
REPORT

Mutations in CAPN1 Cause Autosomal-Recessive
Hereditary Spastic Paraplegia
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Hereditary spastic paraplegia (HSP) is a genetically and clinically heterogeneous disease characterized by spasticity and weakness of the

lower limbs with or without additional neurological symptoms. Although more than 70 genes and genetic loci have been implicated in

HSP, many families remain genetically undiagnosed, suggesting that other genetic causes of HSP are still to be identified. HSP can be

inherited in an autosomal-dominant, autosomal-recessive, or X-linked manner. In the current study, we performed whole-exome

sequencing to analyze a total of nine affected individuals in three families with autosomal-recessive HSP. Rare homozygous and com-

pound-heterozygous nonsense, missense, frameshift, and splice-site mutations in CAPN1 were identified in all affected individuals,

and sequencing in additional family members confirmed the segregation of these mutations with the disease (spastic paraplegia 76

[SPG76]). CAPN1 encodes calpain 1, a protease that is widely present in the CNS. Calpain 1 is involved in synaptic plasticity, synaptic

restructuring, and axon maturation and maintenance. Three models of calpain 1 deficiency were further studied. In Caenorhabditis

elegans, loss of calpain 1 function resulted in neuronal and axonal dysfunction and degeneration. Similarly, loss-of-function of the

Drosophila melanogaster ortholog calpain B caused locomotor defects and axonal anomalies. Knockdown of calpain 1a, a CAPN1 ortholog

inDanio rerio, resulted in abnormal branchiomotor neuronmigration and disorganized acetylated-tubulin axonal networks in the brain.

The identification of mutations in CAPN1 in HSP expands our understanding of the disease causes and potential mechanisms.
Hereditary spastic paraplegia (HSP) includes a rare group

of neurological disorders with an estimated prevalence

of 2–10/100,000 individuals in different populations.1–3

HSP can be classified as pure or complicated on the basis

of the clinical presentation. Pure HSP is characterized by

progressive spasticity and weakness, limited to the lower

limbs, and often manifests as deep-tendon hyperreflexia

and the extensor plantar response. Additional often-

reported features of the pure form are a hypertonic bladder

and lower-limb sensory disturbances. Complicated HSP is

accompanied by other neurological symptoms, including

seizures, ataxia, intellectual disability, dementia, extrapy-

ramidal symptoms, peripheral neuropathy (if other causes

of peripheral neuropathy are ruled out), amyotrophy, optic

atrophy, and others.3,4 Although HSP can be debilitating,

individuals with HSP often have a normal lifespan; there-

fore, post-mortem studies are not common, and neuro-

pathological data are limited. However, the available

information indicates that HSP is typically characterized
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by axonal degeneration of the descending corticospinal

tract and ascending sensory fibers.5 HSP is a genetically

heterogeneous disease; currently, there are more than 70

known or suspected genes or genetic loci in which muta-

tions have been suggested to cause HSP.6,7 Some of the

genes are exclusively associated with pure or complicated

HSP; however, other genes are associated with both forms

of HSP, indicating that other genetic or environmental fac-

tors can modify the disease course. HSP can be inherited

in an autosomal-dominant (AD-HSP [MIM: 182601]),

autosomal-recessive (AR-HSP [MIM: 604360]), or X-linked

(XL-HSP) manner. Mutations in SPAST (MIM: 604277) ac-

count for about 40% of AD-HSP,8 and homozygous or com-

pound-heterozygous mutations in SPG11 (MIM: 610844)

