegetables including leek and fennel
More than 250 Vegetables including spinach, lettuce, celery and rocket

Table adapted from Hord et al. [19].

World Health Organisation acceptable daily intake for nitrate
is 0–3.7 mg/kg. This figure is vastly exceeded (approximately
550%) by a diet relatively rich in fruit and vegetables high
in nitrate [19]. Even one portion of spinach can exceed the
acceptable daily intake for nitrate. Considering that green
leafy vegetables have been consistently shown to offer protec-
tion against obesity and cardiometabolic disease in numer-
ous epidemiological studies, the view of nitrate and nitrite
must be reassessed. With the identification of an endoge-
nous metabolic pathway catalysing the reduction of nitrate
via nitrite to nitric oxide (NO), the nitrate-nitrite-NO pathway
[20–22], we have seen a paradigm shift in our understand-
ing of the physiological function of nitrate, in particular with
regards to ischaemia-reperfusion injury, stroke, gastric ulcer-
ation and, most recently, obesity and aspects of the metabolic
syndrome [23, 24].

Here, we discuss the therapeutic potential of inorganic
nitrate, as a means of providing bioavailable NO, to treat
obesity, diabetes and the metabolic syndrome.

2 Nitrate-nitrite-NO pathway

NO is a highly bio-active molecule, signalling via soluble
guanylyl cyclase and cyclic guanosine mononucleotide phos-
phate (cGMP) to bring about a host of physiological functions
[25]. Initially, NO was identified as endothelial-derived growth
factor, highlighting its role as a potent vasodilator [26, 27].
Further study confirmed fundamental roles for NO/cGMP
signalling in the nervous system and the immune system
[28–30]. Canonically, NO is synthesised by a family of en-
zymes termed nitric oxide synthases (NOSs), which consist
of three isoforms: neuronal nitric oxide synthase (NOS1), in-
ducible nitric oxide synthase (iNOS, NOS2) and endothelial
nitric oxide synthase (eNOS, NOS3) [31]. These enzymes pro-
duce NO through the metabolism of L-arginine to L-citrulline
[32]. However, a second pathway was subsequently described
in vivo identifying the serial reduction of nitrate to nitrite
and then to NO [20–22]. This mechanism has been termed
the nitrate-nitrite-NO pathway and was initially thought to be
purely non-enzymatic. Nitrate from the diet enters the en-
terosalivary pathway [24] and is then absorbed in the upper

gastrointestinal tract entering the blood and raising plasma
nitrate levels. A large proportion (approximately 65%) of this
nitrate is excreted in the urine [33], but approximately 25%
is transported into the salivary glands and concentrated into
the saliva (Fig. 1) [22, 34]. Commensal bacteria present in
the mouth then use the nitrate as an alternative electron ac-
ceptor during respiration, reducing the anion to nitrite [35].
The nitrite in the saliva then enters the acidic environment
of the stomach, where it is reduced to NO via a protonated
intermediate, nitrous acid [20, 36]. The pathway is enhanced
by reducing agents found in the diet, such as vitamin C and
polyphenols [37, 38], highlighting the complex interactions
between dietary nitrate and additional compounds found as
dietary constituents.

