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Mutations in CAPN1 Cause Autosomal-Recessive
Hereditary Spastic Paraplegia
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Hereditary spastic paraplegia (HSP) is a genetically and clinically heterogeneous disease characterized by spasticity and weakness of the
lower limbs with or without additional neurological symptoms. Although more than 70 genes and genetic loci have been implicated in
HSP, many families remain genetically undiagnosed, suggesting that other genetic causes of HSP are still to be identified. HSP can be
inherited in an autosomal-dominant, autosomal-recessive, or X-linked manner. In the current study, we performed whole-exome
sequencing to analyze a total of nine affected individuals in three families with autosomal-recessive HSP. Rare homozygous and com-
pound-heterozygous nonsense, missense, frameshift, and splice-site mutations in CAPNI were identified in all affected individuals,
and sequencing in additional family members confirmed the segregation of these mutations with the disease (spastic paraplegia 76
[SPG76]). CAPN1 encodes calpain 1, a protease that is widely present in the CNS. Calpain 1 is involved in synaptic plasticity, synaptic
restructuring, and axon maturation and maintenance. Three models of calpain 1 deficiency were further studied. In Caenorhabditis
elegans, loss of calpain 1 function resulted in neuronal and axonal dysfunction and degeneration. Similarly, loss-of-function of the
Drosophila melanogaster ortholog calpain B caused locomotor defects and axonal anomalies. Knockdown of calpain 1a, a CAPN1 ortholog
in Danio rerio, resulted in abnormal branchiomotor neuron migration and disorganized acetylated-tubulin axonal networks in the brain.
The identification of mutations in CAPN1 in HSP expands our understanding of the disease causes and potential mechanisms.

Hereditary spastic paraplegia (HSP) includes a rare group
of neurological disorders with an estimated prevalence
of 2-10/100,000 individuals in different populations.'™
HSP can be classified as pure or complicated on the basis
of the clinical presentation. Pure HSP is characterized by
progressive spasticity and weakness, limited to the lower
limbs, and often manifests as deep-tendon hyperreflexia
and the extensor plantar response. Additional often-
reported features of the pure form are a hypertonic bladder
and lower-limb sensory disturbances. Complicated HSP is
accompanied by other neurological symptoms, including
seizures, ataxia, intellectual disability, dementia, extrapy-
ramidal symptoms, peripheral neuropathy (if other causes
of peripheral neuropathy are ruled out), amyotrophy, optic
atrophy, and others.>* Although HSP can be debilitating,
individuals with HSP often have a normal lifespan; there-
fore, post-mortem studies are not common, and neuro-
pathological data are limited. However, the available
information indicates that HSP is typically characterized

by axonal degeneration of the descending corticospinal
tract and ascending sensory fibers.” HSP is a genetically
heterogeneous disease; currently, there are more than 70
known or suspected genes or genetic loci in which muta-
tions have been suggested to cause HSP.” Some of the
genes are exclusively associated with pure or complicated
HSP; however, other genes are associated with both forms
of HSP, indicating that other genetic or environmental fac-
tors can modify the disease course. HSP can be inherited
in an autosomal-dominant (AD-HSP [MIM: 182601]),
autosomal-recessive (AR-HSP [MIM: 604360]), or X-linked
(XL-HSP) manner. Mutations in SPAST (MIM: 604277) ac-
count for about 40% of AD-HSP,® and homozygous or com-
pound-heterozygous mutations in SPG11 (MIM: 610844)
are the most common cause of AR-HSP.* Both genes are
thought to be involved in endosomal trafficking, and other
HSP-related genes are involved in different pathways, such
as mitochondrial regulation, lipid metabolism, and regu-
lation of the endoplasmic reticulum, as was previously
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Family B

Family A

Figure 1. Pedigrees and Mutations De-
tected in Three Families Affected by
CAPN1-Associated HSP