are the most common cause of AR-HSP.4 Both genes are

thought to be involved in endosomal trafficking, and other

HSP-related genes are involved in different pathways, such

as mitochondrial regulation, lipid metabolism, and regu-

lation of the endoplasmic reticulum, as was previously
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Figure 1. Pedigrees and Mutations De-
tected in Three Families Affected by
CAPN1-Associated HSP
The three affected individuals from family
A were homozygous for the c.884G>C
(p.Arg295Pro) mutation, and all unaffected
individuals with available DNA (IV-2, IV-3,
V3, and V6) were heterozygous carriers of
the mutation. In family B, all four affected
individuals with available DNA (IV-1, IV-2,
IV-5, and IV-9) were homozygous for the
c.1579C>T stop variant (p.Gln527*), and
all unaffected individuals with available
DNA (III-2, III-3, and IV-11) were heterozy-
gous carriers of the mutation. In family C,
the two affected individuals were com-
pound heterozygous for the frameshift
c.406delC (p.Pro136Argfs*40) mutation
and the splicing c.1605þ5G>A mutation.
Four more unaffected individuals were
sequenced: III-1 (father of the affected indi-
viduals), III-2 (mother), IV-9 (sister), and
IV-15 (brother). III-1 was heterozygous for
the c.1605þ5G>Amutation and a non-car-
rier of the frameshift mutation, and III-2
was heterozygous for the c.406delC muta-
tion and a non-carrier of the splicing
mutation. IV-9 was a non-carrier of both
mutations, and IV-15 was a carrier of the
c.1605þ5G>A mutation and a non-carrier
of the frameshift mutation.
reviewed.3,6 In the current study, we used whole-exome

sequencing (WES) to analyze three families affected by

AR-HSP and identified homozygous or compound-hetero-

zygous mutations in CAPN1 (MIM: 114220) as the cause

of HSP in these families. We further studied the effects of

loss of function of CAPN1 orthologs in Caenorhabditis

elegans, Drosophila melanogaster, and Danio rerio models.

The three families (Figure 1) included two consanguin-

eous Moroccan families (families A and B) and one family

from Idaho and Utah (family C). Of note, the pedigree of

family B is pseudo-dominant as a result of multiple intra-fa-

milialmarriages. They live in a small village innorthwestern

Morocco, wheremany of the residents are related because of

commonancestors.Theclinicaldataontheaffected individ-

uals fromthese three families aredetailed inTable1. Families

A and Bwere diagnosed and followed up by a neurologist in

theDepartment of Clinical Neurophysiology at Centre Hos-
The American Journal of Human G
pitalier Ibn Sina (Morocco), and

members from family C were diag-

nosed and followed up by neurologists

from Idaho and Utah. All individuals

signed an informed-consent form

before entering the study, and the

study design and protocols were

approved by the institutional review

boards. Table 1details the clinical char-

acteristics of eight individuals with

available clinical data, and detailed

case reports areprovided in theSupple-
mental Note. The average age at onset was 28.5 years

(58.05, range ¼ 19–39), and the affected individuals pre-

sented with symptoms of complicated HSP. In addition to

showing lower-extremity spasticity andhyperreflexia, seven

of the eight individuals had upper-extremity hyperreflexia,

six had dysarthria, and three had ataxia. Six individuals

had foot deformities—five with the typical pes cavus and

one with pes valgus. Abnormal bladder function was re-

ported in two individuals. No seizures were reported. Over-

all, the motor impairment was mild to moderate, and two

of the individuals (IV-2 in family B and IV-13 in family C)

had started using a cane to aidwalking.Novision abnormal-

itieswere reportedor identified in theneurological examina-

tions. Blood samples for DNA analysis were available from

nine affected individuals (V-1, V-2, and V-4 in family A,

IV-1, IV-2, IV-5, and IV-9 in family B, and IV-7 and IV-13

in family C; Figure 1), and all nine samples went through
enetics 98, 1038–1046, May 5, 2016 1039



Table 1. Clinical Features of the Affected Individuals with Autosomal-Recessive HSP and Available Clinical Data

Family A Family B Family C

V-2 IV-1 IV-2 IV-4 IV-5 IV-9 IV-7 IV-13

Age at onset
(years)

20 35 36 22 39 24 33 19

Age at
examination
(years)