Following the description of the non-enzymatic physio-
logical reduction of nitrate through nitrite to NO, work con-
ducted by Jansson et al. identified an enzymatic process
functioning to reduce nitrate to NO in mammalian tissue,
with xanthine oxidoreductase (XOR) postulated as the en-
zyme responsible [39]. Previous studies had suggested that
mammalian cells and tissues were incapable of reducing ni-
trate [40], but studies, inspired by the earlier identification
of nitrate reductase activity of milk XOR [41], led to the in
vitro determination of nitrate reduction by mammalian XOR
[42, 43]. Jansson et al. built on this work, demonstrating ni-
trate reductase activity in a range of rodent and human tis-
sues, which can be inhibited by allopurinol, an inhibitor of
XOR [39]. This enzymatic pathway provides an alternative
means for the generation of nitrite and NO from dietary ni-
trate, distinct from the enterosalivary pathway. Jansson et al.
also suggested that the enzymatic reduction of nitrate may
be as important as the enterosalivary pathway for the produc-
tion of NO from nitrate, in rodents at least. Plasma nitrite
was found to increase in both germ-free and wild-type mice
to a similar extent, implying a non-bacterial mechanism of
nitrate reduction capable of accounting for the loss of nitrite
from enterosalivary pathways. In contrast, however, Govoni
et al. demonstrated that the use of an antibacterial mouth
wash in humans reduced the concentrations of plasma ni-
trite, and may reinforce the importance of the enterosali-
vary pathway. This discrepancy may be due to a lower con-
centration of nitrate in the saliva of rodents [44]. Currently,
the exact contribution of the enterosalivary and enzymatic
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Figure 1. Dietary nitrate is sequentially reduced to nitrite and then NO via the enterosalivary pathway. Once nitrate is ingested, it is
absorbed into the bloodstream in the upper gastrointestinal tract. Here it can mix with nitrate produced by the oxidation of NO and nitrite.
This nitrate can then continue along the enterosalivary pathway to be reduced to NO by commensal bacteria in the oral cavity. Further,
nitrate could enter cells such as adipocytes (where it may be reduced to NO to bring about systemic changes), or it may be excreted by the
kidneys.

pathways to the reduction of nitrate to NO in vivo remains
undefined.

A number of additional physiological sources of nitrate re-
duction have been identified. Cosby et al. demonstrated that
infusions of nitrite into the forearm brachial artery resulted in
rapid formation of erythrocyte iron-nitrosylated haemoglobin
[45], the NO bound form of haemoglobin. This reaction was
inversely proportional to oxyhaemoglobin saturation, high-
lighting deoxyhaemoglobin as the driver of nitrite reduction
to NO. Deoxymyoglobin can also reduce nitrite to NO, at a
rate approximately 36 times faster than deoxyhaemoglobin
[46]. The deoxymyoglobin-mediated reduction of nitrite to
NO has been shown to be important in mitochondrial res-
piration, cardiac energetics and hypoxic vasodilation [46–48].
Aspects of the mitochondrial respiratory chain have also been
implicated in nitrite reduction [49–51]. Nohl et al. used the
nitrosylation of deoxyhaemoglobin to follow nitrite reduction
to NO by respiring mitochondria. Treatment with mitochon-
drial complex inhibitors identified ubisemiquinone, as part

of the ubiquinone/bc1 couple (complex III), as essential in
the reduction of nitrite to NO by mitochondria [49]. Castello
et al. also demonstrated that cytochrome c oxidase (complex
IV) could also reduce nitrite to NO in hypoxic conditions [50].

NO has a short half-life (0.05–1.18 ms in human blood),
meaning that it can only act locally in an autocrine and
paracrine manner to bring about physiological changes
[47, 52]. However, the half-lives of both nitrate and nitrite
are relatively long in comparison (110 s and 8 h, respectively,
in human blood) [52]. Therefore, nitrate and nitrite are more
stable and can circulate in the blood, where they may be
reduced via the nitrate-nitrite-NO pathway back to NO, and
therefore function in an endocrine manner.

While on the surface it appears that the nitrate-nitrite-NO
pathway is a redundant mechanism for generating NO, the
recycling of nitrate and nitrite in fact provides an important
method of producing NO in conditions where NOS enzyme
activity is compromised. The NOS enzymes require oxygen
to produce NO, therefore NO production via the canonical
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L-arginine-NO pathway is impaired in hypoxic conditions [24].
In contrast, the nitrate-nitrite-NO pathway is capable of re-
ducing nitrate to NO in low oxygen concentrations, and may
indeed be more efficient in hypoxia [48–50,53,54]. In the case
of adipose tissue, the expression of XOR is stimulated by low
oxygen availability [55]. This finding highlighted the possi-
bilities of using nitrate and nitrite as therapeutics to treat
disorders in which NO synthesis is compromised.