The three affected individuals from family
A were homozygous for the ¢.884G>C
(p.Arg295Pro) mutation, and all unatfected

individuals with available DNA (IV-2, IV-3,

. & O

V3, and V6) were heterozygous carriers of
the mutation. In family B, all four affected
individuals with available DNA (IV-1, IV-2,
IV-5, and IV-9) were homozygous for the
¢.1579C>T stop variant (p.GIn527*), and
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DNA (IlI-2, 1II-3, and IV-11) were heterozy-
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and the splicing ¢.1605+5G>A mutation.
Four more unaffected individuals were
sequenced: I1I-1 (father of the affected indi-
viduals), III-2 (mother), IV-9 (sister), and
IV-15 (brother). I1I-1 was heterozygous for

/ﬁ‘

\

Family C

JZf—l—sZ
ETTTIEL

the ¢.1605+5G>A mutation and a non-car-
rier of the frameshift mutation, and III-2
was heterozygous for the c.406delC muta-
tion and a non-carrier of the splicing
mutation. IV-9 was a non-carrier of both
mutations, and IV-15 was a carrier of the
¢.1605+5G>A mutation and a non-carrier
of the frameshift mutation.
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nosed and followed up by neurologists
from Idaho and Utah. All individuals
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before entering the study, and the
study design and protocols were
approved by the institutional review
boards. Table 1 details the clinical char-

reviewed.>® In the current study, we used whole-exome
sequencing (WES) to analyze three families affected by
AR-HSP and identified homozygous or compound-hetero-
zygous mutations in CAPNI (MIM: 114220) as the cause
of HSP in these families. We further studied the effects of
loss of function of CAPNI1 orthologs in Caenorhabditis
elegans, Drosophila melanogaster, and Danio rerio models.
The three families (Figure 1) included two consanguin-
eous Moroccan families (families A and B) and one family
from Idaho and Utah (family C). Of note, the pedigree of
family B is pseudo-dominant as a result of multiple intra-fa-
milial marriages. They live in a small village in northwestern
Morocco, where many of the residents are related because of
common ancestors. The clinical data on the affected individ-
uals from these three families are detailed in Table 1. Families
A and B were diagnosed and followed up by a neurologist in
the Department of Clinical Neurophysiology at Centre Hos-

acteristics of eight individuals with
available clinical data, and detailed
case reports are provided in the Supple-
mental Note. The average age at onset was 28.5 years
(=8.05, range = 19-39), and the affected individuals pre-
sented with symptoms of complicated HSP. In addition to
showing lower-extremity spasticity and hyperreflexia, seven
of the eight individuals had upper-extremity hyperreflexia,
six had dysarthria, and three had ataxia. Six individuals
had foot deformities—five with the typical pes cavus and
one with pes valgus. Abnormal bladder function was re-
ported in two individuals. No seizures were reported. Over-
all, the motor impairment was mild to moderate, and two
of the individuals (IV-2 in family B and IV-13 in family C)
had started using a cane to aid walking. No vision abnormal-
ities were reported or identified in the neurological examina-
tions. Blood samples for DNA analysis were available from
nine affected individuals (V-1, V-2, and V-4 in family A,
IV-1, IV-2, IV-5, and IV-9 in family B, and IV-7 and IV-13
in family C; Figure 1), and all nine samples went through
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Table 1. Clinical Features of the Affected Individuals with Autosomal-Recessive HSP and Available Clinical Data
Family A Family B Family C
V-2 V-1 Iv-2 V-4 IV-5 Iv-9 V-7 1IvV-13
Age at onset 20 35 36 22 39 24 33 19
(years)
Age at 31 47 44 42 40 30 35 22
examination
(years)
Lower-extremity — + + + + + + + +
spasticity
Lower-extremity — + + + + - - ? +
weakness
Lower-extremity — + + + + + + ? +
hyperreflexia
Extensor plantar  + + + + - + - +
response
Abnormal bladder + - - - - - - +
function
Foot deformity +° - +° +° - +P +P +P
Ataxia — — + — + — - +
Other symptoms  dysarthria, dysarthria, dysarthria, dysarthria, ocular movement dysarthria, ankle mild gait
and signs upper- upper-extremity upper-extremity upper- abnormalities, upper-extremity clonus ataxia, upper-
extremity hyperreflexia, hyperreflexia, extremity dysarthria, hyperreflexia extremity
hyperreflexia sensory peripheral hyperreflexia, upper-extremity hyperreflexia,
abnormalities, = neuropathy, gait amyotrophy hyperreflexia and bilateral ankle
peripheral ataxia, upper- gait ataxia, clonus
neuropathy extremity ataxia, amyotrophy
scoliosis
?Pes valgus.
bPes cavus.

