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Abstract

Genome-wide association studies (GWAS) have provided a rich collection of ~58 CAD loci that 

suggest the existence of previously unsuspected new biology relevant to atherosclerosis. However, 

these studies only identify genomic loci associated with CAD and many questions remain even 

after a genomic locus is definitively implicated, including the nature of the causal variant(s) and 

the causal gene(s), as well as the directionality of effect. There are a number of tools that can be 

employed for investigation of the functional genomics of these loci, and progress has been made 

on a limited number of novel CAD loci. New biology regarding atherosclerosis and CAD will be 

learned through the functional genomics of these loci and the hope is that at least some of these 

new pathways relevant to CAD pathogenesis will yield new therapeutic targets for the prevention 

and treatment of CAD.
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Introduction

Efforts to perform unbiased discovery using the tools of human genetics to uncover novel 

pathways underlying complex diseases and traits have been pursued extensively over the last 

decade. In particular, genome-wide association studies (GWAS), reviewed elsewhere in this 

compendium, have capitalized on the millions of common single nucleotide polymorphisms 

(SNPs) to identify those SNPs that are genome-wide significantly associated with a disease 
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or trait. More than 20 thousand genetic loci have been identified to be associated with 

diseases or traits (http://www.ebi.ac.uk/gwas December 2015). In particular, myocardial 

infarction (MI), and more generally coronary artery disease (CAD), have been the focus of 

intense discovery using GWAS. In the most recent and largest meta-analysis of GWAS for 

CAD1, 10 new CAD loci were identified, bringing the total number of CAD loci to 58 

(Table 1).

It is interesting to examine this list of loci in light of known risk factors for CAD. For 

example, 10 of the loci are also genome-wide significantly associated with LDL-cholesterol 

(LDL-C)2–5, a known causal risk factor for CAD. The causal genes at these loci exert their 

effects through their expression in hepatocytes or enterocytes, consistent with their role in 

regulating LDL metabolism. Another locus, LPL, harbors the gene encoding the enzyme 

lipoprotein lipase (LPL), the most important regulator of triglyceride-rich lipoprotein (TRL) 

metabolism. In addition, the APOA1/C3/A4/A5 locus associated with LDL-C is also 

associated with triglycerides (TG) and harbors two genes, APOC3 and APOA5, in which 

coding variants have been shown to be associated with both TG levels and CAD.6–9 These 

and other observations have helped to confirm the causal role of TRLs in CAD. Another five 

loci are genome-wide significant for association with blood pressure, consistent with the 

causal role of elevated blood pressure in CAD. Also there is some overlap with GWAS 

studies for other vascular diseases such as stroke10. Interestingly, none of the 58 loci are 

associated with type 2 diabetes mellitus (T2DM), raising interesting questions regarding the 

genetic overlap between T2DM and CAD and whether T2DM per se is causally related to 

CAD. Importantly, the majority of CAD GWAS loci are not associated with known risk 

factors for CAD (Table 1) and thus have the potential to provide novel insights into the 

biology and pathophysiology of CAD.

Issues and challenges for functional genomics of CAD GWAS loci

Common variant GWAS studies only identify genomic loci associated with disease or trait. 

However, many questions remain even after a genomic locus is definitively implicated, 

including the nature of the causal variant(s) and the causal gene(s), as well as the 

directionality of effect. For the majority of the CAD GWAS loci, the answers to these 

questions are unknown, and after excluding the loci associated with lipids or blood pressure 

virtually none of the remaining loci have answers to these fundamental questions. 

Identification of the causal variant is challenging, because of linkage disequilibrium (LD) 

and the possibility that the variant(s) at a given locus with the lowest p-values for association 

with CAD may simply be proxies for the causal variant (see Figure 1). Furthermore, 

although the majority of variants with the lowest p-values fall in non-coding intergenic 

regions, they usually do not fall within a well-established cis-regulatory element such as a 

known promoter, and thus challenge predictions of their impact on regulatory elements, like 

disruption of transcription factor binding or function of a long non-coding RNA (lncRNA). 

Below we discuss approaches to elucidating the causal variant at a GWAS locus.

Arguably the most important biological question to be addressed at each CAD GWAS locus 

is what the causal gene(s) at the locus are. By convention, GWAS loci are tabulated by the 

coding gene closest to the ‘lead SNP’ with the lowest p-value. However, it is becoming clear 
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that this approach does not always identify the causal gene11. Because of chromatin looping 

that places regulatory enhancer elements in proximity to the promoters of genes that may be 

quite distant on the physical map, a causal variant may influence expression of distant genes 

(Figure 1). Furthermore, the ‘causal gene’ at a GWAS locus need not necessarily be a 

protein-coding gene, but could be a lncRNA (for example ANRIL, a lncRNA at the 9p21 

CAD locus), a microRNA, or some other transcribed or regulatory element. Finally, some 

loci may not have a single ‘causal gene’ but in fact may be characterized by the coordinate 

regulation of several genes, potentially in different contributing cell types, that have additive 

effects on disease phenotype. Below we discuss in some detail the methodological 

approaches to solving these critical biological conundrums.

The directionality of effect at the locus is a critically important issue, particularly with 

regard to the question of whether the biology represented by that locus can be approached 

from a therapeutic targeting standpoint. For example, if the minor allele at a locus is 

associated with protection from CAD, it is essential to know if the minor allele is associated 

with increased or decreased expression of the causal gene in the relevant cell type. 

Approaches such as expression quantitative trait loci (eQTL) and allele-specific expression 

(ASE) can be used to establish directionality of effect. However, the effects of many variants 

on differential gene expression are cell type specific and in most cases we don’t know with 

any confidence the relevant cell type for the genetic effect. Again, below we discuss the 

experimental approach to establishing directionality of effect given these challenges.

The tools of functional genomics

There is large variety of experimental tools available to investigate the mechanism by which 

GWAS loci exert their effect on biological phenotype. They are tailored to the scale of 

interrogation, sampling on the genome-wide level, targeting a gene, a genomic region or 

even a specific SNP of interest. Figure 2 gives an overview of the experimental techniques 

which will be discussed in detail below.

Next-generation sequencing

Most polymorphisms associated with risk for disease lie in non protein-coding regions of the 

human genome. A major mechanism of how these SNPs affect disease phenotype is by 

disruption of a transcription factor binding site within a cis-regulatory element. The 

subsequent dysregulation of gene expression leads to a changed cellular response. The first 

step in establishing a causal chain of evidence from association SNP to disease phenotype 

lies in the definition of genomic regions with cis-regulatory potential in a disease-relevant 

cell type. Genome-wide methods such as ‘Formaldehyde-Assisted Isolation of Regulatory 

Elements’ (FAIRE-Seq)12, DNase Hypersensitivity sequencing13 and the novel ‘Assay for 

Transposase-Accessible Chromatin using Sequencing’ (ATAC-Seq)14 assess the general 

accessibility of chromatin. However, these patterns only portray a general ‘openness’ of the 

genome and include cis-regulatory regions as well as promoters and protein-coding regions. 

Also, these techniques cannot distinguish between poised, primed and actively functional 

regulatory regions – they only map the general regulatory potential.
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In contrast, several different histone modifications have been shown to sample distinct 

fractions of the human genome, such as promoters (Histone 3 Lysine 4 trimethylation - 

H3K4me3), transcribed genes (Histone 3 Lysine 36 trimethylation - H3K36me3), primed 

(Histone 3 Lysine 4 monomethylation - H3K4me1) and active (Histone 3 Lysine 27 

acetylation - H3K27ac) enhancers.15 Chromatin immunoprecipitation with massively 

parallel sequencing (ChIP-Seq) is the method of choice to identify these chromatin marks. 

This technique can also be used to identify the binding events of specific transcription 

factors of interest.

Active enhancers are identified with the highest confidence when datasets are intersected, 

for example by combining H3K27ac abundance with Polymerase II binding patterns from 

ChIP-seq as well as Gro-Seq. The latter technique maps actively transcribed RNAs from 

enhancers (eRNAs)16 through the isolation of newly synthesized RNA from nuclei incubated 

with bromouridine. Large-scale consortium data for histone marks and transcription factor 

binding is now publicly available from the ENCODE project (https://genome.ucsc.edu/

ENCODE/dataMatrix/encodeChipMatrixHuman.html). The experimental data stems from in 
vitro cultured cells, many of them immortalized human cell lines. Of particular interest for 

the annotation of CAD GWAS loci is data generated from HepG2 cells (a hepatocellular 

carcinoma line that serves as a proxy for hepatocytes), endothelial HUVECs, CD14+ 

monocytes, and aortic smooth muscle cells. Similarly, the Roadmap Epigenomics Project 

(www.roadmapepigenomics.org/data/tables/adult) compiled a large portfolio of histone 

marks from human tissues, including data from liver, aorta and primary CD14+ monocytes.

