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Activity in anterior cingulate cortex (ACC) has been linked both

to commitment to a course of action, even when it is associated

with costs, and to exploring or searching for alternative courses

of action. Here we review evidence that this is due to the

presence of multiple signals in ACC reflecting the updating of

beliefs and internal models of the environment and encoding

aspects of choice value, including the average value of choices

afforded by the environment (‘search value’). We contrast this

evidence with the influential view that ACC activity is better

described as reflecting task difficulty. A consideration of

cortical neural network properties explains why ACC may carry

such signals and also exhibit sensitivity to task difficulty.
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When humans and other animals take a course of action

they usually do so because they believe the benefits of

doing so will outweigh the costs. There is an evolving

understanding of the mechanisms underlying evaluation

of one well-defined choice against another that have been

linked to ventromedial, orbital prefrontal, and intrapar-

ietal sulcal cortex [1,2��,3,4��,5]. There are also, however,

times when animals decide whether it is worth acting at

all or evaluate whether it is worth continuing to engage in

the current behaviour or to explore alternatives. This

distinct pattern of decision-making is linked to ACC;

ACC manipulations affect the ability of animals to

initiate any action at all [6], weigh up the costs and

benefits of actions [7,8��], switch between actions as

their values change [9,10��], or explore alternative

choices [11��]. A series of recent studies have

demonstrated the presence of activity changes in ACC

that correspond to the types of signals that would be

needed to guide such behaviour; these signals encode the
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values of actions [7,12��,13,14,15,16��,17��,18��], the

average value of alternative courses of action in the

environment (‘search value’) as opposed to the current

or default course of action [19–21], exploration  and

evaluation of hypotheses  about the best course of action

to take [22,23��,24], and reflect updating of decision-

makers’ beliefs and internal models of their environ-

ments [25,26]. Not only are such signals found in ACC

but they are weak or absent in regions such as orbito-

frontal and ventromedial prefrontal cortex that carry

other value signals [12,19,20,22].

In addition, however, ACC has also been linked to

‘conflict monitoring’ — the process of detecting when

two competing choices might be made during a difficult

task [27]. Detecting response conflict and task difficulty

is important if mistakes are to be averted. Recently it has

been argued that ACC activity interpreted as reflecting

value signals has been confounded with difficulty and

so it has been argued that such ACC activity is

more parsimoniously interpreted as simply reflecting

task difficulty [28]. Here we review evidence, first,

that value signals and, second, model update signals

can be separated from any effect difficulty exerts on

ACC activity.

For example, a recent study [19] investigated how people

decide whether to explore a set of alternative choices or

stick with the opportunity to make a ‘default’ choice. The

value of exploring was encoded by a ‘search value’ signal

in ACC indexing the average value of the set of alterna-

tive choices that might be taken. In addition to search
value, ACC activity was also influenced, in a negative

fashion, by engage value (the value of the default option)

and costs incurred by searching. This pattern of positive

and negative modulations is suggestive of a comparison

process taking place within ACC that could inform deci-

sions about whether or not to explore, or ‘forage’ amongst,

the alternatives.

Figure 1a, however, summarizes how difficulty might be

confounded with the difference between search and engage
value — a quantity sometimes referred to as the ‘relative

value of foraging’ or RVF [28]. The probability of beha-

vioural change — searching as opposed to ‘engaging’ with

the current default — is plotted on the ordinate as a

function of RVF. A confound between RVF and difficulty

arises if subjects are biased to take the default. Even if the

experiment examines decisions equally on either side of

the objective indifference point — the point at which

searching and engaging objectively have the same value

— it is still possible that the sampling is unequal with
www.sciencedirect.com
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Figure 1

Experiment 1 - Stage 1 (forage phase)
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Avoiding confounds between value and difficulty. (a) Foraging frequency (left) and difficulty, as indexed by log(RT) (right), as a function of RVF

in an experiment claiming value signals and difficulty have been confounded in ACC [28]. The black line indicates behavioural data and the red

one the corresponding model fit. The grey bars are the sample sizes and the dotted lines are the two indifference points (red = subjective or

empirical and black = objective indifference point, i.e. where the value of searching and engaging are objectively equal; ‘RVforage = 0’). The

participants tended not to forage and to be inaccurate. For example, foraging frequency barely reaches 80% even on the right hand side of the

left panel and the participants’ empirical indifference points were far from the objective indifference point. (b) After adequate task training and

instruction in a version of the task employing a balanced and evenly sampled range of search and engage values in which decisions are non-trivial

and require value comparison [19] several features of the experiment, participant performance, and data are notable: (i) participants balance all the

factors that should influence decision-making in an approximately rational manner and the point of empirical indifference is close to the objective

indifference point meaning that ii) data are sampled from both left and right of decision space ensuring foraging values and difficulty decorrelation;

iii) Log(RT) decreases either side of the empirical indifference point in an approximately similar manner confirming foraging values and log(RT) are

not correlated. Foraging decisions plotted (similar format to a) as a function of RVF (based on all three variables that should influence behaviour:

search value, engage value, and an additional factor related to the cost of foraging). Adapted from [19,28].
respect to the subjective or empirical indifference point