31 47 44 42 40 30 35 22

Lower-extremity
spasticity

þ þ þ þ þ þ þ þ

Lower-extremity
weakness

þ þ þ þ � � ? þ

Lower-extremity
hyperreflexia

þ þ þ þ þ þ ? þ

Extensor plantar
response

þ þ þ þ � þ � þ

Abnormal bladder
function

þ � � � � � � þ

Foot deformity þa � þb þb � þb þb þb

Ataxia � � þ � þ � � þ

Other symptoms
and signs

dysarthria,
upper-
extremity
hyperreflexia

dysarthria,
upper-extremity
hyperreflexia,
sensory
abnormalities,
peripheral
neuropathy

dysarthria,
upper-extremity
hyperreflexia,
peripheral
neuropathy, gait
ataxia, upper-
extremity ataxia,
scoliosis

dysarthria,
upper-
extremity
hyperreflexia,
amyotrophy

ocular movement
abnormalities,
dysarthria,
upper-extremity
hyperreflexia and
gait ataxia,
amyotrophy

dysarthria,
upper-extremity
hyperreflexia

ankle
clonus

mild gait
ataxia, upper-
extremity
hyperreflexia,
bilateral ankle
clonus

aPes valgus.
bPes cavus.
WES. Additional samples from unaffected individuals were

available from four individuals in family A (IV-2, IV-3, V-3,

and V-6), three individuals in family B (III-2, III-3, and

IV-11), and four individuals in family C (III-1, III-2, IV-9,

and IV-15). These additional samples were used for valida-

tion and segregation analysis of themutations. DNAwas ex-

tracted according to a standard salting-out protocol andwas

captured for WES with the Agilent SureSelect Human All

Exon V4 Kit according to the manufacturer’s (Agilent Tech-

nologies) instructions. The captured DNA was sequenced

with an Illumina HiSeq 2000 (2 3 100 bp, three samples

per lane) at the Innovation Genome Center of McGill

University and Genome Québec. Sequence processing,

alignment, and variant calling were performed with the

Burrows-Wheeler Aligner,9 the Genome Analysis Toolkit

(v.4),10 and ANNOVAR.11 After annotation, data on the de-

tected variants were extracted from publicly available data-

bases: the 1000 Genomes Project,12 the National Heart,

Lung, and Blood Institute Exome Sequencing Project (ESP)

Exome Variant Server (EVS), the Exome Aggregation Con-

sortium (ExAC) Browser, and dbSNP132. In addition, the

frequencies of these variantswere calculated inour in-house

dataset of over 1,600 samples that had undergone WES.

To estimate the potential effects of the mutation, we

used the online prediction and conservation tools SIFT,13

PolyPhen-2,14 MutationTaster,15 PhyloP,16 and GERPþþ.17
1040 The American Journal of Human Genetics 98, 1038–1046, May
Details on the filtering process can be found in the Table

S2. In order to validate and examine segregation of the

candidate mutations with the disease, we used specific

primers to amplify DNA from all affected and unaffected

family members with available samples and sequenced

them by Sanger sequencing (Applied Biosystem’s 3730xl

DNAAnalyzer technology; primers are detailed in Table S1).