However, the enzymatic reduction of nitrate has been ob-
served to occur in both hypoxic and normoxic conditions, im-
plying a role beyond that of a compensatory mechanism for
compromised eNOS activity [39]. This was further supported
by work from Huang et al., demonstrating the importance
of XOR in normoxic reduction of nitrate in germ-free mice
[56]. Studies conducted by Roberts et al. also demonstrated
that nitrate treatment could in fact stimulate XOR expression
in normoxic adipocytes, albeit to a lesser degree than in hy-
poxia, and highlighted that XOR-mediated nitrate reduction
had downstream functional effects in normoxic conditions
[55].

3 Dietary nitrate and the metabolic
syndrome

The metabolic syndrome is a cluster of risk factors for
cardiovascular disease (CVD) and type 2 diabetes mellitus
(T2DM). These factors include obesity, dyslipidaemia, hy-
pertension and insulin resistance [57, 58]. The prevalence of
the metabolic syndrome is reaching epidemic proportions.
The World Health Organisation estimates 347 million peo-
ple worldwide suffer from diabetes mellitus [59]. Of these
cases, 90% are associated with T2DM, with obesity as the
leading risk factor. However, the identification of the under-
lying molecular mechanisms that unite the aspects of the
metabolic syndrome are challenging due to the diffuse and
complex nature of the disease, which integrates peripheral
insulin resistance, visceral obesity and CVD. For example,
many mechanisms have been postulated as the root of in-
sulin resistance, and it is likely that no one pathway is re-
sponsible for the dysfunction of insulin signalling. One of
the most accepted causes is the inappropriate accumulation
of lipids within peripheral tissues, known as lipid-induced in-
sulin resistance [60]. This mechanism was initially suggested
by Randle et al. in a study showing intracellular glucose-
6-phosphate increases as a result of incubating rodent heart
with fatty acids [61]. They postulated that this was a result
of decreased glycolysis. However, further studies have indi-
cated that lipid-induced insulin resistance may arise due to
impaired insulin signalling and subsequent reduced glucose
uptake [62, 63].

In recent years, the perturbation of NO synthesis and sig-
nalling has emerged as a potential modulator of both cardio-
vascular morbidity and metabolic dysfunction in both rodent
models and humans [64,65]. In humans, variants in the eNOS
gene are associated with aspects of the metabolic syndrome,

giving genetic susceptibility to T2DM and insulin resistance
[65]. Furthermore, obese individuals were found to have a de-
creased capacity for NO production [66]. Mice lacking the gene
for eNOS develop a metabolic syndrome-like phenotype, char-
acterised by hypertension, glucose intolerance and insulin re-
sistance [67, 68]. Furthermore, eNOS-null mice also display
dyslipidaemia, with elevated circulating levels of cholesterol,
triglycerides, free fatty acids and leptin accompanied by a 30–
40% increase in visceral fat. The widespread effects of eNOS
disruption highlight the role of NO as a possible unifying
mechanism that underpins the metabolic syndrome.

Following the characterisation of eNOS-null phenotypes,
Carlstrom et al. sought to restore NO signalling in eNOS-
null mice via dietary nitrate supplementation and subse-
quent metabolism through the nitrate-nitrite-NO pathway
[69]. Seven weeks of dietary nitrate treatment decreased
weight gain, visceral fat and plasma triglyceride concentra-
tions, compared to untreated controls. Treatment with ni-
trate also improved glucose homeostasis, lowering fasting
blood glucose concentrations and glycosylated haemoglobin,
and improving glucose tolerance, as highlighted by glucose
tolerance tests. Additionally nitrate administration reduced
blood pressure independently of NOS. Interestingly, the ef-
fects of nitrate on the metabolic syndrome-like phenotype
of eNOS-deficient mice were achieved with a concentration
of nitrate corresponding to a daily dietary intake of 100–300g
of a nitrate-rich vegetable, such as spinach.