— the point at which a given participant has no prefer-

ence between the options. The confound arises because

decisions close to the subjective indifference point are

the most difficult to take [for example, they are associated

with long reaction times (RTs)]. If participants are very

biased to nearly always take the default option then RVF

and difficulty both increase together across much of the

decision space.
www.sciencedirect.com 
Experiments addressing this criticism must contain certain

obvious features. First, a broad and evenly distributed

range of search and engage value must be tested. However,

at the same time, it is crucial that decisions are not trivially

easy and that some value comparison occurs on each trial.

Second, it is imperative that participants make decisions

that really are guided by option values and do not always

simply engage with the default option. One way of ensur-

ing this is simply to provide adequate task training and
Current Opinion in Neurobiology 2016, 37:36–43
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Figure 2
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Search value has an early and sustained effect on ACC activity, engage value impacts on ACC slightly later, and difficulty effects occur

even later in the trial. (a) General linear model (GLM) timecourse analysis ACC activity demonstrates effects of both search value (red) and

engage value (blue). Note that RVF is a combination of search value and engage value. The results remain the same regardless of whether the

regression included all the data from [19] and regressors indexing the cost of taking a foraging choice, difficulty, and/or logRT. They remain the

same even if, to further guard against any possibility of a confound, the analysis focused on the data that best discriminates between search value

and difficulty. This can be achieved by focusing on a subset of the data. To ensure no correlation between RVF or search value and difficulty or

log(RT) the easiest engage trials where p(forage) < 0.02 (lower panel) can be removed. The numbers of samples included are shown in blue in the

lower panel while the excluded trials are shown in red. Forage frequency in the remaining trials is shown in the upper panel. The effect of log(RT)

(c) and difficulty (d) appear late in the trial. Statistical significance of signals can be assessed by convolving the time-course of their beta-weights

with a hemodynamic function (m = 6 and s = 3; to average the beta-weights of each contrast and every person separately). Search value had a

significant effect on ACC ( p � 0.001 in all cases). Difficulty had little impact on ACC activity as estimated using a standard hemodynamic function

time-locked to the start of the trial or response cue onset, but the effect of difficulty and RT increased later in the trial. (e) HRF convolved average

BOLD signal in ACC binned according to different parameters. When ACC activity is examined late in the trial period it can be seen that it

increases with search value (e, i), difficulty (e, ii) and RVF (e, iii). When the same analysis is conducted earlier in the trial then only search value

and RVF effects are apparent. All bins are equally sized for every participant and included at least 32 trials. Error bars are the standard error of the

individual effects for each bin. Adapted from [19].

Current Opinion in Neurobiology 2016, 37:36–43 www.sciencedirect.com
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Figure 3

(a) (b)
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Value effects are prominent in ACC proper while difficulty effects

are more prominent in more dorsal areas in or near pre-SMA. (a)

Whole brain cluster-corrected effect of search value (peak z = 3.2 at

Montreal Neurological Institute (MNI) coordinates [�4, 36, 26] in ACC

after controlling for difficulty and log(RT) using data shown in Figure 1c

and Figure 2. (b) Previous reports [19] of search value related activity

emphasized a similar ACC location [MNI, 4, 28, 30, yellow]. In a study

[28] emphasizing difficulty, effects were in or just anterior to pre-SMA

(MNI, 4, 32, 42, green). The one exception, reported in the

Supplementary Analysis was at a point intermediate between the

yellow and green areas that is probably within the border of ACC

[MNI, 6, 28, 34]. Adapted from [19].
instruction prior to scanning. If this is done then subjects

make rational value-guided decisions and therefore sub-

jective and objective indifference points are close

(Figure 1c) and difficulty/value confounds disappear; many

decisions are examined in decision space to the right of the

subjective indifference point where RVF and difficulty are

not positively correlated. Third, when analysing the data,

rather than examining the neural correlates of the aggre-

gate of decision variables — RVF — it is advisable to focus

on the component values that determine RVF: search

value, engage value, and costs. These component values

are more easily dissociated from difficulty. Employing

these principles Kolling and colleagues [19] reduced the

shared variance between search value, engage value, and

difficulty to 2% so that the neural correlates of each could

be separately identified (Figure 2). Now it is clear that ACC

activity reflects search value shortly followed by engage

value although towards the end of the decision period some

variance in ACC activity is accounted for by difficulty and

RT. Parallels can be drawn with recordings made in other

brain areas concerned with value-guided decision making

such as the intraparietal sulcus [29]; initially activity in

intraparietal neurons reflects saccade value but then it

transitions to reflect action related factors.