The average coverage of the nine samples that were

sequenced by WES was 1293, 99% of the bases had a

coverage > 103, and 97% had a coverage > 203. In order

to identify potential causative mutations, we excluded all

variants with an allele frequency > 0.005 in the 1000

Genomes Project, EVS, or dbSNP132 and variants that

were already found in our in-house dataset. In an effort

to include only nonsynonymous, frameshift, stop, and

splice-site mutations, we subsequently removed synony-

mous, 50 UTR, 30 UTR, and intronic variants that were not

within the six nucleotides at splice sites. Further filtering

was done on the basis of predicted deleterious effects and

conservation. In families A and B, homozygous mutations

were considered, and in family C, both homozygous and

compound-heterozygous variants were considered (Table

S2). No mutations in exons covered by the exome

sequencing in known or suspected HSP-associated genes

segregated with the disease in any of the families. In

the three families, mutations in only one gene, CAPN1,
5, 2016



Figure 2. Characteristics and Predictions
of the CAPN1 Mutations
(A) Structure of CAPN1 and the locations
of the four mutations identified in the
current study.
(B) Functional predictions of all four muta-
tions.
(C) Conservation of Arg295 in different
species. With a GERPþþ score > 2, this
amino acid is highly conserved.
(D) Three-dimensional model of calpain 1
and the location of the p.Arg295Pro substi-
tution at the end of a b strand and just
before the active site at p.Asn296 (PDB:
1ZCM).
(E) cDNA produced from lymphoblasts
of an affected individual and two control
individuals, around exon 14. In the left
lane, two cDNA products were observed,
suggesting that the c.1605þ5G>A muta-
tion affected splicing.
(F) Sequencing of cDNA from RT-PCR
of the RNA around splicing mutation
c.1605þ5G>A demonstrated that this mu-
tation caused the skipping of exon 14.
(G) Effects of the frameshift mutation
c.406delC (p.Pro136Argfs*40) (top) and the
splicing mutation c.1605þ5G>A (bottom)
on calpain 1.
segregated with the disease (spastic paraplegia 76 [SPG76

(MIM: 616907)]) after filtering (Figure 1). In family A,

the three affected individuals were homozygous for

a missense mutation in exon 8 of CAPN1: c.884G>C

(GenBank: NM_005186), leading to a p.Arg295Pro substi-

tution, which is predicted to be deleterious (SIFT score 0,

PolyPhen-2 score 1) and highly conserved (GERPþþ
score > 2; Figure 2C). This substitution is located next to

an active site in position 296, the amino acid asparagine,

which is a critical Ca2þ binding site18,19 at the end of a

b strand (Figure 2D). In family B, the four affected individ-

uals were homozygous for a nonsense mutation in exon

14: c.1579C>T (GenBank: NM_005186), resulting in a

p.Gln527* early termination of the protein. Homozygosity

mapping of the seven individuals from these two families

confirmed that a region on chromosome 11, spanning
The American Journal of Human G
3.5 Mb and containing CAPN1, is

the only shared homozygous region.

In family C, the two affected indi-

viduals were compound heterozy-

gous for a frameshift mutation on

exon 4 (c.406delC [p.Pro136Argfs*40];

Figure 2G) and a splicing mutation

(c.1605þ5G>A; Figures 2E–2G). None

of these variants from the three

families were identified in the 1000

Genome Project, ESP, or our in-house

dataset of >1,600 exome-sequencing

samples. The coding variants were

also not detected in the ExAC Browser,

and the c.1605þ5G>A splice-site mu-
tation had a frequency of 0.0001. All mutations were vali-

dated via Sanger sequencing, and all the available DNA

samples from family members were also sequenced. In

family A, the two parents (IV-2 and IV-3; Figure 1) and two

siblings (V-3 and V-6) of the affected individuals were all

heterozygous for theCAPN1 c.884G>C(p.Arg295Pro)muta-

tion. In family B, the two parents (III-2 and III-3) and one

sibling (IV-11) of the four individuals sequenced by WES

were all heterozygous carriers of the CAPN1 c.1579C>T

(p.Gln527*) mutation. In family C, both parents (III-1

and III-2) and two siblings (IV-9 and IV-15) were sequenced.

The father, III-1, was a heterozygous carrier of the

c.1605þ5G>A mutation, and the mother, III-2, was a het-

erozygous carrier of the c.406delC mutation, confirming

phasing. Sibling IV-9 was a non-carrier of both variants,

and IV-15 was a heterozygous carrier of the c.1605þ5G>A
enetics 98, 1038–1046, May 5, 2016 1041



