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Analyzing Somatic Genome Rearrangements
in Human Cancers by Using Whole-Exome Sequencing

Lixing Yang,1,11 Mi-Sook Lee,2,11 Hengyu Lu,3,11 Doo-Yi Oh,2 Yeon Jeong Kim,4,5 Donghyun Park,4,5

Gahee Park,4 Xiaojia Ren,6 Christopher A. Bristow,7 Psalm S. Haseley,1,6 Soohyun Lee,1

Angeliki Pantazi,8 Raju Kucherlapati,6,8 Woong-Yang Park,2,4 Kenneth L. Scott,3,12 Yoon-La Choi,2,9,12,*
and Peter J. Park1,6,10,12,*

Although exome sequencing data are generated primarily to detect single-nucleotide variants and indels, they can also be used to iden-

tify a subset of genomic rearrangements whose breakpoints are located in or near exons. Using>4,600 tumor and normal pairs across 15

cancer types, we identified over 9,000 high confidence somatic rearrangements, including a large number of gene fusions. We find that

the 50 fusion partners of functional fusions are often housekeeping genes, whereas the 30 fusion partners are enriched in tyrosine kinases.

We establish the oncogenic potential of ROR1-DNAJC6 and CEP85L-ROS1 fusions by showing that they can promote cell proliferation

in vitro and tumor formation in vivo. Furthermore, we found that ~4% of the samples havemassively rearranged chromosomes, many of

which are associated with upregulation of oncogenes such as ERBB2 and TERT. Although the sensitivity of detecting structural alter-

ations from exomes is considerably lower than that from whole genomes, this approach will be fruitful for the multitude of exomes

that have been and will be generated, both in cancer and in other diseases.
Introduction

Genomic profiling of tumors with high-throughput

sequencing technologies has provided an unprecedented

opportunity for in-depth studies of genome rearrange-

ments. Whole-genome sequencing (WGS) data are now

routinely used for detection of a wide range of rearrange-

ments with base-pair resolution of breakpoints, including

those breakpoints in non-coding regions. These events

are typically identified on the basis of read depth,1 discor-

dant paired-end reads,2 split-read (reads spanning the

breakpoint) alignment,3 genome assembly,4 local assem-

bly,5 or by a combination of these methods.6 RNA-seq

data can be used to interrogate gene fusions when the

fusion is expressed at a sufficiently high amount.

Whole-exome sequencing (WES) data are generated to

detect single-nucleotide variants (SNVs) and small indels.

An enormous number of exomes have been generated by

researchers around the world: the latest release from the

National Heart, Lung, and Blood Institute (NHLBI) Exome

Sequencing Project7 includes 6,500 samples; the Exome

Aggregation Consortium (ExAC), an international collabo-

ration to collect exome data, has more than 60,000 exomes

in its current release. Despite the decreasing cost of WGS,

WES data will continue to be generated because many so-

matic variants occur at low variant allelic frequency, and
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the necessary high-depth (e.g., >100–5003) sequencing

is affordable only with a capture-based approach given cur-

rent technologies. An important question, therefore, is

whether genomic rearrangements can also be detected in

exomes. If that were possible, we would be able to identify

a large number of rearrangements with datasets that were

generated for other purposes.

Here, we describe an approach to identify structural var-

iations (SVs) from WES data. In a typical WES protocol,

genomic DNA is sheared into fragments (~150–250 bp),

and those containing exons are enriched by hybridization

with shorter biotinylated probes (~50–100 nucleotides

long). These probes are usually densely tiled across exons,

extending just past the exon-intron boundaries. Thus,

when the breakpoint of an SVoccurs in or near the targeted

region, the DNA fragment that contains the breakpoint

can be captured if there is sufficient overlap between a

probe and the DNA on either side of the breakpoint

(Figure 1A). The sensitivity of detection fromWES is clearly

much lower than that from WGS, given that just a subset

of rearrangements with breakpoints in or near exons can

be detected and the fragment capture process introduces

inefficiencies. However, with the large number of available

exomes and the higher coverage than WGS, we demon-

strate that re-analyzing existing large-scale WES data for

genomic rearrangements can yield valuable findings.
A 02115, USA; 2Department of Health Sciences and Technology, Samsung

sity, Seoul 06351, Korea; 3Department of Molecular and Human Genetics,

titute, Samsung Medical Center, Seoul 06351, Korea; 5Samsung Biomedical

g Electronics Co., Seoul 06351, Korea; 6Division of Genetics, Brigham and

ine and Institute for Applied Cancer Science, The University of Texas MD

arvard Medical School, Boston, MA 02115, USA; 9Department of Pathology

sity School of Medicine, Seoul 06351, Korea; 10Ludwig Center, HarvardMed-

erican Journal of Human Genetics 98, 843–856, May 5, 2016 843

mailto:ylachoi@skku.edu
mailto:peter_park@harvard.edu
http://dx.doi.org/10.1016/j.ajhg.2016.03.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2016.03.017&domain=pdf


A B

DC

exon   intron

read pairs

Shear DNA

Capture with magnetic beads
Wash, amplify, paired-end sequencing

Hybridize with baits

biotinylated baits

Detect SVs

SV breakpoint in intronSV breakpoint in exonno SV

RET exon12

WES
tumor

WES
normal

WGS
tumor

WGS
normal

captured SV breakpoint

Ref

Donor

RET exon12
not captured SV breakpoint

clipped reads
discordant pairs

WES
tumor

WGS
tumor

SV breakpoint

CYB5A exon1

Detected from WGS

Detected from WES

40 31

6988114

31

Detected from WGS with
breakpoints in exons
Detected from both WES
and WGS with breakpoints
in introns or intergenic 
regions