In addition to revealing transcription factor occupancy and histone modification at sites of 

interest, ChIP-Seq data can also be interrogated for allelic imbalance on an individual basis, 

if paired with corresponding genotype information.17,18 In this case sequencing reads from 

ChIP-Seq experiments are assigned to either the maternal or paternal allele. A significant 

difference in coverage on either allele is indicative for sequence dependent differential 

transcription factor binding or histone abundance in this region and provides direct evidence 

for the functional role of a polymorphic site.

A second step in elucidating the mechanism by which non-coding polymorphisms affect 

disease risk lies in the analysis of transcriptome data from disease-relevant cells and tissues. 

Whole-transcriptome RNA-Seq data provides useful information on the transcriptional 

repertoire of a cell of interest. No meaningful association of regulatory variants with disease 

risk genes is possible without knowledge of the cell’s transcriptome. Publicly available 

expression data from relevant cells and tissues is provided by the ENCODE consortium and 

to a larger extent the GTEx consortium (www.gtexportal.org), which generated 

transcriptome data from primary human post mortem tissue.19

Technical advances such as single-cell based RNA-Seq20 and single-cell ChIP-Seq21 allow 

for the interrogation of the transcriptional machinery in single cells. Future applications may 

allow simultaneous derivation of both datasets from the same cell, which would greatly 

reduce the information lost due to sampling heterogeneous pools of cells at different cell 

cycle and developmental stages. This could be particularly useful for the characterization of 

the diverse cell populations within the atherosclerotic neointima.
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An important consideration in functional transcriptomic analysis is that since both 

transcriptional regulation and gene expression are tissue-specific processes, particular 

attention should be paid to the suitability of cell type from which the data is generated. Early 

datasets have depended heavily on samples generated in cell culture for practical reasons, 

namely the accessibility of long-established cell lines, and the ability to generate 

homogeneous material, reproducibly, and in large scale. However, all cultured cells, whether 

they be immortalized or cancer cell lines, induced pluripotent stem cell-derived cells, or 

cultured primary cells, display to some extent rather an immature, precursor-like phenotype 

in comparison to the corresponding fully differentiated primary cell in vivo. Additionally, 

cancer cell lines in particular, often carry genomic rearrangements leading to artifacts that 

are not representative of their cell type of origin. On the other hand, primary ex vivo tissues, 

whilst displaying the most ‘authentic’ transcriptional profiles, are often comprised of 

multiple cell types which complicates analysis and can mask subtle effects within data noise, 

or due to numerically underrepresented cell types. The best approach when dealing with 

tissues of mixed cell types such as coronary arteries may be to focus on effects also observed 

in in vitro cultured pure cell populations.

Furthermore primary tissues need to be extensively phenotyped as to their disease status to 

enable identification of changes within the transcriptome between the healthy and diseased 

state. Additionally, the exact tissue origin can play an important role. For example aortic, 

coronary or femoral artery transcriptomes, although often very similar, can show distinct 

differences in their expression profiles which may be based on their differing tissue 

environments or developmental origins. Differences in gene expression are well established 

along the different section of the aorta itself and follow embryological and hemodynamic 

patterns.

For meaningful correlation of ChIP-Seq and RNA-Seq data to identify SNP-to-gene 

interactions, data should be generated from the same cell type, if possible even from the 

same individual culture. In case of primary tissue, combined data sets from the same 

individual are particularly informative. The association of cis-regulatory regions with one or 

multiple nearby regulated targeted gene or genes is however problematic. Frequently 

employed distance-based methods do not adequately reflect the true biology. More 

meaningful approaches to directly link SNP genotype with gene expression levels include 

expression quantitative trait loci (eQTL) and allele-specific expression (ASE) studies.

eQTLs and ASE

Quantitative trait loci are polymorphic sites within a genome which show significant 

association with a quantitative trait such as plasma lipid levels22, carotid intima-media 

thickness23 or gene expression levels (eQTL) 24, 25. eQTL studies combine genotype with 

gene expression level information - the latter usually assessed using expression microarrays 

or RNA-seq - and can detect both local cis-effects as well as distal trans-effects of regulatory 

elements on gene expression. eQTL data has been generated from multiple human cells and 

tissues26–28. Of particular relevance is data derived from liver, which has proven especially 

successful for loci involved in dyslipidemia, as well as data from peripheral blood 

monocytes29 and in vitro cultured human aortic endothelial cells30.
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eQTL studies require sampling from several hundreds of individuals to identify the majority 

of loci with statistical significance as inter-individual noise arises from differences in genetic 

background, host factors such as age or gender as well as environmental factors like diet and 

lifestyle. The large sample sizes needed for eQTL analysis are particularly problematic when 

interrogating tissues that are rare or difficult to sample. Additional challenges such as 

insufficient platform coverage and batch variation stem from the use of microarrays to 

determine gene expression levels. These issues can be circumvented in large part by the use 

of RNA-Seq as a data source, which greatly increases statistical power, and is more 

compatible with meta-analysis.

eQTL studies have been successfully used to identify functional SNPs and directionality 

from GWAS studies for a variety of diseases, due to changes in the expression of their 

downstream putative risk genes31. Since CAD is a complex disease involving multiple 

tissues, recent studies have aimed at integrating expression data from several tissues for a 

more comprehensive annotation of CAD GWAS loci32,33. However, the portfolio of tissues 

used included several human tissues not relevant to CAD, which may have introduced bias 

in the SNP-to-gene association process. Fortunately, the GTEx consortium is generating 

publicly available RNA-Seq data from currently under represented CAD-relevant tissues, 

including coronary artery and aorta.

Allele-specific expression has emerged as an alternative to eQTL analysis for linking genetic 

variation in cis-regulatory regions to gene expression34–37. It is based on the identification of 

allelic imbalance, showing differences in gene expression levels between the two alleles in a 

single heterozygous individual. The within person allelic analyses greatly reduces impact of 

inter-individual variation from environmental and genetic trans effects thus enhancing 

statistical power. ASE requires allele-specific transcriptomic data such as stranded RNA-Seq 

data, but in contrast to eQTL analysis, a relatively small number of samples that carry the 

same heterozygous site of interest are needed. The information value of each sample is 

limited by the number of heterozygous sites of its genome. Additionally, the data sets that 

are generated need to be of high read coverage to ensure presence of multiple reads at 

interrogated sites of interest. With regards to CAD, to date ASE has for been applied to 

assess general principles of the regulation of gene expression in mouse liver38, 39.

Additionally, Chromosome Conformation Capture (3C) can be used as a complementary 

technique to associate cis-regulatory regions with their target genes. This method captures 

the physical interaction between two genomic regions such as enhancers with promoters, 

and has recently been applied to study human liver and aorta40. Several different variations 

of the technique are in use, with Hi-C and 5C as genome-wide methods. A major obstacle is 

however their low resolution of tens to hundreds of kilobases. Targeted approaches such as 

Capture-C41 and Capture Hi-C42 that can interrogate hundreds of select loci simultaneously 

are displaying higher resolutions of down to 1 kilobase (kb) and single cell approaches are 

starting to emerge43. The improved availability of tissues relevant to CAD and increasingly 

sensitive methods at hand to link association SNPs to downstream risk genes, suggest that a 

comprehensive re-annotation of all 58 known CAD association loci in disease-relevant cells 

and tissues using the latest methods may be worthwhile.
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Non-coding RNAs

A substantial proportion of trait-associated SNPs identified by GWAS lie outside of protein 

coding regions and map to the non-coding intervals44. However, the mechanistic relationship 

of trait-associated SNPs with the non-coding functional genome is poorly understood. Since 

protein-coding genes account for only a very small proportion of the transcribed human 

genome, non-coding (nc) RNA are now emerging as alternative functional genomic elements 

underlying GWAS hits. Along with microRNAs, long non-coding RNAs (lncRNAs), 

ncRNAs defined as transcripts larger than 200 nucleotides (nt) in length, are emerging as 

important regulators involved in cancer as well as in neurological, cardiovascular, 

developmental and other human diseases45, highlighting the need to investigate the possible 

contributions of variations in ncRNAs to human diseases.