WES. Additional samples from unaffected individuals were
available from four individuals in family A (IV-2, IV-3, V-3,
and V-6), three individuals in family B (III-2, III-3, and
IV-11), and four individuals in family C (III-1, III-2, IV-9,
and IV-15). These additional samples were used for valida-
tion and segregation analysis of the mutations. DNA was ex-
tracted according to a standard salting-out protocol and was
captured for WES with the Agilent SureSelect Human All
Exon V4 Kit according to the manufacturer’s (Agilent Tech-
nologies) instructions. The captured DNA was sequenced
with an [llumina HiSeq 2000 (2 x 100 bp, three samples
per lane) at the Innovation Genome Center of McGill
University and Genome Québec. Sequence processing,
alignment, and variant calling were performed with the
Burrows-Wheeler Aligner,” the Genome Analysis Toolkit
(v.4),'° and ANNOVAR."! After annotation, data on the de-
tected variants were extracted from publicly available data-
bases: the 1000 Genomes Project,'” the National Heart,
Lung, and Blood Institute Exome Sequencing Project (ESP)
Exome Variant Server (EVS), the Exome Aggregation Con-
sortium (ExAC) Browser, and dbSNP132. In addition, the
frequencies of these variants were calculated in our in-house
dataset of over 1,600 samples that had undergone WES.
To estimate the potential effects of the mutation, we
used the online prediction and conservation tools SIFT,"?
PolyPhen-2,'* MutationTaster,'®> PhyloP,'® and GERP++.""

Details on the filtering process can be found in the Table
S2. In order to validate and examine segregation of the
candidate mutations with the disease, we used specific
primers to amplify DNA from all affected and unaffected
family members with available samples and sequenced
them by Sanger sequencing (Applied Biosystem's 3730xl1
DNA Analyzer technology; primers are detailed in Table S1).

The average coverage of the nine samples that were
sequenced by WES was 129%, 99% of the bases had a
coverage > 10x, and 97% had a coverage > 20X. In order
to identify potential causative mutations, we excluded all
variants with an allele frequency > 0.005 in the 1000
Genomes Project, EVS, or dbSNP132 and variants that
were already found in our in-house dataset. In an effort
to include only nonsynonymous, frameshift, stop, and
splice-site mutations, we subsequently removed synony-
mous, 5’ UTR, 3’ UTR, and intronic variants that were not
within the six nucleotides at splice sites. Further filtering
was done on the basis of predicted deleterious effects and
conservation. In families A and B, homozygous mutations
were considered, and in family C, both homozygous and
compound-heterozygous variants were considered (Table
S2). No mutations in exons covered by the exome
sequencing in known or suspected HSP-associated genes
segregated with the disease in any of the families. In
the three families, mutations in only one gene, CAPNI,
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Figure 2. Characteristics and Predictions
of the CAPN1 Mutations

(A) Structure of CAPN1 and the locations
of the four mutations identified in the
current study.

(B) Functional predictions of all four muta-
tions.

(C) Conservation of Arg295 in different
species. With a GERP++ score > 2, this
amino acid is highly conserved.

141516 17 18 19 20 21

A AR

C. 406deIC C. 884G>C c. 1579C>T
p.Pro136Argfs*40 p.Arg295Pro p.GIn527*
€.1605+5G>A
B C
Variant Prediction Homo Sapiens
p.Pro136Argfs*40 Early stop codon Loxodonta Africana
p.Arg295Pro SIFT score — 0 (deleterious), Cavia Forcellis
Polyphen2 score — 1 (deleterious) Mus Musculus
p.GIn527* Early stop codon
¢.1605+5G>A Intron 14 partial retention and early stop Gallus Gallus
codon Danio Rerio