Figure 1. Detecting Somatic SVs from WES Data
(A) Workflow showing how DNA fragments are captured and sequenced when SV breakpoints occur in exons and near exon-intron
boundaries.
(B) A true somaticCCDC6-RET fusion resulting from a balanced inversion (chr10:61,655,977–43,611,997) in a thyroid cancer (TCGA-FK-
A3SE) is detected by bothWES andWGS. The scheme of the inversion is shown on the top (not to scale). The Integrated Genome Viewer
screen shot for the captured breakpoint is shown on the bottom. Green and purple read pairs represent discordant pairs from two
different breakpoints; one breakpoint is captured by WES and the other is not. The gray reads are concordant read pairs. The half-
gray and half-striped reads with green or purple outlines are partially aligned (clipped) reads spanning the breakpoints.
(C) A Venn diagram showing the overlap between somatic SVs called from WES and WGS data.
(D) A true somatic deletion (chr18:71,930,713–71,958,983) in a lung adenocarcinoma (TCGA-91-6840) is detected by WES but not by
WGS and is validated by PCR. The coverage in WES is >1003 and there are six discordant read pairs (two displayed), whereas the
coverage of WGS in the same region is 303 and no discordant read pair is present. The red reads are discordant read pairs supporting
the somatic deletion.
We applied our proposed method to survey somatic SVs

in 4,609 samples across 15 tumor types from The Cancer

Genome Atlas (TCGA). We focus on somatic variants

here, but the approach we describe applies to detection

of both germline and somatic rearrangements. We chose

the TCGA data because they are high-quality, multi-

dimensional data from a large number of samples,

including cases that have undergone both WES and

WGS. The availability of these two data types for the

same samples allows us to characterize the sensitivity and

specificity of exome-based SV detection. Although

exome-based fusion detection has been recently used to

identify recurrent NAB2-STAT6 (MIM: 602381 and

601512) fusion in solitary fibrous tumors,8 our study ex-

pands this approach to a much larger scale to discover

additional cancer-driving gene fusions and characterize

their features. Our results demonstrate the association of
844 The American Journal of Human Genetics 98, 843–856, May 5, 2
oncogene upregulation with massive rearrangements. We

also report experimental validation that two of the candi-

date fusions we identified are cancer drivers, including

the report of an activating genetic event related to ROR1

(MIM: 602336).
Material and Methods

TCGA Sample Acquisition and WES
The details of data production were described in a previous publi-

cation.9 The procedures followed were in accordance with the

ethical standards of the responsible committee on human experi-

mentation (institutional and national). Tumor samples were ob-

tained from the TCGA network with appropriate consent from

the relevant institutional review board. Tumors were resected,

flash-frozen, and shipped to a centralized processing center (Bio-

specimen Core Resource) for additional pathologic review and
016



extraction of nucleic acids. The three genome sequencing centers

(Baylor Human Genome Sequencing Center, Broad Institute, and

The Genome Institute at Washington University) collectively

sequenced the exomes from tumor tissues and matched normal

tissues (mostly blood samples). Exome capturing procedures differ

among sequencing centers and evolve over time. The details can

be found in individual TCGA marker papers. Sequencing reads

were aligned to the reference genome with the Burrows-Wheeler

Aligner,10 and quality control was performed. A single BAM file

that includes reads, calibrated quantities, and alignments to the

genome was generated for each sample.

Data Access
All primary sequence files can be downloaded by registered users

from CGHub. Clinical data are available through the TCGA Data

Portal. All coordinates are based on the hg19 human reference

genome, downloaded from the UCSC Genome Browser.

Detecting Somatic Genome Rearrangements in

WES Data
Somatic genome rearrangements were called by Meerkat, a soft-

ware package we developed.6 In brief, all discordant read pairs

(reads that do not form a proper pair with expected orientations

and distance between the reads) are first identified from the

BAM files. Then, discordant read pairs supporting the same

breakpoint are merged into clusters, which are used to call SV can-

didates. Reads spanning SV breakpoints (clipped reads and

unmapped reads) are mapped back to the SV candidates (split-

read mapping). Breakpoints are refined to the basepair resolution

once split-read supports are identified. Variants are filtered by a

large database of germline variants obtained by merging all

matched normal BAM files from different tumor types together.

The final somatic variants must have discordant read-pair support

and split-read support totaling at least six reads and/or read pairs,

with at least three discordant read-pair support. We have previ-

ously used these criteria to identify somatic SVs from WGS sam-

ples and have demonstrated that such a workflow offers great

sensitivity and specificity. Samples with >100 somatic SVs were

discarded from further analysis. Additional filters were applied to

obtain high-confidence somatic rearrangements: at least four sup-

porting discordant read pairs were required for each somatic event,

and the size of an intra-chromosomal event could not be less than

20 kb. For comparison with WGS results, if the somatic rearrange-

ment detected from WES data and the one detected from WGS

data were the same type of event on the same chromosome(s)

and the breakpoints differed by less than 50 bp, they were consid-

ered to be the same event. In most cases, the breakpoints predicted

from WES and WGS were exactly the same. PCR primers were de-

signed by Primer3.11

Detecting Activating Gene Fusions
RNAwas extracted, prepared into Illumina TruSeqmRNA libraries,

and sequenced by an Illumina sequencing platformwith a target of

60 million read pairs per tumor (48 bp paired-end reads) and sub-

jected to quality control. RNA reads were aligned to the reference

genome with Mapsplice.12 Gene expression was quantified for

the transcriptmodels (TCGAGAF2.1)withRSEM13 andnormalized

within sample to a fixed upper quartile of total reads. RNA-seq re-

sults (normalized gene-level expression and exon-level expression)

were downloaded from the Genome Data Analysis Center at the

Broad Institute. RNA data were available only for tumor tissues
The Am
because TCGA collected blood (rather than adjacent normal tis-

sues, which are generally unavailable) as thematched normal con-

trol for the majority of the cases. Therefore, to normalize exonic

expression, we computed a Z score for each exon on the basis of

its expression across all samples in that tumor type.GeneOntology

(GO) term enrichment analyses were performed with DAVID.14 All

50 and 30 fusion partners were entered into DAVID as a gene list to

identify over-represented GO categories, and the functional anno-

tation clustering of GO terms was performed. The p value was

calculated by one-tail Fisher’s exact test.

Analysis of Massive Rearrangements
A binomial model was used to identify the samples in which the

number of somatic rearrangement breakpoints observed on one

chromosome significantly exceeded the expected number, given

the total number of somatic rearrangement breakpoints in one

sample (the likelihood of observing at least n breakpoints on one

chromosome given the total N breakpoints in that sample, with

the probability p being the mappable coding-sequence (CDS)

size for the chromosome divided by the mappable CDS size for

the whole genome). Bonferroni correction was used to adjust for

multiple testing. The mappability of the reference genome was

downloaded from UCSC Genome browser and was used to

normalize the chromosome size.