Systematic analyses are emerging that evaluate the potential association of regulatory 

ncRNAs, with complex traits. miRNAs comprise a class of short (20–24 nt) regulatory 

RNAs that modulate mRNA translation and turnover. A recent study leveraged GWAS meta-

analysis in more than 188,000 individuals to identify 69 miRNAs located in genomic regions 

associated with abnormal blood lipid levels46. The work identified four miRNAs 

(miR-128-1, miR-148a, miR-130b and miR-301b) that are associated with LDL-C uptake 

and cholesterol efflux by possibly controlling the expression of the LDL receptor (LDLR) 

and the ATP-binding cassette transporter A1, respectively. miR-QTL studies using liver 

tissue from 424 morbidly obese individuals revealed an association of miR-128-1 and 

miR-148a expression with SNPs linked to abnormal human blood lipid levels, suggesting the 

relevance of these miRNAs identified by GWAS studies to human cardiometabolic 

disorders46.

A subset of lncRNAs, intergenic lncRNAs (lincRNAs), represents a rapidly evolving catalog 

of lncRNA species that does not overlap with exons of protein-coding genes.47 A number of 

studies examined the implication of lincRNAs in complex diseases based on GWAS studies 

(LincPoly48, LincSNP49). These studies represent initial efforts to integrate disease-

associated SNPs and human lincRNAs, but both datasets do not include complete GWAS 

SNP data, and focus on only a few thousand lincRNAs. A recent study identified 495,729 

and 777,095 SNPs in more than 30,000 lncRNA transcripts in human and mouse, 

respectively. A large number of SNPs were predicted to impact the lncRNA secondary 

structure and modulate lncRNA–miRNA interactions. By mapping these SNPs to GWAS 

results, 142 human lncRNA SNPs are GWAS tagSNPs and 197,827 lncRNA SNPs are 

within these GWAS LD regions.50 Kumar et al. examined the association of SNPs with 

expression of lincRNAs in human blood, and identified 112 cis-regulated lincRNAs. A 

considerable number of the observed lincRNA cis-eQTLs had disease- or trait-associations51 

suggesting that intergenic GWAS-associated SNPs may act by modulating expression of 

specific lincRNAs.

Although functional roles of most lincRNAs remain elusive, mechanistic insights into 

distinct nuclear and cytoplasmic actions47, 52, 53 for a small number of well-studied 

lincRNAs strongly suggest that some lincRNAs play major regulatory roles in a variety of 

cellular processes, such as X chromosome inactivation54, embryogenesis55, cell 

pluripotency56, cell development and differentiation57. Depending on their subcellular 
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localization, lincRNAs can mediate gene expression through distinct mechanisms. In the 

nucleus, they are involved in co-transcriptional regulation, recruitment of proteins complexes 

to specific loci for cis or trans regulation of gene expression or scaffolding of nuclear 

complexes47, 52. In the cytoplasm, lincRNAs can function as competitive endogenous RNAs 

that bind miRNAs and inhibit their activity, pair with mRNAs to trigger post-transcriptional 

regulation or interact with target proteins to modulate their function47, 52. LincRNAs are 

increasingly implicated in human diseases, including cancer,58 neurological diseases59 and 

cardiovascular disorders60–66, and also modulate physiology and pathophysiology in cells 

relevant to cardiometabolic disease. For example, cardiac lncRNAs like Braveheart, CHRF 
and Mhrt regulate cardiomyocyte differentiation and cardiac hypertrophy60, 63, 64. 

LincRNAs in smooth muscle and endothelial cells (MALAT, linc-p21) regulate 

proliferation65, 66. A few lincRNAs have been implicated in macrophage functions: 

lincRNA-Cox2 in mouse represses the basal expression of interferon-stimulated genes 

(ISGs) by partnering with the heterogeneous nuclear ribonucleoproteins (hnRNPs) 

hnRNPA/B and hnRNPA2/B167 and a human monocytic THP-1 lincRNA called TNF and 

hnRNPL-related immunoregulatory lincRNA (THRIL) regulates expression of tumor 

necrosis factor (TNF) through its interactions with hmRNPL68. Conserved adipose 

lincRNAs, such as Firre and Blnc169–71, and species-specific lincRNAs, such as lnc-BATE1 

and ADINR72, 73, regulate adipogenesis of white and brown adipocytes in mouse and 

human.

Several studies have tried to identify and validate the causal GWAS variants that regulate 

lncRNA expression and function. A well-known example on chromosome 9p21 that 

encompasses an antisense lncRNA, ANRIL (antisense ncRNA of the INK4 locus) has been 

significantly associated with susceptibility to coronary disease as well as abdominal aortic 

and intracranial aneurysms74. Some associated SNPs in this region have been shown to alter 

the transcription and processing of ANRIL transcripts75.

To further uncover the effects of GWAS-associated genetic variants on ncRNAs function, 

future studies are needed to: 1) Define a comprehensive genome-wide set of human 

lncRNAs across all disease-relevant tissues. Because lncRNAs have lower and more tissue-

specific expression patterns than mRNAs, this requires deeper RNA sequencing of multiple 

human cells and tissue than is currently available in GENCODE76 or the human bodymap77; 

2) Investigate ncRNA enrichment and association in targeted yet genome-wide approaches 

within catalogued GWAS and particularly whole genome sequencing projects as they 

emerge, for example NHLBI’s Trans-Omics for Precision Medicine (TOPMed) Program 

(https://www.nhlbiwgs.org); 3) establish bioinformatics pipelines to prioritize trait-

associated ncRNAs (systematically using synteny and conservation, tissue expression, eQTL 

and ASE, and ChIP-Seq promoter, enhancer and transcription factors marks at trait-

associated lncRNAs); and 4) Establish high-throughput pipelines for human-relevant 

functional follow-up of trait-associated ncRNAs in disease-relevant cell types and in in vivo 
animal models.

Taken together, ncRNAs, such as miRNAs and lncRNAs may be important for interpreting 

GWAS data and may in many cases act as the causal genomic element in contributing to 

human cardiometabolic diseases. The therapeutic tractability of potent and specific antisense 
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technologies targeting single or multiple ncRNAs implicated in human cardiometabolic 

diseases may thus have important clinical ramifications for the treatment of these diseases.

Genome editing

The putative functional variants identified by fine mapping overlapping with regulatory 

marks, eQTL and ASE analysis, and other bioinformatic approaches require further 

experimental validation to establish causality. Genome engineering and human induced 

pluripotent stem cells (hiPSCs), when combined, represent powerful tools to accelerate 

GWAS-driven functional validation of causal variants at trait-associated loci.

Genome engineering represents strategies and techniques developed in recent years for the 

targeted modification of the genetic information. The type II clustered regularly interspaced 

short palindromic repeats (CRISPR) and the CRISPR-associated protein 9 (Cas9), an RNA-

guided nuclease, are based on a bacterial system that has been modified for genome 

engineering in mammalian cells78, 79. Due to its ease of adaptability and improved 

efficiency, CRISPR/Cas9 has rapidly become one of the most popular approaches for 

genome engineering80. Consisting of Cas9 and a short guide RNA (gRNA), it generates site-

specific DNA breaks, which are repaired by either non-homologous end-joining (NHEJ), 

creating insertions or deletions at the site of the break, or homology-directed repair (HDR) 

by precise change of a genomic sequence using an exogenously introduced donor 

template81. In addition to the disruption of genomic sequence through nucleases, the 

CRISPR-associated catalytically inactive Cas9 protein, termed dCas9, can be fused to 

repressor82 or activator domains82–84, named CRISPRi82 and CRISPRa82–84, respectively. 

Such modified CRISPR/dCas9-fusion proteins, together with guide RNA, can then be 

introduced to control the expression or activity of candidate gene or regulatory elements that 

harbor GWAS signals85.