Figure 3. Branchiomotor Neurons of
capn1a-Mo-Injected Embryos Display
Abnormal Migration
Abnormal development and migration of
both nV (trigeminal) and nVII (facial)
branchiomotor neurons in 2 dpf Islet1:GFP
embryos either not injected or injected
with the mismatch Mo (MisMo) or capn1a
Mo. Arrows indicate abnormally located
cell bodies. R stands for ‘‘rhombomere.’’
The scale bar represents 50 mm.
mutation. To examine the predicted effect of the splice-site

c.1605þ5G>A mutation, we produced RNA from immor-

talized lymphoblasts from individual IV-7 (family C) and

from healthy family members, and we produced cDNA

with the Invitrogen SuperScript III Reverse Transcriptase

Kit (Invitrogen). Specific primers (forward 50-ACTATTGG

CTTCGCGGTCTA-30 and reverse 50-ATTGTCCGCAACTCC

TTCAC-30) were designed to amplify the cDNA around the

c.1605þ5G>A mutation with a cDNA amplicon length of

389 bp (DNA amplicon length ¼ 3,405 bp). Individual IV-7

had two copies of cDNA with different lengths around the

c.1605þ5G>A splice-site mutation (Figure 2E). Sequencing

of the cDNA after separation on gel demonstrated that this

splice variant results in exon 14 skipping and an early stop

codon (Figures 2E–2G).

RNAi knockdown of clp-1, the C. elegans ortholog of

CAPN1, led to neurodegeneration of GABAergic motor

neurons and an age-dependent paralysis phenotype (see

Figure S1 for details on the experiments and results).

Similarly, loss of function of the CAPN1 ortholog in

D. melanogaster led to locomotor defects and axonal abnor-

malities (see Figures S2 and S3 for details on the exper-

iments and results). RNAi against the D. melanogaster

ortholog, calpain B, led to age-dependent negative geotaxis

(Figure S2). Defects in axons were observed in transgenic

flies expressing calpain B with the pan-neuronal driver

Elav. Axons appeared to have larger diameters and

increased levels of acetylated tubulin (Figure S3).

Zebrafish (D. rerio) embryos were collected and staged

according to standard methods.20 The local animal care

committee at the Centre de Recherche du Centre Hospital-

ier de l’Université de Montréal, having received the proto-

col relevant to this project and relating to animal care and

treatment, certified that the care and treatment of animals

was in accordance with the guidelines and principles of the

Canadian Council on Animal Care. Zebrafish embryos (no

adults were used) are insentient to pain. Similarly to the

findings inD. melanogaster, Figure S4 demonstrates clusters

of acetylated tubulin in zebrafish with mutant calpain 1a

(capn1a). Increased acetylated tubulin is associated with

hyperstabilization of microtubules and has previously

been associated with SPAST mutations. Zebrafish capn1a

and calpain 1b (capn1b) both encode proteins that are
1042 The American Journal of Human Genetics 98, 1038–1046, May
orthologs of the human CAPN1.21 We used a morpholino

oligonucleotide (Mo) against each gene to model the loss

of function of CAPN1. The capn1a Mo, but not the capn1b

Mo, led to a phenotype (data not shown). Details on

the knockdown of the zebrafish calpains, morphology

measurements, and imaging are in Figure S5 legend.

The capn1a Mo resulted in several developmental defects

visible at 2 days postfertilization (dpf), and a moderate

to severe phenotype was exhibited by 78% of injected

embryos at 5 dpf, indicating that these defects are long

lasting (Figure S5). Knockdown with the capn1a Mo was

confirmed in western blots at 48 hr postfertilization (hpf)