Statistical Analysis
All statistical analyses were conducted in R package (v.2.14.1).

A p value of 0.01 was used for statistical significance.

Fusion Gene Cloning
Constructs of CEP85L-ROS1(C9;R36) (MIM: 165020), GOPC (MIM:

606845)-ROS1(G7;R35), and EML4 (MIM: 607442)-ALK (MIM:

105590) gene fusions were synthesized by CosmogeneTech and

then transferred into pLenti6.3/V5-DEST (Life Technologies) and

pLenti6.3-EF1a lentiviral vectors. ROR1-DNAJC6 (MIM: 608375)

fusion fragments were cloned from cDNA prepared from U87MG

cells with overlapping ends, fused ROR1-DNAJC6 was then gener-

ated by overlap-extension PCR, and the resulting fusion gene was

then transferred into the pLenti6.3/V5-DEST vector. Expression of

the ROR1-DNAJC6 fusion gene was confirmed via RT-PCR and

western blots with the following primer sets: forward, ROR1,

50-GTGATGAAGATGGGACTGTGAA-30; reverse, DNAJC6, 50-CTA
GAAGATGTGTCTTTGAGGGTGT-30.

Ba/F3 Cell Viability and Inhibitor Assays
The Ba/F3 cell line wasmaintained in RPMI 1640mediumwith 5%

fetal bovine serum and 2.5 ng/ml recombinant mouse IL-3.

CEP85L-ROS1, BCR (MIM: 151410) -ABL ([MIM: 189980] positive

control), and GFP (negative control) were transduced into Ba/F3

cells. At 72 hr post-transduction, cells were re-suspended in

medium without IL-3. Cell viability was determined with Cell

Titer-Glo (Promega) at 7 days after IL-3 depletion. Ba/F3 cells sta-

bly expressing CEP85L-ROS1 (no IL-3 medium) and parental

Ba/F3 cells (IL-3 medium) were seeded in 96-well plates in quadru-

plicates at 1,000 cells per well. For the dose-dependent inhibitor

assay, cells were treated with dimethyl sulfoxide (DMSO) or crizo-

tinib (5 nM to 0.5 mM) and cell viability was determined with Cell

Titer-Glo (Promega). Cell survival was normalized to non-treated

(DMSO control treated) cells. IC50, which is the concentration of

an inhibitor causing 50% inhibition of cell survival normalized

to non-treated cells, was calculated from a sigmoidal curve. The
erican Journal of Human Genetics 98, 843–856, May 5, 2016 845



response of CEP85L-ROS1-expressing cells (without IL3) to crizoti-

nib was compared to parental cells without treatment of crizotinib

as control. Two independent experiments were performed.

Western Blot
Whole-cell and mouse tumor tissue lysates were prepared with ra-

dioimmunoprecipitation assay (50 mM Tris-HCl, 150 mM NaCl,

1% NP-40, and 0.25% sodium deoxycholate) plus protease inhib-

itors cocktail (GenDepot). Cell and tissue lysates were separated by

SDS-PAGE and transferred to polyvinylidene difluoride mem-

branes. The blots were probed with antibodies for ROS1, phos-

phorylated, and total STAT3 (MIM: 102582), AKT and ERK (Cell

Signaling Technology), and ROR1 (Abcam) were then detected

with chemiluminescent substrate (EMD Millipore). All western

blot images are representative of at least three independent

experiments.

In Vitro Cell Proliferation and Transforming Assays
NIH 3T3 cells were obtained from the Korean Cell Line Bank, and

BEAS-2B cells (ATCC CRL-9609) were obtained from the Amer-

ican Type Culture Collection (Manassas, VA). They were

expanded in DMEM supplemented with 10% FBS, 100 units/ml

penicillin, and 100 mg/ml streptomycin. NIH 3T3 cells and

BEAS-2B cells were transduced with LacZ (negative control),

CEP85L-ROS1, GOPC-ROS1 (positive control), ROR1-DNAJC6,

and EML4-ALK (positive control). Then, stable cell lines were

selected with blasticidin. Cell proliferation was determined by a

EZ-Cytox cell viability assay kit (Daeil Lab Service). The trans-

forming activity was assessed by transformed foci formation in

Matrigel. NIH 3T3 stable cells expressing CEP85L-ROS1, GOPC-

ROS1, and EML4-ALK, and BEAS-2B stable cells expressing

ROR1-DNAJC6 and EML4-ALK were seeded in Matrigel (BD Sci-

ences; 10,000 cells per well), on which medium with 10% FBS

was overlaid. The images of transformed foci were taken after

culturing for 7 or 14 days.

Anchorage Independent Growth Assay
MCF-10A cells were cultured as described previously15 and trans-

duced with CEP85L-ROS1, PIK3CAH1047R (positive control), and

GFP (negative control). Soft agar assays were performed in six-

well plates in triplicate. First, bottom layers were prepared at

0.8%Noble agar (Affymetrix) with completeMCF-10A growthme-

dium. After solidification, 10,000 cells were mixed with 0.45%

agar in complete growth medium and laid on top of the bottom

layer. 2 mL of medium was added in each well after 3 days, and

the medium was refreshed every 3 days. For NIH 3T3 and BEAS-

2B cells expressing LacZ, CEP85L-ROS1, GOPC-ROS1, ROR1-

DNAJC6, and EML4-ALK in 0.35% agar (BD Sciences), 20,000 cells

were seeded on top of 0.5% agar in each well. Cells were cultured

for 14 or 21 days, colonies were stained with 0.05% crystal violet,

and images were taken by phase-contrast microscope (Olympus

CKX41) and analyzed by i-Solution Lite image analysis software,

and cells were counted in ten randomly selected fields.