Although the CRISPR/Cas9 system is highly efficient in human cell lines, gene editing in 

primary human cells is very challenging. Human iPSCs have the potential to be 

differentiated to all adult cell types, including rare or inaccessible human cell populations, 

for reliable disease modeling. By generating clonal lines carrying desired genetic 

modification introduced by CRISPR/Cas9 and then differentiating to somatic cells relevant 

to atherosclerosis (for example hepatocytes, macrophages, smooth muscle cells, endothelial 

cells, cardiomyocytes), genome editing in hiPSCs provides a unique platform for functional 

validation of GWAS CAD loci across multiple disease-relevant cell types. Applications 

include: 1) Double strand break repaired by NHEJ pathway may introduce frame-shift 

mutation or early stop codon, which, if in a critical coding exon, likely causes nonsense-

mediated decay of the mRNA and effectively eliminates gene function for loss-of function 

(LOF) studies; 2) By HDR-mediated precise nucleotide alteration using a donor template, it 

is feasible to generate hiPSC lines in which the disease-associated SNP is the sole 

experimental variable, thereby investigating the causal role of genetic variants - for instance 

the targeted alteration of specific transcription factor binding site motifs in otherwise intact 

loci could reveal the functional contribution of transcription factor binding to the function of 

a regulatory element; 3) The unique multiplexing capabilities of the CRISPR/Cas9 system 

facilitate the deletion of a large stretch of genomic DNA, enabling the functional 
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interrogation of non-coding regulatory elements and non-coding transcripts. In addition, 

because most disease-associated SNPs confer only modest risk, the relevance of multiple 

monoallelic and biallelic combination can be addressed by multiplexing of CRISPR/Cas9 

gene editing.

One example of such an interrogation investigates the role of an intronic variant (rs9349379) 

in the CAD/MI risk locus PHACTR1 prioritized by genetic fine-mapping and eQTL in 

human coronary arteries. The study using endothelial cell extracts first showed that alleles at 

rs9349379 are differentially bound by the transcription factors myocyte enhancer factor-2 

(MEF2). The deletion of this MEF2-binding site using CRISPR/Cas9 in hiPSC and 

subsequent differentiation to endothelial cells then revealed that heterozygous endothelial 

cells carrying the deletion express 35 percent less PHACTR1 transcript86.

Despite being powerful, precise editing of human genomes in pluripotent stem cells by HDR 

of targeted nuclease-induced cleavage has been hindered by the low efficiency of HDR over 

NHEJ, making the screening of clones containing desired genotypes time-consuming and 

labor-intensive. However, great strides have been made to improve the efficiency of HDR. A 

Cas9D10A mutant functioning as a nickase yields similar HDR but lower NHEJ mutation 

rates81. The establishment of the iCRISPR platform through targeting of inducible Cas9 

expression cassettes into the AAVS1 locus in human embryonic stem (ES) and iPS cell lines 

has increased markedly the efficiency of genetic modifications for both knockout or knockin 

of genetic variants87. The overall gene editing efficiency can be further enhanced by 

transfection of ribonuclear protein (RNP) complex that is comprised of the recombinant 

Cas9 protein and synthetic gRNAs88, either in vitro transcribed or chemically synthesized 

and modified89, the latter further improving efficiency. Several studies have also found that 

inhibition of DNA ligase IV90 and DNA-PKcs (DNA-dependent protein kinase, catalytic 

subunit)91, key players in the NHEJ pathway, promote HDR while reducing the frequency of 

NHEJ90–92.

Future studies need to: 1) Further improve the efficiency and reduce the cost of hiPSC 

differentiation; 2) Optimize differentiation protocols to produce mature cells phenotypically, 

functionally and transcriptomically highly similar to primary somatic cells; 3) Improve the 

efficiency of HDR-mediated precise nucleotide alteration over NHEJ; 4) Apply CRISPRi 

and CRISPRa in hiPSC for dynamic and precise control of expression of individual 

transcripts in hiPSC and differentiated cells; 5) Adapt conditional knockout for the 

assessment of gene function in different lineages of differentiation; 6) Establish more 

advanced techniques to facilitate rapid screening of rare iPS clones carrying the desired 

genotypes93, and thoroughly evaluate potential off-target effects.

In summary, facile high efficiency genome-editing coupled with hiPSC differentiation can 

pave the way for functional interrogation of GWAS variants and loci of complex non-

Mendelian diseases such as CAD, and can help delineate human genotype-phenotype 

relationship in human cellular disease models, and potentially, in genetically-modified mice 

carrying mutations, reporter or conditional alleles for in vivo modeling using CRISPR/Cas9-

mediated genome engineering94, 95.
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Somatic gene targeting (siRNA, ASO, and AAV)

As mentioned above, transgenic mouse models that are genetically predisposed to develop 

atherosclerosis due to partial or complete loss of ApoE or Ldlr function, or that have been 

modified to have plasma lipid profiles which more closely reflect human biology are 

invaluable in the functional study of candidate GWAS genes. Mouse lines with ‘humanized’ 

lipid profiles include the Apobec knockout and the human apolipoprotein B(100) transgenic 

mouse models, which have been combined with haploinsufficient Ldlr deficiency in the 

LAhB-H mouse strain96. Genetic ablation remains the gold standard for the characterization 

of gene function: combining conditional aproaches and tissue-specific Cre drivers allow 

precise interrogation of the potential role of a gene to the phenotype of interest. On the other 

hand, even with the advent of facile CRISPR/Cas9 genome editing, the development of 

genetic models is laborious, expensive, and time-consuming.

Alternatives to genetic approaches include the use of small interfering RNA (siRNA) or 

antisense oligonucleotide (ASO) inhibitors. In addition, adeno-associated virus (AAV) 

platforms can be used for either overexpression, or for permanent loss of function by 

expression of short hairpin RNAs (shRNA). Combining these approaches with the existing 

genetic atherosclerosis models is a potent way to accelerate GWAS functional analysis, but 

compared to more rigorous genetic approaches involves some compromises and limitations 

in interpretability. These approaches are therefore not a substitute for subsequent genetic 

validation of promising putative causal genes, but rather a way to quickly prioritize 

candidate genes for further study. ASO and siRNA have in common that they are 

systemically delivered, modified nucleic acids that target the gene of interest through 

complementary base-pairing between their primary sequences and those of their target 

transcripts. Despite these similarities, the two forms differ in their mechanism of action. In 

the case of siRNA, the technology takes advantage of the RNA-direct RNA endonuclease 

activity of Argonaute2 (Ago2), the miRNA binding component of the RNA-interference 

Silencing Complex (RISC). The cytoplasmic RNase III endonuclease, Dicer1, cleaves 

double-stranded or short-hairpin RNA, and concomitantly loads one strand of the circa 22 

basepair cleavage product into a binding cleft in Ago2. The solvent-exposed bases of the 

Ago-loaded RNA serve to target RISC to complementary sequences97. Endogenous 

microRNAs in mammals have imperfect complementarity with their targets: down 

regulation occurs by a combination of mRNA destabilization due to the recruitment of 

decapping and de-adenylation factors, and to the inhibition of translational initiation 98. In 

contrast, artificial shRNA and siRNA systems take advantage of an evolutionary remnant 

activity of Ago2, which cleaves the paired target strand where perfect complementarity 

exists between itself and the loaded RNA 99. The interfering RNA serves only as a targeting 

component and is not cleaved itself. The two types of RNA interference most significantly 

differ in their entry points to the endogenous system: while exogenous siRNAs can be 

transfected directly in cell culture, the shRNA are supplied as transgenes (usually along with 

a reporter gene, such as eGFP). As such, the shRNA genes must be transcribed in the 

nucleus, and the hairpin RNAs exported to the cytoplasm, cleaved by Dicer and loaded into 

RISC. The advantage of the shRNA approach is that candidate inhibitory RNAs can be 

validated in cell culture, and then readily adapted to viral or transgenic applications in vivo. 

However, the nuclear export protein, Exportin-5, which shuttles shRNA to the cytoplasm has 
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been shown to be limiting in the biogenesis of shRNA, leading to initial limitations of this 

approach100. A number of subsequent innovations have alleviated these concerns, which 

were partly due to saturation of the miRNA biogenesis pathway, but also to off-target effects 

of the passenger strands of the shRNAs101–103.

In contrast to shRNA, siRNA bypasses the requirement for nuclear transcription and export: 

upon entry into the cytoplasm; the siRNA is rapidly loaded into RISC and interference 

begins. Since naked RNA has an extremely low half-life in plasma, and since endocytosed 

RNA is targeted to the lysosome and degraded, a variety of strategies have been developed to 

evade these obstacles to in vivo use104. In addition to its usefulness in basic research, RNA 

interference has already shown therapeutic potential in CVD, for example by targeting 

PCSK9105.