The work of Carlstrom et al. provided functional justifi-
cation for the use of nitrate to treat impaired NO synthesis
and highlighted the effects of dietary nitrate on, not only one,
but multiple risk factors underlying the metabolic syndrome.
However, while this study showed the potential of dietary
nitrate as an anti-obesity and anti-diabetic agent on a pheno-
typic level, the mechanisms driving these effects were yet to
be elucidated.

4 Nitrate and adipose tissue metabolism

Obesity is characterised by inappropriate accumulation of
white adipose tissue (WAT) and an increase in adipocyte size.
WAT stores energy as lipid which can then be released via
lipolysis when required [70]. White adipocytes have a uniloc-
ular lipid droplet that takes up the vast majority of the cell
and few mitochondria reflecting its low demand for energy
[71].

In contrast, brown adipose tissue (BAT) is more metaboli-
cally active and utilises lipids as an energy source in a process
termed non-shivering thermogenesis [72]. Brown adipocytes
are small multilocular cells, characterised by a large number
of mitochondria and synthesis of uncoupling protein 1 (UCP-
1). In the mitochondria, UCP-1 acts to uncouple electron
transport from ATP production, leading to the generation
of heat, by increasing proton leak across the mitochondrial
membrane [73]. Since thermogenesis is associated with an
increase in lipolysis and fatty acid catabolism, via �-oxidation,
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to supply fuel for the TCA cycle of the uncoupled mito-
chondria, it may have anti-obesity properties, restoring the
defective energy balance in obese individuals. The adipose-
specific transgenic expression of UCP-1 prevents obesity in
mice [74], whilst the genetic ablation of BAT in mice results
in obesity [75]. However, while thermogenesis appears to
have therapeutic potential for the treatment of obesity, it is
limited by the small amount of BAT present in adult humans,
and is negatively correlated with age and adiposity [76].

Interestingly, a small number of cells within WAT were
found to express UCP-1 upon cold exposure [77]. These cells
were termed “beige” or “brite” cells and exhibit a gene expres-
sion profile distinct from either white or brown adipocytes
[78]. The identification of beige adipocytes within WAT de-
pots has increased interest in the utilisation of thermogene-
sis and increased energy expenditure to treat obesity. Beige
cells have a low basal expression of UCP-1 but retain the ca-
pacity to greatly increase the expression of brown adipocyte-
specific genes leading to increased respiration, mitochondrial
biogenesis and fatty acid �-oxidation. The switch from a
white adipocyte-like to a brown adipocyte-like phenotype is
known as the browning response and has anti-obesity and
anti-diabetic effects [74, 79]

Numerous activators of the browning response have been
identified, including cardiac natriuretic peptides, fibroblast
growth factor 21, irisin and �-aminoisobutyric acid [80–84].
Recent studies have suggested that the anti-obesity effects
of inorganic nitrate may function, in part, by inducing the
browning response [55].

Dietary nitrate is known to increase the circulating con-
centration of cGMP in humans [85], while a diet deficient
in nitrate decreases the steady-state concentration of cGMP
in certain tissues [86]. cGMP has a profound effect on the
regulation of energy metabolism in adipose tissue by activat-
ing adipocyte differentiation and lipolysis [87–89]. In 2013,
Mitschke et al. identified cGMP as a small molecule capable
of signalling via protein kinase G to stimulate the browning
response in WAT [90]. In response to these previous stud-
ies Roberts et al. hypothesised that nitrate may induce the
browning of WAT [55].

Roberts et al. demonstrated that inorganic nitrate in-
creased brown adipocyte-specific gene expression, including
UCP-1, in WAT both in vitro and in vivo [55]. The authors
further characterised the brown adipocyte-like phenotype in-
duced by nitrate using respirometry and stable isotope flux
labelling analysis to confirm an increase in oxygen consump-
tion and flux through the fatty acid �-oxidation pathway.
Roberts et al. went on to elucidate the mechanisms under-
pinning the nitrate-induced browning effect (Fig. 2). Both
the NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-
1-oxyl 3-oxide and siRNA knockdown of XOR inhibited the
nitrate-mediated induction of brown adipocyte-specific gene
expression in primary adipocytes. The immediate reduction
product of nitrate, nitrite, was also identified as an activa-
tor of the browning response. Using additional pharmaco-
logical inhibitors nitrate was found to signal downstream

of NO via a pathway involving cGMP and protein kinase
G. These findings lead the authors to conclude that nitrate
functioned through the nitrate-nitrite-NO pathway and sub-
sequent cGMP signalling to activate the browning response
in adipose tissue, underlining the importance of NO in me-
diating the browning effects of nitrate.