Xenograft Tumor Formation Assay
All animal experiments were approved by the institutional review

board of SamsungMedical Center. 53 106 cells were re-suspended

in 1:1 PBS andMatrigel (BD Biosciences) and then subcutaneously

injected into the right dorsal flank of six-week-old male nudemice

(Orient Bio). Mice were monitored three times weekly until reach-

ing maximal tumor size (approximately 2 cm 3 2 cm). Mice were
846 The American Journal of Human Genetics 98, 843–856, May 5, 2
then sacrificed and photographed on day 23 after injection, and

tumors were collected for further analysis.
Results

Detecting Somatic SVs in WES

In a standard WES protocol (Figure 1A), probes are

designed to capture coding exons. The enriched exonic re-

gions are subsequently amplified and subjected to paired-

end sequencing. Due to the capturing and amplification

steps, the coverage of resulting sequencing data is uneven

across the genome. SV detection tools using read-depth

information will suffer from this uneven sequencing

coverage, whereas tools that depend on discordant read

pairs and split reads to detect genomic rearrangements

can be used in WES data as long as the breakpoints are

captured and sequenced. We first tested the efficacy of de-

tecting somatic SVs using discordant read pairs and split

reads but not read depth. We selected 120 TCGA samples

that had both WES and WGS data (Table S1) for initial

analysis, with the assumption that somatic SVs called on

both platforms are true positives (example in Figure 1B).

We did not define the truth set purely on the basis of

WGS data because some SVs are missed and some SV calls

are artifacts even in WGS.

A major challenge in reliably identifying somatic SVs in

WES data is to remove a large number of artifacts arising

from chimeric molecules in the library preparation. This

requires designing data processing steps to remove WES-

specific artifacts. When we applied the Meerkat algorithm

we originally developed6 for WGS toWES data, we found a

small subset of the samples containing a large number

(>100) of somatic SVs, with the majority of SVs not found

in the matched WGS (Figure S1A; examples shown in Fig-

ures S1B and S1C). WES-specific artifacts were distinguish-

able by their even distribution across all chromosomes,

enrichment of small tandem duplications, and no homol-

ogy at the breakpoints (Figures S1D–S1F). These samples

therefore failed our quality control steps and were dis-

carded from further analysis. For the remaining compari-

sons, we also removed two WGS cases whose normal

data had poor quality (Figure S2).

We designed additional computational filters (see

Material and Methods) to remove such artifacts in the re-

maining samples by testing different combinations of

thresholds and comparing the resulting set against WGS

calls. This filtration resulted in high-confidence somatic

calls from WES data with a substantial reduction in the

number of WES-specific calls (Figure S3A). Overall, 61% of

the WES calls were shared by WGS (Figure 1C). Many calls

found in WGS are missed by WES; out of 145 SVs detected

from WGS data with breakpoints in exons (excluding

UTRs), 21% (31/145) were recovered from WES data. This

low rate ismainlydue to the insufficientnumberof support-

ing read pairs (Figure S3B) in addition to the uneven read

coverage in the targeted regions in WES (Figure S3C). The
016



Table 1. Summary of Somatic SVs in 15 Tumor Types

Tumor Type Abbreviation Sample Size Bad Samples Good Samples Total SVs
Average SVs
per Sample

Massively
Rearranged

Urothelial bladder cancer BLCA 185 3 182 370 2.03 6

Breast cancer BRCA 781 93 688 3123 4.54 65

Glioblastoma multiforme GBM 318 63 255 626 2.45 24

Head and neck squamous
cell carcinoma

HNSC 377 0 377 413 1.10 4

Clear cell kidney
carcinoma

KIRC 322 13 309 191 0.62 4

Papillary kidney
carcinoma

KIRP 147 0 147 80 0.54 4

Lower grade glioma LGG 272 0 272 218 0.80 6

Liver hepatocellular
carcinoma

LIHC 98 0 98 350 3.57 2

Lung adenocarcinoma LUAD 485 27 458 791 1.73 12

Lung squamous cell
carcinoma

LUSC 460 23 437 837 1.92 9

Prostate adenocarcinoma PRAD 235 1 234 331 1.41 6

Cutaneous melanoma SKCM 311 1 310 577 1.86 24

Stomach adenocarcinoma STAD 234 0 234 570 2.44 11

Papillary thyroid
carcinoma

THCA 485 2 483 342 0.71 0

Uterine corpus
endometrial carcinoma

UCEC 149 24 125 352 2.82 1

Total – 4,859 250 4,609 9,171 1.99 178
allele fractions of somatic SVs detected inWES are generally

smaller than those in WGS data (Figure S3D). We suspect

that the exon capture efficiency is lower for the chimeric

DNA molecules that contain the breakpoints, resulting in

lower coverage and hence not enough supporting reads

for detecting SVs. Conversely, it is important to note that

~39% of the WES calls were not found in WGS. At least a

few of these are true positives that were detected by the

higher sequencing coverage in WES data than in WGS

(Figure 1D and Figure S4). The concordance between WES

and WGS calls depends on the quality of the libraries and

may vary among datasets.

To test the accuracy of our calls, we performed PCR on all

high-confidence somatic SVs called from WES data for

which we could obtain the DNA. We found that 78%

(21/27) were validated (Table S2). Overall, these results

suggest that, despite its modest sensitivity, WES-based SV

analysis is likely to yield additional SV candidates that

are biologically meaningful.

A Catalog of Gene Fusions and the Properties of Driver

Fusions

We analyzed WES data for 4,859 cancer samples across 15

tumor types from TCGA (Table 1). A total of 9,171 high-

confidence somatic SVs were detected from 4,609 samples

(Table S3) after excluding 250 samples because of low qual-
The Am
ity. The breast cancers (MIM: 114480) have the highest

number of somatic SVs, whereas the kidney cancers

(both clear cell [MIM: 144700] and papillary cell [MIM:

605074] carcinomas) have the fewest, consistent with

our previous findings6 (Table 1). The genes with somatic re-

arrangements are expressed significantly higher (~2-fold

increase) than the ones without any rearrangements

(Figure S5). Although a previous study16 associated somatic

SV breakpoints with expression, the SV and expression

data came from different sets of samples. Here, we used a

large number of samples that have each undergone both

WES and RNA-seq for a more direct comparison.