ASOs are also short nucleic acids, but do not depend on the RISC complex for their action. 

In the context of functional analysis of GWAS hits, ASOs may be deployed in three ways: 1) 

targeted to a transcript of a protein-coding gene to interfere with the initiation of translation; 

2) targeted to intron-containing genes to block splicing, and 3) targeted against microRNAs 

to block their inhibitory effects on target genes. In each of these cases, pairing of the ASO 

with its target physically precludes the interaction of the target RNA with another molecule, 

elongation initiation factors, splicing factors, or target mRNAs respectively. In addition, the 

specialized class of ASOs termed ‘gapmers’ are designed with a central stretch of 

unmodified DNA nucleotides, which when base-paired to a complementary RNA target 

yields a heteroduplex that is recognized as a substrate by the ubiquitous intracellular 

ribonuclease, RNase H1. The resulting cleavage of the RNA strand of the heteroduplex by 

RNase H1 is analogous to that of siRNA, albeit by a completely different mechanism, and 

induces rapid turnover of the cleaved RNA. It should be noted that mipomersen, a 

therapeutic ASO targeting apoB, which is approved for the treatment of homozygous 

familial hypercholesterolemia, is based on a gapmer strategy106.

The advantage of RNA-targeting strategies as an approach, irrespective of the precise 

mechanism, is that they are relatively straightforward in design and validation. There are 

however key limitations of this approach. Systemic delivery of nucleic acids has been shown 

to induce an inflammatory response - for any given inhibitor there is a possibility of off-

target effects of the artificial RNA, and the biodistribution of the oligonucleotides can be 

influenced slightly, but not tightly controlled. The inflammatory side effects have been 

largely mitigated by successive innovations in the chemistry of the synthetic nucleic acids 

used, and concerns over off-target effects can be addressed by the separate use of 

independent ASOs targeting a given gene. The limitations concerning the delivery and 

distribution are harder to address: the fact that most oligonucleotides end up by default in the 

liver (predominantly in hepatocytes) is less of a concern in the functional analysis of CVD 

GWAS candidate risk genes that are liver-expressed, than it might be in other biological 

contexts. In addition, both siRNA and ASO approaches only permit gene knockdown but not 

upregulation.

Adeno-associated virus (AAV) vectors provide a tractable system to perform the reciprocal 

experiment: overexpression of candidate causal genes for functional analysis in vivo107. As 
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noted above, they can also be adapted for corresponding loss of function experiments using 

shRNA expression cassettes. As the name suggests, AAV was identified as a coinfecting 

parvovirus with adenovirus. To date AAV has no identified role in any human disease, and 

does not replicate in the absence of adenovirus. These characteristics have made it an 

attractive platform for candidate gene therapy development, which has been a boon for 

parallel uses in basic science. AAV induces minimal immune response compared to other 

viral vectors commonly used for somatic gene expression (specifically adenovirus and 

lentivirus). An additional advantage is the availability of multiple serotypes with varying 

tropisms, which addresses a significant shortfall in the application of system siRNA/ASOs: 

combining serotyped-limited tropism with tissue-restricted promoters allows a significantly 

nuanced expression of genes or shRNAs that target them. Furthermore, significant efforts 

have been made to improve and refine the naturally isolated serotypes by repeated rounds of 

in vivo selection and expansion, suggesting that even more tissue-selective versions will be 

available in the near future108. A significant validation of this platform is that AAV-driven 

expression of PCSK9 when coupled with a dietary stress (high fat diet) induces 

atherosclerosis in mice109.

Hepatocyte-expressed genes are particularly amenable to study using AAV: AAV8 

transduction rates of hepatocytes are high and the relatively quiescent nature of the adult 

liver allows expression to be maintained for many months. One significant limitation is 

however that the packaging capacity of AAV is not very large: approximately 4.8 kb for 

AAV and about 2.4 kb for its self-complementarity derivative. While this precludes the use 

of AAV for some genes, the platform is nonetheless very powerful and widely used. To date, 

clinical AAV gene therapy has been approved only in Europe, and only for the treatment of 

familial lipoprotein lipase deficiency110, but homozygous familial hypercholesterolemia is a 

CVD-relevant condition that is an excellent candidate for an AAV-based therapeutic111.

Examples of functional genomics at selected CAD GWAS loci

Recent progress has been made in understanding the biology underlying some of the genes 

which have been implicated in risk for CAD. Being expressed in distinct cell types involved 

in atherosclerosis (Figure 3), these genes exert their effects in a cell type specific manner, 

which determines their specific contributions to disease. We provide here five selected 

examples of CAD GWAS loci for which the tools described above have been variably used 

to identify the causal gene at the locus and probe the underlying biology linking the gene to 

CAD.

SORT1 (sortilin)

A compelling and now widely replicated novel locus associated with plasma lipid traits is 

the chromosome 1p13 locus, which had the lowest p-value of association in the Global 

Lipids Genetics Consortium (GLGC) study4. Notably, this locus had been independently and 

genome-wide significantly associated with MI/CAD, suggesting that it is of high importance 

to human cardiovascular health112–115. The locus harbors a high density of genes that might 

plausibly contribute to the phenotype, which necessitated thorough functional analysis. Fine-

scale mapping of the locus refined the signal to a 6.1 kb genomic region containing six SNPs 
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in high LD. Cloning of this region into a luciferase reporter construct, and the separate 

replacement of each SNP with the corresponding minor allele variant identified rs12740374 

as the causal SNP. The mechanism by which it exerts its effect is due to the creation of a 

novel C/EBPa binding site, which was functionally validated by gel shift assays115. 

Nonetheless, the causal gene remained ambiguous: SORT1 and PSRC1 both had strong 

eQTLs in liver and a priori, neither gene could be eliminated as causal. To address this, the 

genes were separately overexpressed using the hepatocyte-tropic AAV8 system. SORT1 

overexpression, but not that of PSRC1, substantially decreased plasma LDL-C in a mouse 

model with a humanized lipid profile (LahB, as described above), identifying SORT1 as the 

causal gene115.

Sortilin is a type I transmembrane multi-ligand receptor that is synthesized in the ER as a 

propeptide and is further processed to an active, mature form in the Golgi. It localizes to 

both the Golgi and plasma membranes, and facilitates trafficking of a variety of proteins 

bidirectionally between the Golgi lumen and the extracellular environment. Sortilin can also 

facilitate protein degradation by shuttling proteins from the Golgi to the lysosome through 

the endolysosome. Preliminary characterization of the role of sortilin in regulating very low-

density lipoprotein (VLDL) secretion was performed through a series of Sort1 
overexpression studies in hepatocytes and hepatocyte-like cell lines, and in a variety of 

mouse models. Sort1 expression was shown both to decrease VLDL secretion rates and 

increase plasma LDL turnover, thereby reducing plasma cholesterol additively116. Surface 

plasmon resonance demonstrated a high affinity pH-dependent interaction between sortilin 

and apoB-containing lipoproteins; and mutants defective in their ability to traffic to the 

endolysosomal system were used to show that sortilin serves as a bona fide cell surface LDL 

receptor. Wild-type sortilin binds LDL at the cell surface in an LDL receptor-independent 

manner and delivers the LDL to the endolysosomal system for degradation115, 116.

Based on the concordance of the human GWAS and mouse overexpression data it was 

hypothesized that genetic knockout or knockdown of Sort1 would have the opposite effect, 

increasing plasma cholesterol and VLDL secretion. However, the reported effects of the 

genetic loss of sortilin on VLDL secretion have been contradictory and perplexing: loss of 

sortilin has been shown in different studies to result in either increased and decreased VLDL 

secretion116–118. These discrepancies likely reflect the differences in models, methods of 

ablating sortilin function, lengths of time under diet-induced lipid overload, and technical 

approaches to measuring outcomes. Further complicating the story, Sort1−/− mice have 

recently been shown to be more insulin sensitive than wild-type mice on a high fat diet119, 

and loss of sortilin in 3T3-L1 adipocytes and C2C12 myotubes decreases insulin-stimulated 

glucose uptake due to decreased transport of Glut4 to the plasma membrane120, 121. While 

these data suggest that sortilin influences insulin signaling, the sortilin protein is itself 

regulated by insulin signaling122. Increased insulin sensitivity in extrahepatic tissues in 

Sort1−/− mice could be responsible for a decrease in FFA flux to the liver, a major 

contributor to hepatic lipid accumulation and a driver of VLDL secretion during insulin 

resistance. The role of sortilin in the tissues other than the liver under these conditions is 

unknown and confounds the interpretation of the effect of sortilin knockout and knockdown 

in the liver on VLDL secretion. In addition, there may be other aspects of extrahepatic 

sortilin biology that could influence disease risk: in a mouse model with a humanized 
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plasma lipid profile, whole body knockout Sort1−/− had no effect on plasma lipids, but 

nonetheless was associated with decreased atherosclerosis. This effect was found to be 

attributable to the ability of sortilin to serve as a receptor of LDL: macrophages lacking 

sortilin have reduced LDL uptake, which led to decreased foam cell formation123.