Such a pattern of results suggests ACC is a neural network

in which decisions to explore or not are taken; activity is

affected by a search value signal (apparent throughout

much of the trial period) but that the network takes longer

to make decisions using this signal and others when they

are difficult [30] (and therefore some variance in dACC

activity at the end of the decision period is accounted for

by difficulty and RT). Biophysically plausible neural

networks have been proposed [31] in which pools of

neurons are active in proportion to the evidence favouring

particular choices. If the representation of search value in

ACC takes this form then the network activity should

reflect both search value and difficulty. In fact, the

prediction is that the impact of search value should scale

with difficulty. Although it might be difficult to assess

such a precise hypothesis with fMRI such considerations

suggest that conducting experiments with decisions in-

volving extremely high search values may be unwise [28];

when decision difficulty is very low the network may

resolve the decision and enter an attractor state so quickly

that it will be difficult to see any effect of search value. In

other words, exclusive sensitivity to search value, and not

difficulty too, is not a prediction for a search value sensi-

tive decision circuit but instead sensitivity to both search

value and difficulty is expected. In the future, careful

neurophysiological measurements will be essential for

testing such potential mechanisms at the neuronal level,

disentangling how aggregate measures such as the BOLD

signal are derived from actual neural network operations.

Furthermore, ACC is sometimes co-activated with adja-

cent medial frontal brain areas [26] and so an important
www.sciencedirect.com 
consideration when drawing conclusions about ACC is to

ensure that neural activity that is recorded really is drawn

from ACC rather than adjacent medial frontal areas. After

controlling for difficulty, search value effects are most

prominent in ACC itself (Figure 3a) but task difficulty

effects lie in more dorsal areas in or anterior to the pre-

supplementary motor area (Figure 3b).

Humans and other animals should change from the be-

haviour they are currently engaged in and explore alter-

native courses of action not just when they have a sense of

the value of those alternatives but also when they realise

the environment is changing. ACC activity is also promi-

nent when events suggest that a decision-maker’s internal

model of their environment should be updated

[11��,25,26]. By definition, surprising events are ones that

were not predicted by the decision-maker’s current mod-

el of their environment. They are, therefore, frequently

the events that indicate the need for model updating. At

the same time, however, surprising events are often

events to which responses are made more slowly (longer

RTs) and with greater difficulty because the response, or

the stimulus eliciting it, was unanticipated. Does ACC

activity at the time of model updating simply reflect task

difficulty — the difficulty of responding when internal

model updating occurs? Or does it activate when internal

models have to change?

A recent study tested exactly this distinction [26]

(Figure 4) while controlling for response confounds and

showed that model update signals can indeed be dissoci-

ated from task difficulty effects. Human participants
Current Opinion in Neurobiology 2016, 37:36–43
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Figure 4
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ACC is active when internal models are updated not just when

task difficulty increases because surprising events occur. On each

trial of a saccade planning task, participants began by fixating a

central cross. A target (coloured dot) appeared on a circular perimeter.

Its location was predictable because target locations were similar over

runs. However, two types of unexpected targets occurred. (a) On

model update trials the new dot location was indicative of future dot

locations. To signal those trials, the dot had a different colour. In the

example, before the update, trials had red dots in the upper right and

the model update trial had a blue dot in the lower right. (b) This was

not the case on surprise only trials. There the dot colour was grey and

future targets reverted to the original distribution (in the example to the

upper right) (c) Plot of target locations (angle a from vertical) over

150 trials. Different coloured targets are from different runs. One-off

targets are shown in grey. (d) Distribution of target locations within a

run is a combination of a circular Gaussian, shown in red, and a

uniform distribution, shown in black, from which one-off trials were

drawn. (e) Whole-brain cluster-corrected fMRI analysis indicated a

region spanning ACC and adjacent pre-supplementary motor area was

the only area in which there was a significant effect of model updating

Current Opinion in Neurobiology 2016, 37:36–43 
made saccades to targets (coloured dots) that, on each

trial, appeared on a circular perimeter surrounding a

fixation point. The dots’ locations were usually predict-

able because they were similar over runs of 10–20 trials

but two types of unexpected event occurred. On model
update trials (Figure 4a) the dot appeared in an unexpect-

ed location and its new colour indicated that future dots

were likely to appear nearby on the circle’s periphery.