Our exome-based SV calling identifiedmany biologically

important variants. Some SVs disrupted tumor suppres-

sors, such as TP53 (MIM: 191170), CDKN2A (MIM:

600160), and PTEN (MIM: 601728) (Table S4). Many SVs

were known driver fusions (examples in Figure 2A). For

example, we detected four RET (MIM: 164761) fusions

(three CCDC6 [MIM: 601985]-RET fusions and one

FKBP15-RET fusion) in thyroid carcinomas, an EML4-ALK

fusion in lung adenocarcinoma, and five FGFR3 (MIM:

134934)-TACC3 (MIM: 605303) fusions in three cancer

types (glioblastoma [GBM], bladder cancer [MIM:

109800], and renal papillary cancer). FGFR3-TACC3 was

originally described in GBM, with 3 out of 97 tumors

examined carrying this fusion.17 This was an important
erican Journal of Human Genetics 98, 843–856, May 5, 2016 847
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Figure 2. Activating Gene Fusions Detected
(A) Exon-specific expression profiles for known cancer-driving fusions.
(B) Exon-specific expression profiles for additional activating fusions. Black arrows in (A) and (B) denote fusion breakpoints. Each box
represents an exon. The expression of each exon was normalized to its average expression across all individuals of the same tumor type.
A gray box indicates that the exon is not expressed in more than 70% of the samples.
(C) Examples of fusion breakpoints at the DNA and RNA level for CEP85L-ROS1, ZNF577-FGFR1, and ROR1-DNAJC6. Green and purple
boxes denote exons of 50 and 30 fusion partners, respectively. Breakpoint junction sequences are shown above the fusions, with letters in
black denoting non-reference sequences. The thick purple line in FGFR1 denotes exonized intronic sequence. The gray box in ROR1 de-
notes the part of the exon being spliced out.
discovery because this subset of individuals could poten-

tially benefit from targeted FGFR kinase inhibition. We

had also found the same fusion in about 3% of the bladder

cancer samples, based on analysis of WGS data, as we re-

ported recently in the TCGA consortium paper.18 Our anal-

ysis of the exome data reveals that FGFR3-TACC3 also

occurs in papillary kidney carcinoma. We also detected

two prostate adenocarcinoma (MIM: 176807) cases with

TMPRSS2 (MIM: 602060)-ERG (MIM: 165080) fusions. As

expected, the frequencies of these known drivers are

much lower than the previously reported numbers due to

limited sensitivity. However, we were able to discover a

wide range of variants as a result of the large sample size.

Distinguishing drivers (alterations that increase the

fitness of cells) from passengers (neutral alterations) is
848 The American Journal of Human Genetics 98, 843–856, May 5, 2
challenging for any type of genetic alteration. For SNVs

and copy-number variants, computational methods (e.g.,

MutSigCV19 and GISTIC,20 respectively) aim to assess the

statistical significance of the observed mutation fre-

quencies by using a background model. Recurrence is the

most obvious factor in estimating the likelihood of fusion

being a driver; however, understanding the molecular

characteristics of driver fusion is critical, given that some

driver fusions have very low frequency, many studies

have small sample sizes, or, as in the case here, detection

sensitivity might be low. Furthermore, recurrent events

can also result from frequent breaks of certain genomic re-

gions such as fragile sites and might not drive cancer. We

previously observed that most of the known driver fusions

are activating fusions and that the 30 fusion partners are
016



Table 2. Activating Fusions with 30 Tyrosine Protein Kinases

ID Chr A Breakpoint A Gene A Chr B Breakpoint B Gene B Discord Pair Split Read Homology

THCA-FK-A3SE 10 61655977 CCDC6 10 43611997 RET 13 17 3

THCA-EL-A3ZS 10 61659539 CCDC6 10 43611930 RET 4 4 0

THCA-BJ-A0ZJ 10 61626050 CCDC6 10 43611953 RET 13 5 1

THCA-ET-A3DQ 9 115932783 FKBP15 10 43610457 RET 5 2 �3

LUAD-67-6215 2 42491894 EML4 2 29447037 ALK 6 5 2

THCA-EM-A4FR 5 41038833 MROH2B 2 29481156 ALK 7 7 3

GBM-06-5418 6 118801608 CEP85L 6 117642526 ROS1 55 46 �4

BRCA-AR-A0U3 19 52383621 ZNF577 8 38317439 FGFR1 104 29 �7

BRCA-AR-A0TT 19 16243092 RAB8A 19 4115139 MAP2K2 45 32 0

GBM-06-5411 1 204951828 NFASC 1 156844167 NTRK1 534 398 2

LGG-E1-5319 1 155784108 GON4L 1 156813488 INSRR 29 24 1

Genes on the left denoted by ‘‘Gene A’’ are 50 fusion partners, and genes on the right denoted by ‘‘Gene B’’ are 30 fusion partners.
almost always upregulated, typically with expression

change at the fusion breakpoints21,22 (Figure 2A). To iden-

tify activating gene fusions, we thus propose three criteria:

(1) the gene fusion must maintain the same transcription

orientation; (2) the fused 30 partner must be upregulated;

and (3) a significant expression change must be observed

at or near the fusion breakpoints in at least one of the

two source regions (e.g., red versus blue exons on the

two sides of the TACC3 breakpoint in the FGFR3-TACC3

fusion in Figure 2A). There are driver fusions that do not

have an upregulated 30 partner, but these are hard to iden-

tify unless they recur across many samples. Expression

change at the breakpoint was also used to identify fusion

candidates from expression array data, followed by 50 rapid
amplification of cDNA ends to search for the fusion part-

ners.23–25 Using the three criteria above, we uncovered a

total of 150 activating fusions (Table S5). Five activating fu-

sions (CEP85L-ROS1, ZNF577-FGFR1 [MIM: 136350],

ROR1-DNAJC6, SPTBN2 [MIM: 604985]-FGF19 [MIM:

603891], ACACA [MIM: 200350]-HTRA4 [MIM: 610700])

are shown in Figure 2B as examples. We note that these

activating fusions are candidate driver fusions, but the

criteria we used are not sufficient to define them as cancer

drivers. In vitro and in vivo experiments are needed to

definitively address their role in tumorigenesis (see Func-

tional Validation of Fusion Genes In Vitro and In Vivo).