The detailed molecular mechanisms by which sortilin influences the complex processes of 

hepatic and plasma lipid metabolism, VLDL secretion, and MI/CVD risk have not yet been 

elucidated, but under conditions consistent with western lifestyle it clearly impacts ApoB100 

secretion, LDL clearance and foam cell formation. While the roles of sortilin in diverse 

CVD-relevant cell and tissue types have confounded the analysis of its biological function, 

this underscores the importance of the gene, and likely explains its robustness as a GWAS 

signal.

TRIB1 (Tribbles-1)

GWAS have consistently associated variants at the 8q24 locus containing the gene TRIB1 
with multiple human metabolic phenotypes. The TRIB1 locus was first implicated in plasma 

lipid metabolism by two papers published simultaneously that showed non-coding variation 

in the TRIB1 gene locus was associated with circulating TG levels in humans2, 124. The 

landmark GLGC meta-analysis of more than 100,000 individuals further illustrated the 

importance of TRIB1 in lipid metabolism by associating the locus with not only TGs but 

also total cholesterol (TC), HDL cholesterol (HDL-C), LDL cholesterol (LDL-C), and 

CAD4, making TRIB1 the only novel locus from these studies to be associated with all four 

lipid traits and CAD. The plasma lipid associations were replicated in a GLGC follow-up 

meta-analysis of about 200,000 individuals125, while the CAD association was confirmed in 

two recent GWAS from the CARDIoGRAMplusC4D consortium, in which researchers 

investigated the association of genome-wide sequence variation with atherosclerosis 

regardless of plasma lipid phenotype1, 22. The significantly associated SNPs in all instances 

fall around 20 kb upstream of the TRIB1 gene, suggesting a role in the regulation of TRIB1 
gene expression. One recent study showed that significantly associated SNPs in the TRIB1 
locus alter the expression of a long non-coding RNA named TRIBAL, although the role of 

TRIBAL in any disease pathology is currently unclear126.

The TRIB1 gene encodes a protein known as Tribbles-1, which was originally identified in a 

drosophila mutagenesis screen which revealed that the protein Trbl (the drosophila homolog 

of TRIB1) participates in oogenesis via promoting the proteasomal degradation of String, 

Twine and Slbo, the latter of which is the Drosophila homolog of the human transcription 

factor CCAAT/enhancer binding protein alpha (C/EBPa)127–130. Subsequent work in the 

myeloblast 32D cell line showed that human Tribbles-1 can induce the proteasomal 

degradation of C/EBPa and C/EBPb by promoting their ubiquitination by the E3 ligase 

COP1 through direct binding to both targets and the ligase131, 132. This function is critical 

for Tribbles-mediated leukemogenesis133, 134, and also coordinates Tribbles regulation of 

macrophage polarization and differentiation135. Prior to the GWAS described above, TRIB1 
had not been implicated in cardiometabolic disease pathology.

The human genetic findings have spurred a great deal of research into TRIB1 aimed at 

elucidating the mechanism through which it may participate in CAD pathogenesis. Studies 
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using AAV-mediated overexpression of mouse Trib1 (AAV_mTrib1) to investigate this 

association found that increasing levels of hepatic Trib1 decreased plasma TC, HDL-C, 

LDL-C, and TG levels in a dose-dependent manner96. AAV-treated mice showed a decrease 

in hepatic lipogenic gene expression, and ex vivo studies of primary hepatocytes from those 

mice showed reduced cellular TG production and secretion. Furthermore, LAhB mice 

treated with AAV_mTrib1 had decreased plasma ApoB levels, and HepG2 cells 

overexpressing TRIB1 had decreased ApoB secretion. These data suggest that TRIB1 can 

modulate VLDL secretion from the liver, presumably by affecting the level of Triglycerides 

available for efficient VLDL assembly. More recent work from our group in a liver-specific 

KO of Trib1 (Trib1_LSKO) established that C/EBPa is the mechanistic link between TRIB1 
and hepatic lipogenesis136. Trib1_LSKO mice have increased hepatic TG content, lipogenic 

gene expression, and de novo lipogenesis. They also display increased hepatic C/EBPa 

protein, and this increase is both necessary and sufficient to drive the lipogenic phenotype. 

The Trib1_LSKO mice also have increased plasma lipids, however this appears to be a C/

EBPa-independent affect and suggests that TRIB1 regulates plasma lipid metabolism via 

other mechanisms independent of lipogenesis. TRIB1 has also recently been shown via in 
vitro overexpression assays to interact with the transcription factor ChREBP137 as well as 

SAP18, a component of the Sin3A-HDAC co-repressor complex138. The role of these 

interactions in vivo and the extent to which they all participate in plasma lipid regulation 

remains to be determined.

The association of the TRIB1 gene locus with CAD is likely driven in large part by its 

putative regulation of VLDL secretion. However, it remains possible that other mechanistic 

links between the gene and CAD contribute to this genetic association. The aforementioned 

role of TRIB1 in macrophage polarization135 is one potential link, as the M1/M2 status of 

macrophages in the lesion can contribute to plaque progression139.

Human genetics have implicated the TRIB1 locus in a host of other human phenotypes, 

including levels of circulating adiponectin140 and liver enzymes141 - an association 

functionally confirmed by the Trib1_LSKO mouse - as well as the onset of metabolic 

syndrome in humans142. Each of these human traits could by themselves contribute to CAD, 

either directly or indirectly. Thus it is possible that pleiotropic effects of TRIB1 contribute to 

CAD, and careful work in animal models of metabolic disease with TRIB1 tissue-specific 

deletion will be required to determine the specific contribution to disease burden by each 

specific function of TRIB1.

LIPA

A number of GWAS studies have identified LIPA as a novel locus for CAD18, 171, 172. Meta-

analyses revealed that LIPA CAD risk alleles rs1412444T and rs2246833T (clustered in 

introns 2 and 3 in high linkage disequilibrium, r2=0.985) were associated with higher LIPA 
expression in monocytes143 but not in liver26, nor did they alter plasma lipids125. Fine 

mapping of the LIPA region by the CARDIoGRAM+C4D consortium22, 144 failed to reveal 

additional variants with stronger signals than the original GWAS SNPs, and rs2246833 had 

the strongest CAD association (P=4.9x10−12). Both aforementioned SNPs show strong 
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H3K27Ac enrichment, and are in and near DNase I hypersensitivity site and TF binding 

sites (ENCODE),145, 146 suggesting possible regulatory roles.

LIPA encodes an enzyme called lysosomal acid lipase (LAL) which catalyzes the hydrolysis 

of cholesteryl ester (CE) and triglycerides in intracellular lysosomes after their 

internalization via receptor-mediated endocytosis of lipoprotein particles. Human LAL is 

encoded by the LIPA gene on chromosome 10q23.2–23.3147, and is a 46 kDa glycoprotein. 

After undergoing co-translational glycosylation in the endoplasmic reticulum and 

attachment of mannose-6-phosphate residues in the Golgi apparatus, LAL is targeted to pre-

lysosomal compartments148, 149.

Prior to the GWAS discovery for CAD, loss-of-function (LOF) mutations in LIPA were 

identified as causes of rare lysosomal disorders. Wolman disease is an infantile-onset 

disorder with massive infiltration of CE/TG filled macrophages in multiple organs due to 

complete LIPA LOF. Cholesteryl ester storage disease (CESD) is a later-onset disorder with 

incomplete LIPA LOF mutations resulting in hepatomegaly, hyperlipidemia and premature 

atherosclerosis150, 151. The most common mutation seen in CESD patients is a splice 

junction mutation at exon 8 of LIPA, which leads to about 3 to 5 percent of normally spliced 

LAL protein and similar low levels of LAL activity152. Data of CESD fibroblasts suggest 

that LIPA deficiency leads to lysosomal CE accumulation that limits lysosomal FC 

release153, 154 and cytosolic cholesterol esterification21, 22, and impaired ATP binding 

cassette transporter A1 (ABCA1)-mediated cholesterol efflux155, 156. In a phase 3 trial of 

enzyme-replacement therapy in children and adults with lysosomal acid lipase deficiency, 

recombinant human LAL Sebelipase Alfa resulted in a reduction in multiple disease-related 

hepatic and lipid abnormalities157; with the long term effects of Sebelipase Alfa on 

cardiovascular events undetermined.