As previously mentioned, the nitrate-nitrite-NO pathway
acts to complement the oxygen-dependent NO synthases and
utilises nitrate as a substrate in hypoxic conditions, thus pro-
viding NO in situations in which NO synthases are compro-
mised [24]. Roberts et al. showed that both primary adipocytes
and WAT from rats exposed to low oxygen levels had in-
creased levels of XOR expression, which was further in-
creased by nitrate treatment. In keeping with these concepts,
the authors found that nitrate-induced browning was aug-
mented by hypoxia (Fig. 2). This is particularly relevant given
that the adipose tissue of obese mice and humans is charac-
terised by hypoxia [91–93]. The oxygen concentrations utilised
in this study mimicked oxygen levels found in obesity [93],
thus nitrate may be an effective means of inducing the brown-
ing response in adipose tissue to treat obesity, T2DM and the
metabolic syndrome.

Carlstrom et al.’s work highlighted how dietary nitrate can
bring about a reduction in body weight and dyslipidaemia,
while increasing glucose tolerance, on a phenotypic level [69].
The studies on the browning response show clearly how ni-
trate can readjust the energy imbalance in obesity, enhanced
by the hypoxic conditions in the adipose of obese subjects.
The catabolism of lipids through increased fatty acid beta-
oxidation provides a means to lower dyslipidaemia and al-
leviate aspects of lipid-induced insulin resistance in type 2
diabetics. Importantly, dietary nitrate appears to target mul-
tiple aspects of the metabolic syndrome.

5 Nitrate and hypertension

Dietary nitrate has a profound effect on hypertension, a major
risk factor for CVD and another strand of the metabolic syn-
drome [94]. High blood pressure is defined as 140/90 mmHg
[95]. Uncontrolled hypertension can increase the risk for CVD
by nearly three times [96], while controlling hypertension re-
duces the risk of CVD [94, 97–99]. Furthermore, according
to the Centers for Disease Control and Prevention, approxi-
mately 67% of diabetic patients also have hypertension [100].

Endothelial dysfunction is a significant determinant of
hypertension [101]. The loss of bioavailable NO has been im-
plicated in endothelial dysfunction and the development of
CVD [102,103]. Therefore, raising the levels of NO may have
a beneficial impact on endothelial function and subsequent
CVD. The potential for dietary nitrate to provide the much-
needed supply of NO in these pathological situations has
been examined in a number of recent studies in humans
[104]. Ingestion of a single dose of beetroot juice, which con-
tains a high concentration of nitrate, lowered both systolic
and diastolic blood pressure [105], with the greatest effect
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Figure 2. The effects of dietary inor-
ganic nitrate on white adipose tissue.
Dietary nitrate stimulates the brown-
ing response in hypoxic white adi-
pose tissue. Nitrate is taken up from
the blood by beige adipocytes where
it triggers an increase in mitochon-
drial biogenesis, fatty acid �-oxidation
and brown adipocyte-specific gene ex-
pression. The metabolic activity of the
adipocytes is increased, raising the rate
of thermogenesis. The mechanism by
which nitrate activates browning relies
on cGMP-PKG signalling, followed by
increased expression of the transcrip-
tional activator PGC-1�. PKG, protein
kinase G.