Not surprisingly, GO analysis of the activating fusions

revealed that the 30 fusion partners are enriched for protein

tyrosine kinases (p ¼ 1.7E-4) (Table 2) as previously

observed.26–28 The protein tyrosine kinases RET, ALK,

and ROS1 are known oncogenes and often form fusions

with various partners in lung (MIM: 211980), thyroid,

and colorectal cancers (MIM: 114500)22,29–33 (e.g., for

RET: CCDC6, FKBP15, TBL1XR1 [MIM: 608628], AKAP13

[MIM: 604686], KIF5B [MIM: 602809]; for ALK: EML4,

STRN [MIM: 614765], GTF2IRD1 [MIM: 604318],

MROH2B, C2orf44 [MIM: 616234]; for ROS1: SLC34A2
The Am
[MIM: 604217], CD74 [MIM: 142790], SDC4 [MIM:

600017], EZR [MIM: 123900], LRIG3 [MIM: 608870]).

Some of the kinase fusions detected fromWESwere known

previously. For instance, NFASC (MIM: 609145)-NTRK1

([MIM: 191315] neurotrophic tyrosine receptor kinase

type 1) was found in two TCGA GBM samples via RNA-

seq data and validated as a cancer driver.34 Other fusions

identified here were not reported previously: for example,

INSRR (MIM: 147671), an insulin receptor-related receptor,

is paralogous to many oncogenes such as ROS1, NTRK1,

and ALK, but has never been described as a fusion partner

in cancer even though it is involved in the AKT and MAPK

signaling pathways and its expression has been correlated

with a favorable prognosis in neuroblastoma.35 The fusion

GON4L (MIM: 610393)-INSRR found in low-grade glioma

activates the protein kinase domain of INSRR, suggesting

that it is likely to be a driver fusion.

We also found that the 50 fusion partners of activating

fusions are often housekeeping genes, such as those related

to the cytoskeleton (p ¼ 7.4E-5) and biosynthesis (p ¼
2.8E-3) (Table S6). For example, CCDC6, FKBP15, and

EML4 are cytoskeleton proteins that fuse to RET and

ALK. Furthermore, both the 50 fusion partners (p ¼
8.5E-3) and the 30 fusion partners (p ¼ 4.9E-3) of the acti-

vating fusions are enriched in chromatin regulators (Tables

S7 and S8). Many of the chromatin regulator fusions occur

in the breast cancer samples. USP21 (ubiquitin specific pro-

tease 21 [MIM: 604729]), which deubiquitinates histone

H2A and removes the transcriptional repression tag, is up-

regulated in 33% of the breast cancer samples.36 KDM2A

(MIM: 605657), a histone demethylase that maintains

heterochromatin and genome stability, and C11orf30

(MIM: 608574), a protein-coding gene that can repress

transcription and might play a central role in the DNA-

repair function of BRCA2 (MIM: 600185), are upregulated

in 17% and 11% of the breast cancer samples, respec-

tively.36 The chromatin regulators are upregulated upon
erican Journal of Human Genetics 98, 843–856, May 5, 2016 849



fusions and might alter expressions of many other genes

and play important roles in tumor progression.

Given the functional categories enriched in the fusion

partners, we propose a general model of driver fusions in

cancer. The 30 partners are often oncogenes, which can

promote cell growth and proliferation but are typically

not expressed in differentiated cells. The 50 partners are en-
riched in housekeeping genes, which are expressed in

normal cells but whose production is controlled by various

mechanisms, including negative feedback loops. Upon

fusion, the active housekeeping gene in cancer cells turns

on its oncogenic partner. However, because no house-

keeping protein is produced, the housekeeping genes

remain on. As a result, both the 50 and 30 fusion partners

are upregulated. In the case of TMPRSS2-ERG in prostate

cancers (the predominant recurrent aberration in that tu-

mor type), TMPRSS2 is activated by the androgen receptor

and serves as a housekeeping gene in the prostate tissue.

The 30 fusion partners are different ETS family oncogenes

(e.g., ERG, ETV1 [MIM: 600541], ETV4 [MIM: 600711],

and ETV5 [MIM: 601600])23 that are activated by

TMPRSS2.

With sequencing data available from both DNA and

RNA, it is also possible to interrogate how the fusion genes

are spliced. Three cases are shown in Figure 2C: (1) The

CEP85L-ROS1 fusion occurs between exon 9 of CEP85L

and exon 35 of ROS1. The breakpoints at the DNA level

are out of frame; however, upon alternative splicing (the

fusion exon 9-35 being spliced out), the fusion is in frame

at the RNA level. (2) The ZNF577-FGFR1 fusion is between

exon 4 of ZNF577 and intron 1 of FGFR1. A small portion

of the FGFR1 intron becomes part of an exon through a

cryptic splice site, and the resulting transcript is in frame.

(3) The ROR1-DNAJC6 fusion is between exon 9 of ROR1

and intron 1 of DNAJC6. After fusion, part of the ROR1

exon 9 is spliced out through a cryptic splice site along

with the intron 1 of DNAJC6, resulting in an in-frame tran-

script. These examples illustrate how alternative splicing

and/or cryptic splice sites can be used after gene-fusion

events to produce in-frame transcripts even if the fusions

are out of frame at the DNA level. Therefore, prediction

of functional consequences for gene fusions on the basis

of the DNA sequence must account for these mechanisms.

Functional Validation of Fusion Genes In Vitro and

In Vivo

We performed extensive in vitro and in vivo validation for

two fusions. Various fusions involving the ROS1 receptor

tyrosine kinase have been identified previously, primarily

in non-small cell lung cancer (NSCLC),33 and they

are known to induce cell foci formation and anchorage-

independent growth.37,38 The CEP85L-ROS1 fusion in

particular was reported in angiosarcoma and epithelioid

hemangioendothelioma,25 and we found it in GBM in

our analysis. However, its function in tumorigenesis has

not yet been established. To test the oncogenic potential

of this fusion, we utilized Ba/F3, a murine pro-B cell line
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that depends on interleukin-3 (IL-3) for survival and prolif-