Although recombinant human LAL (rhLAL) enzyme replacement therapy is likely to exert 

protective effects against premature atherosclerosis in CESD patients, it is unclear what the 

effects of rhLAL treatment would be in CAD patients without LAL deficiency. Indeed, our 

understanding of the role of LIPA in the progression of atherosclerosis is far from complete. 

eQTL studies have suggested that the GWAS risk alleles for CAD are associated with 

increased LIPA mRNA in monocytes.143 How the higher LIPA mRNA in monocytes relates 

to increased risk of CAD is unclear: whether the GWAS CAD variants associated with 

higher LIPA mRNA is correlated with higher LAL protein levels or enzymatic activity, and 

if it is a true gain of function (GOF) mutation has yet to be determined. The GWAS CAD 

alleles are in LD with a missense coding variant (rs1051338) in the signal peptide that may 

alter post-translational trafficking and secretion, so it is possible that the CAD signal marks 

a loss of normal LAL processing and function despite higher mRNA. Thus, whether 

increased or decreased monocyte-macrophage activity of LAL beyond the normal cellular 

response, in the general population and in CAD patients is atherogenic or protective remains 

a completely open and controversial question.

A comprehensive understanding of the impact of LIPA on CAD pathogenesis relies on in 
vivo modeling. Lipa knockout mice (Lipa−/−) display shortened life span, tissue CE 

accumulation and hepatosplenomegaly.158 Furthermore, Lipa−/− accelerates atherosclerosis 
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in the ApoE−/− hyperlipidemic mouse model.159 These findings recapitulate the pathological 

phenotypes of human LIPA LOF in CESD.160 Although systemic rhLAL administration 

reduces hyperlipidemia and atherosclerosis in Ldlr−/− mice,159 the atheroprotection was 

most likely attributable to the reduction in plasma lipids.159 Surprisingly, transgenic (Tg) 

mice with whole body Lipa overexpression apparently have elevated plasma VLDL-C and 

hepatocellular lipids on western diet.161 In context of the lack of association between GWAS 

CAD risk alleles and plasma lipid levels or liver LIPA expression,125 the whole body 

knockout or Tg mice do not serve as an appropriate model of the CAD-associated locus 

identified in GWAS studies. Indeed, because the CAD risk alleles are specifically associated 

with higher monocyte LIPA mRNA, it is now imperative to define the monocyte/

macrophage-specific role of LIPA CAD risk alleles in vitro in macrophage function using 

isogenic hiPSC lines carrying risk or non-risk alleles with subsequently differentiation to 

macrophages - or in vivo in the progression of atherosclerosis using monocyte/macrophage-

specific GOF of LIPA in mice models of atherosclerosis.

ADAMTS7

The association of the ADAMTS7 locus with CAD risk has been identified and replicated 

through GWAS.1, 162–164 This locus for coronary atherosclerosis was discovered in the 

PennCath cohort using angiographic CAD as the primary outcome,162 and subsequent 

studies have shown that ADAMTS7 also relates to MI.1, 163, 164 Its association is most 

robust for angiographic CAD, a marker of coronary atherosclerotic burden, suggesting that 

ADAMTS7 is likely to relate to clinical events through the development and progression of 

atherosclerosis. Recent findings in mouse vascular injury and atherosclerosis models165, 166 

are consistent with such an action in the humans. Genetic variation at the ADAMTS7 locus 

has no relationship with traditional risk factors or mechanistic biomarkers;163, 164 hence the 

directional impact of ADAMTS7 expression on CAD risk and the underlying biological 

mechanisms have been unclear. Functional studies suggest that ADAMTS7, a 

metalloproteinase expressed in vascular smooth muscle cells (VSMC) and endothelial cells 

(ECs), is the probable causal proatherogenic gene at this locus.165–168 Briefly, the top CAD-

risk SNPs at this locus are eQTLs for higher ADAMTS7 expression while allelic variation at 

a non-synonymous variant (rs3825807, Ser214Pro) in ADAMTS7 associates with reduced 

CAD risk and may impair ADAMTS7 function in VSMC (7). Our recent work demonstrated 

that deletion of Adamts7 is atheroprotective in both Ldlr−/− and ApoE−/− mouse models.166 

Thus, blockade of ADAMTS7 expression or inhibition of its function presents novel 

therapeutic opportunities for prevention and treatment of CAD.

Understanding the relationship between CAD risk alleles at the ADAMTS7 chr15q21.1 

region and expression levels of ADAMTS7 in human disease-relevant cells has not been 

straightforward. Interestingly, in available eQTL datasets with large sample sizes169 the lead 

SNPs from the PennCath (rs1994016), CARDIoGRAM (rs3825807), and C4D (rs4380028) 

GWAS studies demonstrate a significant association with ADAMTS7 expression and match 

the directionality and causality of in vivo data using mouse model, with the CAD risk alleles 

being associated with higher ADAMTS7 expression. However, currently there are no large 

eQTL or RNA-Seq based ASE data that provide adequate power to determine eQTL 

directionality in the most pertinent human vascular cells and tissues. Individual laboratories 
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and the GTEx consortia170 are now generating datasets from a large enough sample pool of 

human vasculature to address this question. In the ENCODE Project,171 the NIH Roadmap 

Epigenomics Mapping data and in our own ChIP-Seq experiments, the top CAD SNPs fall in 

ADAMTS7 5′ and 3′ regions that overlap regulatory elements in VSMC and aortic tissues 

and are, for instance, close to binding sites for TCF21, a VSMC transcription factor that 

regulates coronary development and is itself a GWAS locus for CHD.163, 172, 173 In 

unpublished data, several of these regions have been found to have enhancer activity in rat 

A7r5 VSMC suggesting that this chr15q21.1 CHD SNPs may act on CHD by regulating 

human coronary arterial smooth muscle cells (HCASMC) ADAMTS7 expression.

ADAMTS7 (or the A disintegrin and metalloproteinase with thrombospondin motifs-7) is a 

member of the ADAMTS family of secreted zinc metalloproteases with characteristic 

protein domain composition including at least one thrombospondin type I repeat 

(TSPI).174–177 The family of ADAMTS proteases degrades extra-cellular matrix and several 

ADAMTS family members have been implicated in human diseases including thrombotic 

thrombocytopenic purpura (TTP),178 Weill-Marchesani syndrome179 and atherosclerosis.180 

Unlike other metalloproteinases, ADAMTS family members demonstrate narrow substrate 

specificity due to their C-terminal exosites (13–16).174–177 Previous research on ADAMTS7 
has mainly centered on its role in bone and cartilage growth because cartilage oligomeric 

matrix protein (COMP) has been identified as a substrate.181 ADAMTS7 can regulate 

endochondral bone formation through interactions with COMP. COMP is also expressed in 

VSMC and vasculature and additional studies with viral-mediated overexpression and 

knockdown in vivo and in vitro suggests that ADAMTS7 might modulate VSMC phenotype 

switching and migration via interactions with COMP.180

Most domains in human and mouse Adamts7 are highly conserved rendering the mouse as a 

useful model for actions in human disease. The first evidence that Adamts7 deficiency 

(Adamts7−/−) attenuates atherosclerosis in vivo, in both the ApoE−/− and Ldlr−/− mouse 

models, and Adamts7−/− confers a specific loss of VSMC migration in response to 

inflammatory signals was recently published.166 It has been shown that Adamts7−/− also 

reduces vascular response to mechanical injury.165, 166 Adamts7 gene expression was 

induced transiently in the mouse vasculature in response to stress, both in the wire injury 

model and in the atherosclerosis experiments, that TNFa induces Adamts7 expression in 

primary VSMCs, and that VSMC of Adamts7−/− mice show reduced TNFa-induced 

migration.166 Immunostaining in human diseased coronary arteries reveals colocalization of 

ADAMTS7 with cells positive for VSMC markers, and immunofluorescence in human 

aortic smooth muscle cells shows subcellular localization with leading edges of migrating 

VSMCs. These data suggests that Adamts7 modulates VSMC phenotype and migration 

during inflammatory stress and mechanical injury and that Adamts7 deficiency markedly 

reduces atherosclerotic lesions in hyperlipidemic mice.