(Figure S6). However, co-injecting the human wild-type

CAPN1 mRNA (up to 500 pg of RNA) in wild-type and

Mo-injected eggs failed to show a toxic effect of the RNA

on its own or a rescue of the Mo-induced phenotype. By

western blotting (Figure S6), the zebrafish and human cal-

pain 1 proteins showed exclusive patterns that explain the

failed rescue. Specifically, the human protein was detected

at 24 hpf, but not at 48 hpf, whereas the zebrafish protein

was detected only later at 48 hpf. Thus, the early expres-

sion of human mRNA could very well have failed to rescue

the later knockdown phenotype. Because of the lack of

rescue, the role of the CAPN1 p.Arg295Pro substitution

could not be established in this model, and other models

will be necessary for examining the effect of this substitu-

tion. Because capn1a is mainly expressed in the brain start-

ing at 24 hpf,21 we injected capn1a Mo in the Islet1::GFP

transgenic fish expressing GFP in the motor neurons,

including the branchiomotor neurons. We observed a

disorganization of these motor neurons in comparison

to those of the control, as well as migration defects

of the nV trigeminal nuclei in rhombomeres 2 and 3

(r2 and r3, respectively) and of the VII facial branchiomo-

tor neuronal cell bodies, which had not fully migrated

from r4 to r6. Furthermore, the vagal motor neurons had

an aberrant positioning and spacing, probably because of

a defect in cell motility (Figure 3).

Growing axons in the brain and spinal cord were then

observed with an antibody against acetylated tubulin. The

microtubule network in the brain of capn1a-Mo-injected

embryos (Figures 4B and 4D) appeared to be following a

different pattern than in the morphants injected with
5, 2016



Figure 4. Disorganization of the Micro-
tubule Network in the Brain of capn1a
Morphants
(A and B) Dorsal view of Z-projections of
acetylated-tubulin staining in the brain of
embryos injected with MisMo (A) and
capn1a Mo (B).
(C and D) Lateral view of Z-projections of
acetylated-tubulin staining in the brain
of embryos injected with MisMo (C) and
capn1a Mo (D). The dorsal side is toward
the top of the image.
(E and F) Spinal cord, along the six to eight
somites spanning the anus of the embryos,
of embryos injected with MisMo (E) and
capn1a Mo (F). The dorsal side is toward
the top of the image. Double arrows point
toward thinner and disorganized motor
neuron axons of the capn1a morphants.
Solid white arrows show the clusters of
tubulin. Asterisks show the fainter staining
of the optic tectum of capn1a morphants.
In all images, caudal is to the left. The scale
bar represents 60 mm. Abbreviations are
as follows: ot, optic tectum; tg, trigeminal
ganglion; h, hindbrain; c, cerebellum;
m, midbrain; tel, telencephalon; ob, olfac-
tory bulb; and sc, spinal cord.
mismatchMo (MisMo) (Figures 4A and 4C). Reduced acety-

lated-tubulin staining could be observed at the level of the

optic tectum and cerebellum, whereas a stronger staining

was found in the telencephalon. Strikingly, clusters of acet-

ylated tubulin could be observed in some cells in the dorsal-

most part of the brain (Figures 4B and 4D). Furthermore,

acetylated-tubulin staining in the spinal corddemonstrated

that microtubules in themotor neuron axons were thinner

and more disorganized, although this effect was not as

strong as in the brain (Figures 4E and 4F). Although the

exact pattern varied from embryo to embryo, the vast

majority of embryos injected with the capn1a Mo (29/30)

exhibited similar staining, whereas the controls did not

(both non-injected embryos [0/30, data not shown] and

MisMo-injected embryos [0/30]).

The current study demonstrates that rare homozygous

or compound-heterozygous mutations in CAPN1 cause a

complicated form of HSP. Most of the affected individuals

from the three families suffer from additional neurological

symptoms in addition to the typical spasticity of the lower

limbs, such as upper-extremity hyperreflexia, dysarthria,

and gait ataxia (Table 1). These features are also seen in

other autosomal-recessive forms of HSP. For example, indi-

viduals with AR-HSP caused by mutations in SPG7 (MIM:

607259) often present with phenotypes very similar to

those described in the current study, including symptoms

such as dysarthria, ataxia, upper-extremity hyperreflexia,
The American Journal of Human G
amyotrophy, pes cavus, and sensory

neuropathy.22–24 Similar phenotypes

have also been observed in individ-

uals with mutations in KIF1A (MIM:

610357)25,26 and other forms of AR-
HSP.27 In our dataset that includes 405 HSP-affected indi-

viduals from 252 families, CAPN1 mutations account for

2.2% of the affected individuals and 1.2% of the families.