eration. Ba/F3’s dependence on IL-3 is readily transferred

to expressed oncogenes, thus representing a sensitive assay

to quantitate oncogenic activity of fusion genes after Ba/F3

transduction and IL-3 removal from growth medium.39–41

Introduction of the CEP85L-ROS1 fusion gene into Ba/F3

cells revealed a robust, >100-fold increase (p < 0.0001) in

survival after IL3 removal in comparison toGFP-expressing

control cells (Figure 3A). Notably, the growth-promoting

activity exhibited by CEP85L-ROS1 was similar to that

of BCR–ABL1, whose oncogenic activity has been well

characterized.42 Next, we delivered CEP85L-ROS1 fusion

into MCF-10A human breast epithelial cells43 which are

widely used in anchorage-independent growth assays to

assess the transforming activity of oncogenes.44 As shown

in Figure 3B, expression of CEP85L-ROS1 in MCF-10A

cells significantly increased colony formation (11-fold,

p < 0.0001), as did the oncogenic PIK3CAH1047R con-

trol.45 We also found that CEP85L-ROS1 expression in

NIH 3T3 murine fibroblasts induced their anchorage inde-

pendent growth and cellular proliferation in vitro (Figures

S6A and S6B) and tumor-forming activity in vivo (Figures

3C and 3D). Immunoblot analysis showed elevated phos-

phorylation of ERK1/2 (T202/Y204) in all three cell lines

(Ba/F3, MCF-10A, and NIH 3T3; Figures S6C–S6E), which

suggested that the MAPK signaling pathway was activated.

We tested the effectiveness of this fusion as a drug target.

Crizotinib is a small molecular protein kinase inhibitor

for ALK and ROS1. It is approved for use in NSCLC cases

with ALK fusion, and it has shown great anti-tumor activ-

ity in clinical trials targeting advanced NSCLC with a ROS1

rearrangement.46 We observed a marked inhibitory activ-

ity of crizotinib on CEP85L-ROS1-transformed Ba/F3 cells

in comparison to parental cells (CEP85L-ROS1 IC50 ¼
0.012 mM; parental IC50 ¼ 0.489 mM) as shown in

Figure 3E. Our results show that individuals harboring a

ROS1 fusion in tumor types other than NSCLC might

also benefit from the ROS1 inhibitor.

Our second candidate fusion for experimental valida-

tion was ROR1-DNAJC6 in lung adenocarcinoma. ROR1

is a receptor tyrosine kinase that modulates neurite

growth in the CNS and might interact with the Wnt

signaling pathway.47 It has not yet been reported as a can-

cer-driving fusion partner. Our experiments showed that

the ROR1-DNAJC6 fusion can promote in vitro cell prolif-

eration in BEAS-2B cells (non-cancerous human bronchial

epithelium; Figures 4A and S7). It can also induce

anchorage-independent cell growth (Figures 4B–4D) in

both BEAS-2B and NIH 3T3 cells, and promote in vivo tu-

mor formation in mice (Figure 4E) as well. Interestingly,

the receptor tyrosine kinase ROR1 is the 50 partner in

this fusion, in contrast to most other fusions in which

protein tyrosine kinases are activated as 30 fusion partners.

Another example with a protein tyrosine kinase on the

50 side is the FGFR3-TACC3 fusion,17 in which FGFR3

loses its 30 UTR and escapes from silencing to promote

cellular growth.
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Figure 3. Functional Validation of
CEP85L-ROS1
(A) CEP85L-ROS1 expression relieves Ba/F3
cells from dependency on IL-3.
(B) Anchorage-independent colony for-
mation assays for CEP85L-ROS1 in MCF-
10A cells (mean colony count from ten
random areas).
(C and D) The transforming potential of
the CEP85L-ROS1 fusion in vivo. The
tumor volume was calculated with the
modified ellipsoidal formula (volume ¼
1/2 [length 3 width2]) and the greatest
longitudinal diameter (length) and the
greatest transverse diameter (width) were
used. Mice were sacrificed and photo-
graphed on day 23.
(E) Compared to parental cells (IC50 ¼
0.489 mM), CEP85L-ROS1-transformed Ba/
F3 cells are significantly more sensitive
(log-rank test) to crizotinib (IC50 ¼
0.012 mM). Error bars indicate SD.
Our results showing the oncogenic potential of these

two fusions demonstrate that previously unknown can-

cer-driving fusions can be detected from WES data,

including some that are potential drug targets.

Massive Rearrangements

A small percentage of cancers might have one or more

chromosomes massively rearranged, often with copy

numbers oscillating between two or three states (chro-

mothripsis),48,49 segments amplified to many copies

(chromoanasynthesis),6,50 or chains of rearrangements

(chromoplexy).51 These rearrangements have been pro-

posed to form through shattering and rejoining of DNA

fragments by non-homologous end joining,48 pulveriza-

tion of chromosomes in the micronuclei,52 and template

switching during DNA replication.6,50 When we searched

for chromosomes with statistically significant enrichment

of SV breakpoints compared to the rest of the genome by

using WES data (taking into account the gene densities

on different chromosomes), we found a total of 196 chro-

mosomes in 178 samples (3.8% of 4,609 samples; Table 1,

Figure 5A, and Table S9). Our statistical threshold was

based on the binomial test with a cutoff of p ¼ 0.01 after

the Bonferroni correction (see Material and Methods);

given this stringent threshold, the number of samples we

report with massively rearranged chromosomes is likely

to be an underestimation.

The frequency of massive rearrangements was highly

variable across chromosomes (Figure 5A), with up to

an ~100-fold difference in the normalized frequencies

(e.g., chr17 versus chrX). The highest frequencies were

found in chromosomes 17 and 22, consistent with a previ-

ous study53 that found amplification breakpoints to be
The American Journal of Huma
most frequent on chromosome 17.

Different chromosomes were en-

riched for the SV clusters from di-
fferent tumor types (Figure 5B). Chromosomes 7 and 12

are enriched for rearrangements in GBMs, and chromo-

some 22 is enriched for melanomas (MIM: 155600). On

chromosome 17, 23 out of 35 occurrences are in breast can-

cers (examples in Figure 5C), and their breakpoints are

highly abundant at the ERBB2 (MIM: 164870) locus

(Figure 5D). Significantly higher copy numbers and expres-

sion at the ERBB2 locus suggest that the massively rear-

ranged chromosome 17 is associated with upregulation

of oncogene ERBB2 (Figure 5E). Those breast cancers with

any massively rearranged chromosome, as well as those

with massively rearranged chromosome 17 among the

HER2þ subtype, have poorer prognosis with marginal sta-

tistical significance (p ¼ 0.06 and 0.08, respectively;

Figure S8).