Human eQTL interrogations reveal that common alleles that relate to lower CAD risk are 

also associated with reduced ADAMTS7 expression. This is consistent with rodent studies 

and supports a pro-atherogenic role of ADAMTS7 in humans. Because ADAMTS7 has 

narrow substrate specificity, it has promise as a potentially safe drug target. Thus, inhibition 

of ADAMTS7 is a potential novel therapeutic strategy for CAD in humans. Howevver, 
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several important questions still need to be addressed in order to accelerate clinical and 

therapeutic translation related to this locus.

TCF21 (Pod1, capsulin, epicardin)

The TCF21 gene codes for a basic helix-loop-helix transcription factor known to bind cis-

regulatory elements as heterodimers with TCF3 or TCF12. It is expressed in the 

mesenchyme of developing organs including the lung, kidney, gut and heart, and constitutive 

Tcf21 knockout mice die at birth due to missing alveoli in their lungs182. In addition, Tcf21 

has been shown to play a role in vascular development: Tcf21 is highly expressed in the 

proepicardial organ which contains progenitor cells of coronary artery smooth muscle and 

endothelial cells and cardiac fibroblasts. It is necessary for epithelial-to-mesenchymal 

transition of epicardial fibroblasts and their subsequent migration into the cardiac 

interstitium183, 184.

The TCF21 gene locus has been linked to CAD risk by GWAS which first reported 

rs12190287 as the association lead SNP163. This polymorphism lies in the 3′UTR of one of 

the two TCF21 transcript variants. It has been shown to disrupt an AP-1 binding site inside 

an enhancer in vascular smooth muscle cells172. Interestingly, this variant also alters a 

mir-224 binding site inside a TCF21 transcript variant, suggesting additional miRNA-

dependent regulation of TCF21 on the post-transcriptional level185. More recently, the 1000 

Genomes based CARDIoGRAMplusC4D GWAS meta-analysis reported rs12202017, which 

lies 3.7kB upstream of the TCF21 gene within the TARID lncRNA locus, as the lowest p-

value association SNP1. This locus also harbors a separately reported CAD association 

signal in Han Chinese, with rs12524865 as the strongest association SNP in this study186. 

The potential role of TARID in the vasculature has so far not been interrogated and presents 

an attractive target for future study. The contribution of TCF21 to disease appears to be 

coronary artery specific: a meta-analysis for shared susceptibility reported that the TCF21 

association signal is confined to CAD and is not implicated in risk for ischemic stroke10.

The role of the Tcf21 protein in CAD has recently been investigated in vivo using a lacZ 

reporter and a lineage tracing model in mouse. These studies show that Tcf21 expressing 

cells migrate into the forming atherosclerotic lesion and contribute to the fibrous cap187. 

Further studies are needed to investigate how lack of TCF21 contributes to lesion size and 

composition. To identify TCF21 transcriptional target genes, ChIP-Seq studies have been 

carried out in HCASMCs173. Enrichment analysis showed that TCF21 binding sites are 

enriched for CAD GWAS association SNPs. This suggests a role of TCF21 as regulator of 

genomic loci such as ADAMTS7 conferring risk for atherosclerosis in coronary artery 

SMCs.

Summary

GWAS have provided a rich collection of CAD loci that suggest the existence of exciting 

new biology relevant to atherosclerosis that we never suspected but that require extensive 

functional follow-up studies. However, causality of a specific gene cannot be inferred solely 

based on proximity to a region of statistical association with disease. A thorough and 

meticulous annotation of the region with data generated in relevant cell types is paramount. 
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Specific targeting of the SNP or region of association needs to be combined with the 

interrogation of changes in transcription of all genes in the haplotype block of interest. Far 

too often are candidate genes chosen for functional studies without solid evidence for their 

definitive association with the GWAS signal, and poorly characterized or long-distance 

genes are rarely followed up upon. Combinatorial effects of more than one gene within a 

locus, possibly across multiple tissues, could be one mechanism by which common, non 

protein-coding variation contributes to CAD. We may eventually be surprised by the 

complexity with which the implicated genomic regions modulate the CAD phenotype. In 

any case, it remains early days for the functional genomics of CAD GWAS loci. The 

likelihood is very high that fundamentally new biology regarding atherosclerosis and CAD 

will be learned through the interrogation of CAD GWAS loci. Furthermore, the hope 

remains that at least some of these new pathways relevant to CAD pathogenesis will yield 

new therapeutic targets for the prevention and treatment of CAD.
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Non-standard Abbreviations and Acronyms

3C Chromosome Conformation Capture

AAV adeno-associated virus

ASE allele-specific expression

ASO antisense oligonucleotide

ATAC-Seq Assay for Transposase-Accessible Chromatin using Sequencing

Cas9 CRISPR-associated protein 9

ChIP-Seq Chromatin immunoprecipitation with massively parallel sequencing

CRISPR type II clustered regularly interspaced short palindromic repeats

CRISPRa activation of gene transcription using the CRISPR/Cas9 technology

CRISPRi inhibition of gene transcription using the CRISPR/Cas9 technology

eGFP enhanced Green Fluorescent Protein

eRNA enhancer RNA

eQTL expression quantitative trait loci

FAIRE Formaldehyde-Assisted Isolation of Regulatory Elements

GOF gain of function

gRNA guide RNA
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GWAS genome-wide association studies

H3K4me1 Histone 3 Lysine 4 monomethylation

H3K4me3 Histone 3 Lysine 4 trimethylation

H3K27ac Histone 3 Lysine 27 acetylation

H3K36me3 Histone 3 Lysine 36 trimethylation

HDR homology-directed repair

hiPSC human induced pluripotent stem cell

hnRNP heterogeneous nuclear ribonucleoprotein

iCRISPR inducible genome editing using the CRISPR/Cas9 technology

LD linkage disequilibrium

lincRNA intergenic lncRNA

lncRNA long non-coding RNA

LOF loss-of function

LSKO liver-specific gene knockout

NHEJ non-homologous end-joining

shRNA short hairpin RNA

SNP single nucleotide polymorphism
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Figure 1. Mechanism by which non-coding risk SNP can affect phenotype
Top: multiple SNPs associated with disease are located in the intergenic region proximal to 

genes A, B and C. One of the SNPs with genome-wide significance is situated within a cis- 

regulatory element (orange tag). The lowest P-value SNP (‘lead SNP’, flag tag) lies outside 

the regulatory element.

Bottom: Through bending of the DNA molecule the regulatory element gets into physical 

contact with the promoter of its target gene, in this case gene C which is not the gene in 

closest proximity, leading to regulation of its expression (‘activation’ or upregulation in case 

of an enhancer element). The SNP located within the regulatory element (‘functional SNP’, 

orange tag) can now affect transcription by for instance altering transcription factor (TF) 

binding affinity based on genotype via disruption of a TF binding motif
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Figure 2. Experimental tools for GWAS functional follow-up studies
GWAS findings can be functionally annotated using genome-wide methods, which help 

prioritize loci with likely biological function. These putative risk loci can be further 

interrogate by genome editing using the CRISPR/Cas9 system in vitro and in vivo. 

Additionally, adeno-associated virus (AAV) and antisense oligos (ASO) can be employed to 

study candidate gene knockdown and overexpression in the mouse model. TF: transcription 

factor; eRNA: enhancer RNA; ncRNA: non-coding RNA; eQTL: expression quantitative 

trait loci; ASE: allele-specific expression; iPSC: induced pluripotent stem cells; NHEJ: non-

homologous end joining; HDR: homology-directed repair; KO: knockout; KI: knockin.
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Figure 3. CHD GWAS risk genes are active in selective cell types involved in atherosclerosis
Coronary Heart Disease follow-up studies have demonstrated roles for LIPA, SORT1 and 

TRIB1 as plasma lipid regulators in the liver, as well as in macrophages biology. Within the 

vessel wall, TCF21 is upregulated in de-differentiated smooth muscle cells which migrate to 

the forming fibrous cap. Adamts7 is also a regulator of smooth muscle migration but also a 

role in endothelial cells has been suggested
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