However, this is an overestimation, given that our dataset

does not include families in whom the genetic cause was

established prior to our study. Therefore, these values

should be considered as maximal. CAPN1, located in chro-

mosomal region 11q13, encodes calpain 1, also known as

the large subunit of m-calpain, a calcium-activated cysteine

protease that is widely present in the CNS.28 Calpain 1 is

probably important for several functions in the CNS, but

its exact role in humans is still not clear. Calpain 1 is

involved in synaptic plasticity,29–32 and several mecha-

nisms for its function have been suggested in animal

models. For example, it was shown that calpain interacts

with CDK5 and NR2B to control NMDA-receptor degrada-

tion and synaptic plasticity.33 Another study suggested

that calpain 1 can affect synaptic plasticity through degra-

dation of its substrate, glutamate receptor-interacting pro-

tein, thus affecting AMPA receptors.34 However, there are

contradicting results regarding the roles of calpains in neu-

roprotection and neurodegeneration, given that several

studies suggest that calpain inhibition might be neuropro-

tective.35,36 A recent study might offer a solution for this

contradiction by demonstrating that selective knockout

of Capn1 (encoding m-calpain) leads to increased neurotox-

icity and that its activity is in fact neuroprotective, whereas
enetics 98, 1038–1046, May 5, 2016 1043



knockout of Capn2 (encoding m-calpain) is neuroprotec-

tive.37 Our animal models support the neuroprotective

role of calpain 1, given that its knockdown led to neurode-

generation or disorganization of neurons. Therefore, it is

likely that different forms of calpain have different or

even opposing effects on neurodegeneration and that cal-

pains might have different effects in different disorders

and different species.

This can be further exemplified by calpain-1-deficient

mice, which have normal gross brain development and

architecture yet have reduced spine density and ramifi-

cations of basal and apical dendrites in hippocampal

CA1 pyramidal neurons, emphasizing the importance of

calpain 1 in regulation and organization of dendritic trees

in hippocampal CA1 neurons.38 Moreover, a knockout

mouse model of another HSP-related gene, CYP7B1 (MIM:

270800), also resulted in the lack of an obvious CNS pheno-

type.39 These observations are comparable to human HSP,

because in humans too, brain imaging and development

often seem to be normal, whereas affected individuals in

fact suffer from axonal degeneration of the descending cor-

ticospinal tract and ascending sensory fibers.5 Interestingly,

loss-of-function mutations in CAPN1 have been suggested

to cause spinocerebellar ataxia in dogs,40 a neurological

disorder that shares features with HSP. Of note, all but one

of the individuals in our studies have cerebellar signs such

as dysarthria and ataxia.

In zebrafish embryos, knockdown of calpain 1a resulted

in disruption of brain development, particularly of bran-

chiomotor neuron migration and positioning. The micro-

tubule network in the brain was disorganized, such that

some regions showed an abnormal accumulation of axonal

acetylated tubulin, whereas others were depleted. This

disruption of the microtubule network was more promi-

nent in the brain, but motor neuron axons in the spinal

cord were also moderately affected. The presence of large

clusters of acetylated tubulin in some cells of the brain is

specific to the knockdown of calpain 1a, given that it was

not observed in other embryos exhibiting hydrocephalus

and migration defects in branchiomotor neurons.41,42

Similarly, the neuromuscular junction of D. melanogaster

with calpain B knockdown showed abnormal levels of acet-

ylated tubulin. Interestingly, similar observations were re-

ported for spastin, encoded by SPAST, in which mutations

are the most common genetic cause of HSP.43,44 This sug-

gests that the two genes might be involved in a similar

mechanism; however, whether CAPN1- and SPG4-asso-

ciated HSP share the same mechanisms is still to be

determined.

Fully understanding the roles of the different calpains

in general, and calpain 1 specifically, will require more

studies, especially in human tissues. Such studies should

focus on isolating the effects of specific calpains on

neurodegeneration and neuroprotection. In addition, ef-

forts should be made to identify more individuals with

CAPN1-associated HSP to expand our knowledge of its

phenotype.
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