after 3 h of nitrate consumption, concomitant with the high-
est concentrations of plasma nitrite and increased circulating
cGMP concentrations. This lag may point towards nitrate as
the causative agent and appears to resemble the time taken
for nitrate to be reduced to nitrite, suggesting that the ef-
fects of dietary nitrate on blood pressure are mediated via the
nitrate-nitrite-NO pathway. A study by Kenjale et al. further
demonstrated that dietary nitrate reduces blood pressure in
patients with peripheral artery disease [106], while nitrate has
also been observed to lower blood pressure in hypertensive
individuals [107]. A recent study by Kapil et al. investigated

the long-term effects of daily doses of nitrate over a 4-week
period [108]. Sustained dietary nitrate intake was found to
reduce blood pressure, improve endothelial function and re-
duce arterial stiffness without any indication of tachyphylaxis
over the 4-week period. Together, these studies highlight the
potential of dietary nitrate as a therapeutic for patients with
hypertension.

A number of recent studies have sought to identify the
mechanisms underpinning the effect of dietary nitrate on
hypertension. Wilcox postulated that during hypertension re-
nal oxidative stress decreases NO bioavailability through the
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Figure 3. The three proposed mechanisms
through which inorganic nitrate reduces
blood pressure. Nitrate is converted to
NO via the enterosalivary pathway or the
XOR-catalysed nitrate-nitrite-NO pathway.
NO can then activate soluble guanylyl cy-
clase (sGC), reducing blood pressure in
the canonical manner. Further, it can in-
hibit superoxide production by NADPH
oxidase, a vasoconstriction pathway stim-
ulated by angiotensin II. Finally, NO can
suppress hepatic erythropoietin (EPO) ex-
pression, reducing haemoglobin levels
and thus the haematocrit.

production of reactive oxygen species, and suggested that the
kidney may mediate the effects of dietary nitrate on blood
pressure [109]. The kidneys regulate long-term maintenance
of blood pressure via the release of vasoconstrictors and va-
sodilators, such as angiotensin II and NO, respectively [110].
Gao et al. demonstrated that dietary nitrate inhibited contrac-
tions triggered by angiotensin II in the renal microvascula-
ture, via its XOR-catalysed reduction to NO [111]. However,
the effects of nitrite were shown to be partially independent
of the NO-cGMP pathway, implying an alternative means
by which nitrate, via NO, can bring about vasodilation [111].
This secondary mechanism was revealed to be an inhibitory
action of NO on nicotinamide adenosine dinucleotide phos-
phate (NADPH) oxidase activity, as measured by superoxide
production. Increases in angiotensin II activate NADPH oxi-
dase, which in turn elevates levels of reactive oxygen species,
and can lead to hypertension [112]. Concomitant treatment of
arterioles with nitrite and apocynin, an NADPH oxidase in-
hibitor failed to attenuate contraction relative to nitrite treat-
ment alone, suggesting that NO inhibits NADPH oxidase
activity, an effect confirmed by assessing the inhibitory im-
pact of nitrite on renal cortex NADPH oxidase activity [112].
Thus, nitrate may function via both the NO-cGMP pathway
and via effects on the renal microvasculature by inhibiting
NADPH oxidase to reduce blood pressure and exert bene-
ficial effects on hypertension. Furthermore, Ashmore et al.
recently observed that dietary nitrate may reduce blood pres-
sure by inhibiting the production of erythropoietin [113]. Inor-
ganic nitrate was found to trigger a time- and dose-dependent
decrease in the haematocrit and circulating haemoglobin and

erythropoietin concentrations. Nitrate also decreased hepatic
expression of erythropoietin, which was mirrored by a fall in
HIF1 target gene expression suggesting an increase in hep-
atic oxygen availability. A third of total erythropoietin produc-
tion during hypoxia may be attributed to hepatic production
[114]. Ashmore et al. propose that dietary nitrate may be ef-
fective as a therapeutic in any situation in which a reduction
in haematocrit would be beneficial, such as polycythemia.
Further, recent studies have indicated that a high haemat-
ocrit is associated with the incidence of hypertension and
a pre-hypertensive state [115, 116]. Therefore, dietary nitrate
could reduce blood pressure via a decrease in the expres-
sion of hepatic erythropoietin and a subsequent reduction in
haematocrit. In summary, these studies together suggest that
inorganic nitrate may reduce blood pressure through three
distinct mechanisms (Fig. 3).