However, on surprise only trials (Figure 4b), dots appear-

ing in white in a surprising location indicated one-off

events and no need for participants to update their

internal model of where future dots would appear. The

difficulty of responding on any trial reflects the surprise

associated with a particular stimulus value, a, and is

characterized in Information Theory by its Shannon

information IS(a):

ISðaÞ ¼ �log pðajPriorÞ (1)

where p(ajprior) is the prior probability that the observa-

tion a would be made, given the brain’s internal model

just before the data point was observed. Therefore the

Shannon information captures how unexpected or unlike-

ly a particular observation is, given the internal model and

is directly related to the difficulty of the trial. In contrast,

updating of the internal model is captured by the Kull-

back–Leibler divergence (DKL) between the posterior

and the prior:

DKL postkpriorð Þ ¼
X

a

p ajpriorð Þ

� log p ajpriorð Þ�log p ajpostð Þ½ � (2)

where p(ajprior) is the probability that the observation a
would be made, given the model just before a was

observed, and p(ajpost) is the same quantity, given the

updated model just after a was observed. DKL is the

probability-weighted average change in Shannon informa-

tion across all possible stimuli as a consequence of updating

the model.

Although RTs increased on both model update and

surprise trials ACC was preferentially engaged on model

update trials. Moreover ACC activity covaried with the

model updating parameter, DKL, but not surprise IS

(Figure 4e and f), despite IS’s relationship to difficulty.

Although parietal regions were active as a function of
(contrast shows all voxels with a parametric effect of DKL). The ROI

denoted by the yellow line is the ACC region of interest analysed in

panels E and F. (f) Mean effect size for surprise (IS) and updating (DKL)

in the ACC ROI (error bars are SEM). (g) Raw activity in the ACC ROI

plotted as a function of trial-in-run (0 on abscissa indicates model

update or surprise trial, while trials 1, 2, 3, etc., are the trials following

the model update or surprise trial. (e) At last, there are regions other

than the dACC that are more active as a simple function of the

reaction time, which is mostly a function of the difficulty of responding,

similarly in one off and update trials (left and right panel).). Adapted

from [26].

www.sciencedirect.com
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response selection difficulty as indexed by RT, ACC was

not (Figure 4h). Other studies similarly suggest ACC is

activated when there is a need to update the task model

even in the absence of any response selection difficulty

(because no response is required at all) [32]. Model

updating-related activity in ACC is, therefore, linked to

behavioural flexibility and change and not simply re-

sponse selection difficulty. This role of the ACC may

underlie its activation during proactive control and error

correction. It is possible that ACC activity in other experi-

ments may have a similar role [21,33��].

In summary, ACC carries multiple signals. ACC activity

reflects both search value and the updating of internal

models of the environment. In both cases, and in other

reports [20,34,35], ACC is linked to behavioural change,

invigoration of new responses, novel response strategies,

and exploration. We have conceptualized search value as

the average value of choices that might be taken in an

environment but it could take many other forms depend-

ing on context. We and others have argued that some of

these signals may have arisen in the context of the

foraging choices that animals make as they decide to

leave one foraging patch to explore another

[15,19,20,36,37]. Advantages of this approach are that it

situates ACC function within the context of a behaviour

for which there has been substantial evolutionary pres-

sure and it suggests ways of optimal modelling of both

behaviour and neural activity. Similar processes are likely

to underlie human behaviours such as task switching.

Such a perspective holds great promise for making novel

predictions about behaviour and neural mechanisms in a

principled fashion.

Two regions within ACC, dorsal ACC (dACC) and

perigenual ACC (pgACC) [19,20,38��,39��], carry

related signals. Both areas are found in humans and

macaques; each area has a distinctive pattern of inter-

action with wider brain circuits that is similar across

species [40,41��]. Similar areas are also present in

rodents and again they mediate related aspects of

behaviour [8��,11��,25,42]. Indeed, when a decision-

maker has updated its internal model or is about to

pursue an alternative course of action then it may be

necessary to exert careful control over which actions

are selected next. However, the same is true even

when one manages to resist the attractions of an

alternative course of action [43] or when attention

has lapsed or errors have been made. In all these

situations it is necessary to exert greater cognitive

control and this may be brought about by interactions

between ACC and lateral prefrontal cortex

[16��,23��,24,44��,45,46,47,48,49��].
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