Ornithorhynchus Anatinus ROEPLIRIRNPWGQVE

(D) Three-dimensional model of calpain 1

RN
GrvERIE IR and the location of the p.Arg295Pro substi-
OMVSLIRMRNPWGEVE A A
tution at the end of a B strand and just
QMVNLIRMRNPWGEVE . N
before the active site at p.Asn296 (PDB:
ORVNLIRMRNPWGEVE

1ZCM).
(E) cDNA produced from lymphoblasts

QQEQLTIRIRNPWGQVE . ..
of an affected individual and two control

NMTKLVRIRNPWGEVE

Ctrl 1
cDNA

Ctrl 2
cDNA

Patient
cDNA

individuals, around exon 14. In the left
lane, two cDNA products were observed,
suggesting that the c.1605+5G>A muta-
tion affected splicing.

(F) Sequencing of c¢DNA from RT-PCR
of the RNA around splicing mutation
¢.1605+5G>A demonstrated that this mu-
tation caused the skipping of exon 14.

(G) Effects of the frameshift mutation
c.406delC (p.Pro136Argfts*40) (top) and the
splicing mutation c.1605+5G>A (bottom)
on calpain 1.

gDNA

CTGGGACTGTGGAGC TGGAT
205 210 215 220

Exon 13

Exon 14 3.5 Mb and containing CAPNI, is

J‘ﬂ\ L
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the only shared homozygous region.
In family C, the two affected indi-
viduals were compound heterozy-
gous for a frameshift mutation on

L) exon 4 (c.406delC [p.Pro136Argfs*40];

CTGGGACTGTCAAGTGCTCT
G 220 225 230 235

Frame shift (c.406delC, p.Pro136Argfs*40) Exon 13

Figure 2G) and a splicing mutation

Exon 15 (c.1605+5G>A; Figures 2E-2G). None

Wild type Exon l Frame-shifted exon

DCWLLAAIASLTLNDTLLHRVVRTARASRMAMPASSISSCGNL
GSGWTWSWMTCCPSRTGS*

Exon 14 skipping (c.1605+5G>A)

Wild type exon 13 Mutated exon

GDFVLDFFSEKSAGTVKCSQKRRLTRTSRPSSGSWQGRTWRSA*

of these variants from the three
families were identified in the 1000
Genome Project, ESP, or our in-house
AN dataset of >1,600 exome-sequencing
AV samples. The coding variants were

segregated with the disease (spastic paraplegia 76 [SPG76
(MIM: 616907)]) after filtering (Figure 1). In family A,
the three affected individuals were homozygous for
a missense mutation in exon 8 of CAPNI: c.884G>C
(GenBank: NM_005186), leading to a p.Arg295Pro substi-
tution, which is predicted to be deleterious (SIFT score O,
PolyPhen-2 score 1) and highly conserved (GERP++
score > 2; Figure 2C). This substitution is located next to
an active site in position 296, the amino acid asparagine,
which is a critical Ca®*" binding site'®'? at the end of a
B strand (Figure 2D). In family B, the four affected individ-
uals were homozygous for a nonsense mutation in exon
14: c.1579C>T (GenBank: NM_005186), resulting in a
p-GIn527* early termination of the protein. Homozygosity
mapping of the seven individuals from these two families
confirmed that a region on chromosome 11, spanning

also not detected in the ExAC Browser,
and the c.1605+5G>A splice-site mu-
tation had a frequency of 0.0001. All mutations were vali-
dated via Sanger sequencing, and all the available DNA
samples from family members were also sequenced. In
family A, the two parents (IV-2 and IV-3; Figure 1) and two
siblings (V-3 and V-6) of the affected individuals were all
heterozygous for the CAPN1 c.884G>C (p.Arg295Pro) muta-
tion. In family B, the two parents (III-2 and III-3) and one
sibling (IV-11) of the four individuals sequenced by WES
were all heterozygous carriers of the CAPNI c.1579C>T
(p-GIn527*) mutation. In family C, both parents (III-1
and III-2) and two siblings (IV-9 and IV-15) were sequenced.
The father, III-1, was a heterozygous carrier of the
¢.1605+5G>A mutation, and the mother, III-2, was a het-
erozygous carrier of the c.406delC mutation, confirming
phasing. Sibling IV-9 was a non-carrier of both variants,
and IV-15 was a heterozygous carrier of the c.1605+5G>A
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mutation. To examine the predicted effect of the splice-site
€.1605+5G>A mutation, we produced RNA from immor-
talized lymphoblasts from individual IV-7 (family C) and
from healthy family members, and we produced cDNA
with the Invitrogen SuperScript III Reverse Transcriptase
Kit (Invitrogen). Specific primers (forward 5'-ACTATTGG
CTTCGCGGTCTA-3' and reverse 5'-ATTGTCCGCAACTCC
TTCAC-3') were designed to amplify the cDNA around the
€.1605+5G>A mutation with a cDNA amplicon length of
389 bp (DNA amplicon length = 3,405 bp). Individual IV-7
had two copies of cDNA with different lengths around the
¢.1605+5G>A splice-site mutation (Figure 2E). Sequencing
of the cDNA after separation on gel demonstrated that this
splice variant results in exon 14 skipping and an early stop
codon (Figures 2E-2G).