6 Dietary nitrate and the heart

As previously mentioned, nitrate is likely a key factor be-
hind the cardioprotective effects of green leafy vegetables
[16–18, [117]]. Hypoxia is known to alter cardiac energetics
and decrease mitochondrial enzyme activities in the heart
[118, 119]. Ashmore et al. suggest that dietary nitrate sup-
plementation can protect the heart in hypoxic conditions by
reversing hypoxia-induced effects on respiration rates, mi-
tochondrial complex I levels and activity and protein car-
bonylation, a measure of oxidative stress [120]. Of particular
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interest was the observation that nitrate decreases arginase
expression and activity, and increases L-arginine concentra-
tions in the heart. It is postulated that this L-arginine could
then be redirected from the arginase-dependent production
of ornithine and urea to the production of NO. Arginase ac-
tivity is associated with numerous cardiac pathologies [121]
and hypoxia-induced alterations in energetics and mitochon-
drial dysfunction in the heart are key features of heart fail-
ure [122–124], thus dietary nitrate may have potential as a
therapeutic to protect against numerous cardiac pathologies
including heart failure.

7 Dietary nitrate, inflammation and iNOS

Obesity has long been associated with inflammation in in-
sulin target tissues, especially adipose tissue depots, which
is suggested to contribute to the pathology of the metabolic
syndrome [125,126]. NO, produced by iNOS, is an important
mediator of inflammation [127,128], and iNOS expression is
increased in the skeletal muscle and adipose tissue of both
genetic- and diet-induced models of obesity [129]. Further-
more, high fat diet-induced obese iNOS-null mice have im-
proved insulin sensitivity compared to obese wild-type mice.
Recent work by Yang et al. has shown inorganic nitrite can
significantly reduce the mRNA levels of iNOS in activated
macrophages [130]. While this study did not assess the ef-
fects of dietary nitrate on iNOS expression, the effects of
nitrite were found to function through NO and require XOR,
suggesting similar effects would be achieved with dietary ni-
trate. This paper highlights the potential for dietary nitrate
to alleviate aspects of inflammation mediated by iNOS in the
metabolic syndrome. However, much work is still required to
elucidate the interaction between nitrate and inflammation
in obesity, including a focus on the effects of dietary nitrate
on the expression of iNOS in insulin-target tissues, such as
skeletal muscle and adipose tissue.

8 Perspectives

Having initially been considered an inactive, then toxic and
carcinogenic molecule, dietary inorganic nitrate is gradually
being identified as a modulator of numerous aspects of the
metabolic syndrome, with therapeutic potential against obe-
sity, diabetes and hypertension. In the wake of recent work
identifying the ability of nitrate to induce the browning re-
sponse in adipose tissue and alter energy balance, lower blood
pressure and decrease the haematocrit, the means by which
nitrate protects against the metabolic syndrome are slowly
being elucidated.

However, mechanistically, the picture remains incom-
plete. The identification of the nitrate-nitrite-NO pathway ap-
peared to clarify that the bioactive effects of dietary nitrate
were brought about by increasing bioavailable NO and down-
stream cGMP signalling. However, the recent discoveries that

nitrate can inhibit the activity of both NADPH oxidase and
arginase suggests the activity of nitrate is far more complex.

Furthermore, much of the in vivo work on dietary nitrate
has been conducted in rodents, and there is a clear need to
confirm these studies in humans to determine the therapeutic
potential of dietary nitrate within the population. Neverthe-
less, it is evident that the use of dietary inorganic nitrate as a
tool to tackle the metabolic syndrome has great potential. Di-
etary adjustment, with a focus on food groups high in nitrate,
such as green leafy vegetables, provides an important starting
point, but perhaps it is also time to reassess the attitudes to,
and strict controls on, nitrate in our diets.
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