There are co-occurrence patterns among the chromo-

somes that have massive rearrangements. For example,

of the nine melanomas with chromosome 22 rearr-

angements, seven involve other chromosomes, including

five involving chromosome 5 (Figures 5F and S9).

Conversely, there are three melanomas with massively

rearranged chromosome 5, and all of them co-occur

with massively rearranged chromosome 22 (Table S9). In

melanoma cases, it is known that ~70% have TERT

([MIM: 187270] on chromosome 5) upregulated by pro-

moter mutations.54,55 We found that the individuals

with massively rearranged chromosome 22 have signifi-

cantly higher expression of TERT when chromosome 5

is also involved (Figure 5G). In GBM, CDK4 (MIM:

123829) is often amplified and expressed at a significantly

higher amount in individuals with massively rearranged

chromosome 12 (Figure S10A). On the other hand, the

expression of EGFR (MIM: 131550) is not significantly
n Genetics 98, 843–856, May 5, 2016 851
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(A) Growth rate of cells expressing ROR1-
DNAJC6 fusion protein in BEAS-2B cells.
(B) BEAS-2B cells cultured in Matrigel after
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(C and D) Anchorage independent growth
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transformed with ROR-DNAJC6 were
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(E) The transforming potential of ROR1-
DNAJC6 fusion in vivo.
different in individuals with massively rearranged chro-

mosome 7 because the ones without massively rearranged

chromosome 7 also have EGFR amplifications (Fig-

ure S10B). This is consistent with our previous study6

showing that most (14 out of 16) GBM samples have

EGFR amplified and that some of the amplifications are

achieved through very complex rearrangements. These

results suggest that massive rearrangements are often

associated with upregulation of oncogenes, which pro-

vides selective advantage to the cells, and these rearrange-

ments are thus maintained in the genome.
Discussion

Here, we report the somatic genome rearrangements de-

tected in the WES data for nearly 5,000 human cancer

samples. WES data present challenges for SV identifica-

tion, with ligation artifacts formed during exome capture

and/or DNA amplification steps often manifesting as

small tandem duplications. Many of the samples we

excluded on the basis of quality were whole-genome

amplified (WGA) samples, but other WGA samples did

not suffer from the same problem. Although it is not

possible to determine whether a specific tandem duplica-
852 The American Journal of Human Genetics 98, 843–856, May 5, 2016
tion is a true or artifactual one,

their genome-wide distribution is

strongly indicative of the sample

data quality. The large number of

samples with both WES and WGS

data allowed us to set proper

filtering thresholds.

SV identification based on WES

data has much lower sensitivity than

that based on WGS data. Therefore,

it is not sensible to generate WES

data to profile SVs or to replace WGS

with WES. Our goal here was to re-

analyze existing WES data, given

that the number of samples with

WES data is larger than that with

WGS by an order of magnitude. In

TCGA, for example, almost all of the
samples were profiled by WES, whereas about 10% of the

cases were profiled by WGS.

The number of exomes sequenced will continue to grow,

especially as we search for somatic mutations with low

variant allelic frequency. For instance, some somatic driver

SNVs in cancer have been shown to occur in <5% of the

cells. In neuroscience, there is now a great deal of interest

in identifying somatic mutations in the brain to poten-

tially explain neurological diseases such as epilepsy and

developmental brain malformations.56 For such variants,

high-coverage WES will be the preferred platform for

most investigators until WGS at very high coverage be-

comes more affordable. Identification of even a fraction

of the SVs in these datasets will be valuable. As we showed

in one example (Figure 1D), somatic SV with low variant

allele frequency cannot be detected by WGS as a result of

its much lower coverage than WES. Importantly, the

framework we described here is also applicable to germline

rearrangements, and the number of germline exomes from

individuals with a variety of disease phenotypes as well as

from healthy individuals is already enormous.

As another application of exome-based SV analysis, we

investigated massive rearrangements in our cohort and

found that WES data can capture the presence of these

events and their association with other factors. Because
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Figure 5. Massive Rearrangements Are
Often Associated with Upregulation of
Oncogenes
(A) The frequencies of massively rear-
ranged chromosomes normalized by the
uniquely mappable size of CDS in each
chromosome.
(B) The frequencies of massively rear-
ranged chromosomes colored by tumor
type.
(C) Examples of two breast cancers with
massively rearranged chr17. Blue and red
lines denote intra-chromosomal and in-
ter-chromosomal rearrangements, respec-
tively.
(D) The breakpoint distribution of
massively rearranged chr17 of breast can-
cers with the peak at ERBB2.
(E) Association (Wilcoxon one-side rank
test) of massive rearrangements with
copy change and expression of ERBB2 in
breast cancers. NMR, not massively rear-
ranged; MR, massively rearranged. Error
bars indicate SD.
(F) An example of massively rearranged
chr22 that involves chr5 in melanoma.
(G) Association (Wilcoxon one-side rank
test) of massively rearranged chr22 with
TERT expression. Group 1 includes mela-
nomas with massively rearranged chr22
that involves chr5. Group 2 includes mela-
nomas with massively rearranged chr22
that does not involve chr5 with wild-type
TERT promoter. Error bars indicate SD.
these events are rare (~4% of the cases), their enrichment

in specific chromosomes or tumor types, as well as their

correlations with copy number and gene expression,

became apparent with a large sample size (hundreds of

samples per tumor type). Our finding that massive

rearrangements are often associated with oncogene

upregulation would not have been possible from WGS

data. Copy-number profiles from microarray have been

used to detect chromothripsis events on the basis of

oscillating copy numbers on one or more chromo-

somes,48 including in our own work.57 However, inter-

chromosomal events cannot be detected from array
The American Journal of Huma
profiles, and the association between

chromosome 22 massive rearrange-

ments and upregulation of TERT

could only be detected with WES

data. Overall, our study of somatic

genome rearrangements utilizing

WES data provides insights into how

gene fusions drive cancer and demon-

strates the utility of re-analyzing ex-

isting data.

Supplemental Data

Supplemental Data include ten figures

and nine tables and can be found
with this article online at http://dx.doi.org/10.1016/j.ajhg.

2016.03.017.
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