RNAi knockdown of clp-1, the C. elegans ortholog of
CAPN1, led to neurodegeneration of GABAergic motor
neurons and an age-dependent paralysis phenotype (see
Figure S1 for details on the experiments and results).
Similarly, loss of function of the CAPNI1 ortholog in
D. melanogaster led to locomotor defects and axonal abnor-
malities (see Figures S2 and S3 for details on the exper-
iments and results). RNAi against the D. melanogaster
ortholog, calpain B, led to age-dependent negative geotaxis
(Figure S2). Defects in axons were observed in transgenic
flies expressing calpain B with the pan-neuronal driver
Flav. Axons appeared to have larger diameters and
increased levels of acetylated tubulin (Figure S3).

Zebrafish (D. rerio) embryos were collected and staged
according to standard methods.”” The local animal care
committee at the Centre de Recherche du Centre Hospital-
ier de I'Université de Montréal, having received the proto-
col relevant to this project and relating to animal care and
treatment, certified that the care and treatment of animals
was in accordance with the guidelines and principles of the
Canadian Council on Animal Care. Zebrafish embryos (no
adults were used) are insentient to pain. Similarly to the
findings in D. melanogaster, Figure S4 demonstrates clusters
of acetylated tubulin in zebrafish with mutant calpain 1a
(capnla). Increased acetylated tubulin is associated with
hyperstabilization of microtubules and has previously
been associated with SPAST mutations. Zebrafish capnia
and calpain 1b (capnlb) both encode proteins that are

Capn1a Mo

Figure 3. Branchiomotor Neurons of
capnla-Mo-Injected Embryos Display
Abnormal Migration

Abnormal development and migration of
both nV (trigeminal) and nVII (facial)
branchiomotor neurons in 2 dpf Islet1: GFP
embryos either not injected or injected
with the mismatch Mo (MisMo) or capnla
Mo. Arrows indicate abnormally located
cell bodies. R stands for “rhombomere.”
The scale bar represents 50 pm.

orthologs of the human CAPN1.”! We used a morpholino
oligonucleotide (Mo) against each gene to model the loss
of function of CAPN1. The capnla Mo, but not the capnlb
Mo, led to a phenotype (data not shown). Details on
the knockdown of the zebrafish calpains, morphology
measurements, and imaging are in Figure S5 legend.
The capnla Mo resulted in several developmental defects
visible at 2 days postfertilization (dpf), and a moderate
to severe phenotype was exhibited by 78% of injected
embryos at 5 dpf, indicating that these defects are long
lasting (Figure S5). Knockdown with the capnla Mo was
confirmed in western blots at 48 hr postfertilization (hpf)
(Figure S6). However, co-injecting the human wild-type
CAPN1 mRNA (up to 500 pg of RNA) in wild-type and
Mo-injected eggs failed to show a toxic effect of the RNA
on its own or a rescue of the Mo-induced phenotype. By
western blotting (Figure S6), the zebrafish and human cal-
pain 1 proteins showed exclusive patterns that explain the
failed rescue. Specifically, the human protein was detected
at 24 hpf, but not at 48 hpf, whereas the zebrafish protein
was detected only later at 48 hpf. Thus, the early expres-
sion of human mRNA could very well have failed to rescue
the later knockdown phenotype. Because of the lack of
rescue, the role of the CAPN1 p.Arg295Pro substitution
could not be established in this model, and other models
will be necessary for examining the effect of this substitu-
tion. Because capnla is mainly expressed in the brain start-
ing at 24 hpf,”' we injected capnla Mo in the Islet1::GFP
transgenic fish expressing GFP in the motor neurons,
including the branchiomotor neurons. We observed a
disorganization of these motor neurons in comparison
to those of the control, as well as migration defects
of the nV trigeminal nuclei in rhombomeres 2 and 3
(r2 and 13, respectively) and of the VII facial branchiomo-
tor neuronal cell bodies, which had not fully migrated
from 14 to r6. Furthermore, the vagal motor neurons had
an aberrant positioning and spacing, probably because of
a defect in cell motility (Figure 3).

Growing axons in the brain and spinal cord were then
observed with an antibody against acetylated tubulin. The
microtubule network in the brain of capnla-Mo-injected
embryos (Figures 4B and 4D) appeared to be following a
different pattern than in the morphants injected with
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Brain lateral view Brain dorsal view

Spinal cord

mismatch Mo (MisMo) (Figures 4A and 4C). Reduced acety-
lated-tubulin staining could be observed at the level of the
optic tectum and cerebellum, whereas a stronger staining
was found in the telencephalon. Strikingly, clusters of acet-
ylated tubulin could be observed in some cells in the dorsal-
most part of the brain (Figures 4B and 4D). Furthermore,
acetylated-tubulin staining in the spinal cord demonstrated
that microtubules in the motor neuron axons were thinner
and more disorganized, although this effect was not as
strong as in the brain (Figures 4E and 4F). Although the
exact pattern varied from embryo to embryo, the vast
majority of embryos injected with the capnla Mo (29/30)
exhibited similar staining, whereas the controls did not
(both non-injected embryos [0/30, data not shown] and
MisMo-injected embryos [0/30]).

The current study demonstrates that rare homozygous
or compound-heterozygous mutations in CAPN1 cause a
complicated form of HSP. Most of the affected individuals
from the three families suffer from additional neurological
symptoms in addition to the typical spasticity of the lower
limbs, such as upper-extremity hyperreflexia, dysarthria,
and gait ataxia (Table 1). These features are also seen in
other autosomal-recessive forms of HSP. For example, indi-
viduals with AR-HSP caused by mutations in SPG7 (MIM:
607259) often present with phenotypes very similar to
those described in the current study, including symptoms
such as dysarthria, ataxia, upper-extremity hyperreflexia,

Capnia Mo

Figure 4. Disorganization of the Micro-
tubule Network in the Brain of capnia
Morphants

(A and B) Dorsal view of Z-projections of
acetylated-tubulin staining in the brain of
embryos injected with MisMo (A) and
capnla Mo (B).

(C and D) Lateral view of Z-projections of
acetylated-tubulin staining in the brain
of embryos injected with MisMo (C) and
capnla Mo (D). The dorsal side is toward
the top of the image.

(E and F) Spinal cord, along the six to eight
somites spanning the anus of the embryos,
of embryos injected with MisMo (E) and
capnla Mo (F). The dorsal side is toward
the top of the image. Double arrows point
toward thinner and disorganized motor
neuron axons of the capnla morphants.
Solid white arrows show the clusters of
tubulin. Asterisks show the fainter staining
of the optic tectum of capnla morphants.
In all images, caudal is to the left. The scale
bar represents 60 pm. Abbreviations are
as follows: ot, optic tectum; tg, trigeminal
ganglion; h, hindbrain; c, cerebellum;
m, midbrain; tel, telencephalon; ob, olfac-
tory bulb; and sc, spinal cord.

amyotrophy, pes cavus, and sensory
neuropathy.?*** Similar phenotypes
have also been observed in individ-
uals with mutations in KIFIA (MIM:
610357)*>?° and other forms of AR-
HSP.?” In our dataset that includes 405 HSP-affected indi-
viduals from 252 families, CAPN1 mutations account for
2.2% of the affected individuals and 1.2% of the families.
However, this is an overestimation, given that our dataset
does not include families in whom the genetic cause was
established prior to our study. Therefore, these values
should be considered as maximal. CAPN1, located in chro-
mosomal region 11q13, encodes calpain 1, also known as
the large subunit of p-calpain, a calcium-activated cysteine
protease that is widely present in the CNS.*® Calpain 1 is
probably important for several functions in the CNS, but
its exact role in humans is still not clear. Calpain 1 is
involved in synaptic plasticity,”’ % and several mecha-
nisms for its function have been suggested in animal
models. For example, it was shown that calpain interacts
with CDKS and NR2B to control NMDA-receptor degrada-
tion and synaptic plasticity.”* Another study suggested
that calpain 1 can affect synaptic plasticity through degra-
dation of its substrate, glutamate receptor-interacting pro-
tein, thus affecting AMPA receptors.”* However, there are
contradicting results regarding the roles of calpains in neu-
roprotection and neurodegeneration, given that several
studies suggest that calpain inhibition might be neuropro-
tective.®>*® A recent study might offer a solution for this
contradiction by demonstrating that selective knockout
of Capnl (encoding p-calpain) leads to increased neurotox-
icity and that its activity is in fact neuroprotective, whereas
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knockout of Capn2 (encoding m-calpain) is neuroprotec-
tive.*” Our animal models support the neuroprotective
role of calpain 1, given that its knockdown led to neurode-
generation or disorganization of neurons. Therefore, it is
likely that different forms of calpain have different or
even opposing effects on neurodegeneration and that cal-
pains might have different effects in different disorders
and different species.

This can be further exemplified by calpain-1-deficient
mice, which have normal gross brain development and
architecture yet have reduced spine density and ramifi-
cations of basal and apical dendrites in hippocampal
CA1 pyramidal neurons, emphasizing the importance of
calpain 1 in regulation and organization of dendritic trees
in hippocampal CA1 neurons.’® Moreover, a knockout
mouse model of another HSP-related gene, CYP7B1 (MIM:
270800), also resulted in the lack of an obvious CNS pheno-
type.®” These observations are comparable to human HSP,
because in humans too, brain imaging and development
often seem to be normal, whereas affected individuals in
fact suffer from axonal degeneration of the descending cor-
ticospinal tract and ascending sensory fibers.® Interestingly,
loss-of-function mutations in CAPN1 have been suggested
to cause spinocerebellar ataxia in dogs,”’ a neurological
disorder that shares features with HSP. Of note, all but one
of the individuals in our studies have cerebellar signs such
as dysarthria and ataxia.

In zebrafish embryos, knockdown of calpain 1a resulted
in disruption of brain development, particularly of bran-
chiomotor neuron migration and positioning. The micro-
tubule network in the brain was disorganized, such that
some regions showed an abnormal accumulation of axonal
acetylated tubulin, whereas others were depleted. This
disruption of the microtubule network was more promi-
nent in the brain, but motor neuron axons in the spinal
cord were also moderately affected. The presence of large
clusters of acetylated tubulin in some cells of the brain is
specific to the knockdown of calpain 1a, given that it was
not observed in other embryos exhibiting hydrocephalus
and migration defects in branchiomotor neurons.*'**
Similarly, the neuromuscular junction of D. melanogaster
with calpain B knockdown showed abnormal levels of acet-
ylated tubulin. Interestingly, similar observations were re-
ported for spastin, encoded by SPAST, in which mutations
are the most common genetic cause of HSP.**** This sug-
gests that the two genes might be involved in a similar
mechanism; however, whether CAPNI- and SPG4-asso-
ciated HSP share the same mechanisms is still to be
determined.

Fully understanding the roles of the different calpains
in general, and calpain 1 specifically, will require more
studies, especially in human tissues. Such studies should
focus on isolating the effects of specific calpains on
neurodegeneration and neuroprotection. In addition, ef-
forts should be made to identify more individuals with
CAPN1-associated HSP to expand our knowledge of its
phenotype.

Supplemental Data

Supplemental Data include a Supplemental Note, six figures, and
three tables and can be found with this article online at http://
dx.doi.org/10.1016/j.ajhg.2016.04.002.
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